首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundWhile Syk has been shown to associate with TLR4, the immune consequences of Syk–TLR interactions and related molecular mechanisms are unclear.MethodsGain- and loss-of-function approaches were utilized to determine the regulatory function of Syk and elucidate the related molecular mechanisms in TLR4-mediated inflammatory responses. Cytokine production was measured by ELISA and phosphorylation of signaling molecules determined by Western blotting.ResultsSyk deficiency in murine dendritic cells resulted in the enhancement of LPS-induced IFNβ and IL-10 but suppression of pro-inflammatory cytokines (TNFα, IL-6). Deficiency of Syk enhanced the activity of PI3K and elevated the phosphorylation of PI3K and Akt, which in turn, lead to the phospho-inactivation of the downstream, central gatekeeper of the innate response, GSK3β. Inhibition of PI3K or Akt abrogated the ability of Syk deficiency to enhance IFNβ and IL-10 in Syk deficient cells, confirmed by the overexpression of Akt (Myr–Akt) or constitutively active GSK3β (GSK3 S9A). Moreover, neither inhibition of PI3K–Akt signaling nor neutralization of de novo synthesized IFNβ could rescue TNFα and IL-6 production in LPS-stimulated Syk deficient cells. Syk deficiency resulted in decreased phosphorylation of IKKβ and the NF-κB p65 subunit, further suggesting a divergent influence of Syk on pro- and anti-inflammatory TLR responses.ConclusionsSyk negatively regulates TLR4-mediated production of IFNβ and IL-10 and promotes inflammatory responses in dendritic cells through divergent regulation of downstream PI3K–Akt and NF-κB signaling pathways.General significanceSyk may represent a novel target for manipulating the direction or intensity of the innate response, depending on clinical necessity.  相似文献   

2.
Context: Interleukin (IL)-1β activates various signal transduction pathways including p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and Akt in human fibroblast-like synoviocytes (HFLS).

Objective: We investigated the effects of an Akt inhibitor, a phosphatidylinositol 3-kinase (PI3K) inhibitor, and Akt RNAi knockdown on IL-1β-induced protein phosphorylation in HFLS to clarify the role of the PI3K/Akt signaling pathway in the phosphorylation of the inhibitor of κB (IκB)α and heat shock protein 27 (HSP27).

Materials and methods: A multiplex suspension array system was used for the detection of phosphorylated proteins.

Results: IL-1β induced biphasic phosphorylation of IκBα, with the first phase occurring 10?min after IL-1β stimulation, and this was augmented by treatment with Akt inhibitor IV. However, this phenomenon was not observed after treatment with LY-294002, a PI3K inhibitor. Furthermore, Akt inhibitor IV suppressed ERK2 phosphorylation, whereas LY-294002 and Akt RNAi had no effect. In contrast, Akt inhibitor IV, LY-294002, and Akt RNAi augmented HSP27 phosphorylation.

Discussion and conclusions: Modulation of different stages of the PI3K/Akt pathway may differentially affect the phosphorylation of IκBα and HSP27 in HFLS.  相似文献   

3.
髓核细胞(nucleus pulposus cells,NPCs)的异常凋亡是导致椎间盘退变(intervertebral disc degeneration,IVDD)的主要原因。本研究组前期研究显示,17β-雌二醇(17β-estradiol,E2)能够通过PI3K/Akt信号通路抑制白介素1β(interleukin-1β,IL-1β)诱导的大鼠椎间盘NPCs凋亡。本研究旨在探讨PI3K/Akt途径的下游蛋白是否参与E2对NPCs凋亡的抑制作用。用胰蛋白酶消化法分离原代大鼠NPCs,采用E2和PI3K/Akt信号通路下游蛋白的不同抑制剂预处理后用IL-1β处理,用Annexin V/PI染色法检测凋亡率,用CCK-8法检测细胞活力,用细胞黏附试验检测NPCs与Ⅱ型胶原的黏附能力,用Western blot检测哺乳动物雷帕霉素靶蛋白(mammalian target of Rapamycin,mTOR)、糖原合成酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)和核因子κB(nuclear factor kappaB,NF-κB)磷酸化水平。结果显示,E2显著抑制IL-1β诱导的NPCs凋亡,逆转由IL-1β引起的细胞活力和黏附能力的降低,抑制IL-1β对mTOR磷酸化水平的下调作用,而雷帕霉素可以阻断E2的这些保护作用。以上结果提示,E2可能通过PI3K/Akt/mTOR信号通路抑制IL-1β诱导的NPCs凋亡。  相似文献   

4.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. IL‐6 is a multifunctional cytokine that plays a central role in both innate and acquired immune responses. We investigated the signaling pathway involved in IL‐6 production stimulated by TNF‐α in cultured myoblasts. TNF‐α caused concentration‐dependent increases in IL‐6 production. TNF‐α‐mediated IL‐6 production was attenuated by focal adhesion kinase (FAK) mutant and siRNA. Pretreatment with phosphatidylinositol 3‐kinase inhibitor (PI3K; Ly294002 and wortmannin), Akt inhibitor, NF‐κB inhibitor (pyrrolidine dithiocarbamate, PDTC), and IκB protease inhibitor (L ‐1‐tosylamido‐2‐phenyl phenylethyl chloromethyl ketone, TPCK) also inhibited the potentiating action of TNF‐α. TNF‐α increased the FAK, PI3K, and Akt phosphorylation. Stimulation of myoblasts with TNF‐α activated IκB kinase α/β (IKKα/β), IκBα phosphorylation, p65 phosphorylation, and κB‐luciferase activity. TNF‐α mediated an increase of κB‐luciferase activity which was inhibited by Ly294002, wortmannin, Akt inhibitor, PDTC and TPCK or FAK, PI3K, and Akt mutant. Our results suggest that TNF‐α increased IL‐6 production in myoblasts via the FAK/PI3K/Akt and NF‐κB signaling pathway. J. Cell. Physiol. 223: 389–396, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Morusin is a pure compound isolated from root bark of Morusaustralis (Moraceae). In this study, we demonstrated that morusin significantly inhibited the growth and clonogenicity of human colorectal cancer HT-29 cells. Apoptosis induced by morusin was characterized by accumulation of cells at the sub-G1 phase, fragmentation of DNA, and condensation of chromatin. Morusin also inhibited the phosphorylation of IKK-α, IKK-β and IκB-α, increased expression of IκB-α, and suppressed nuclear translocation of NF-κB and its DNA binding activity. Dephosphorylation of NF-κB upstream regulators PI3K, Akt and PDK1 was also displayed. In addition, activation of caspase-8, change of mitochondrial membrane potential, release of cytochrome c and Smac/DIABLO, and activation of caspase-9 and -3 were observed at the early time point. Downregulation in the expression of Ku70 and XIAP was exhibited afterward. Caspase-8 or wide-ranging caspase inhibitor suppressed morusin-induced apoptosis. Therefore, the antitumor mechanism of morusin in HT-29 cells may be via activation of caspases and inhibition of NF-κB.  相似文献   

6.
In addition to its functions in thrombosis and hemostasis, thrombin also plays an important role in lung inflammation. Our previous report showed that thrombin activates the protein kinase C (PKC)α/c-Src and Gβγ/Rac1/PI3K/Akt signaling pathways to induce IκB kinase α/β (IKKα/β) activation, NF-κB transactivation, and IL-8/CXCL8 expressions in human lung epithelial cells (ECs). In this study, we further investigated the mechanism of c-Src-dependent Shc, Raf-1, and extracellular signal-regulated kinase (ERK) signaling pathways involved in thrombin-induced NF-κB activation and IL-8/CXCL8 release. Thrombin-induced increases in IL-8/CXCL8 release and κB-luciferase activity were inhibited by the Shc small interfering RNA (siRNA), p66Shc siRNA, GW 5074 (a Raf-1 inhibitor), and PD98059 (a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor). Treatment of A549 cells with thrombin increased p66Shc and p46/p52Shc phosphorylation at Tyr239/240 and Tyr317, which was inhibited by cell transfection with the dominant negative mutant of c-Src (c-Src DN). Thrombin caused time-dependent phosphorylation of Raf-1 and ERK, which was attenuated by the c-Src DN. Thrombin-induced IKKα/β phosphorylation was inhibited by GW 5074 and PD98059. Treatment of cells with thrombin induced Gβγ, c-Src, and p66Shc complex formation in a time-dependent manner. Taken together, these results show for the first time that thrombin activates Shc, Raf-1, and ERK through Gβγ, c-Src, and Shc complex formation to induce IKKα/β phosphorylation, NF-κB activation, and IL-8/CXCL8 release in human lung ECs.  相似文献   

7.
Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3β (GSK3β), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3β. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.  相似文献   

8.
We previously showed that thrombin induces interleukin (IL)-8/CXCL8 expression via the protein kinase C (PKC)α/c-Src-dependent IκB kinase α/β (IKKα/β)/NF-κB signaling pathway in human lung epithelial cells. In this study, we further investigated the roles of Rac1, phosphoinositide 3-kinase (PI3K), and Akt in thrombin-induced NF-κB activation and IL-8/CXCL8 expression. Thrombin-induced IL-8/CXCL8 release and IL-8/CXCL8-luciferase activity were attenuated by a PI3K inhibitor (LY294002), an Akt inhibitor (1-L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), and the dominant negative mutants of Rac1 (RacN17) and Akt (AktDN). Treatment of cells with thrombin caused activation of Rac and Akt. The thrombin-induced increase in Akt activation was inhibited by RacN17 and LY294002. Stimulation of cells with thrombin resulted in increases in IKKα/β activation and κB-luciferase activity; these effects were inhibited by RacN17, LY294002, an Akt inhibitor, and AktDN. Treatment of cells with thrombin induced Gβγ, p85α, and Rac1 complex formation in a time-dependent manner. These results imply that thrombin activates the Rac1/PI3K/Akt pathway through formation of the Gβγ, Rac1, and p85α complex to induce IKKα/β activation, NF-κB transactivation, and IL-8/CXCL8 expression in human lung epithelial cells.  相似文献   

9.
Non-small cell lung carcinoma (NSCLC) accounts for most of all lung cancers, which is the leading cause of mortality in human beings. High level of cyclooxygenase-2 (COX-2) is one of the features of NSCLC and related to the low survival rate of NSCLC. However, whether extracellular nucleotides releasing from stressed resident tissues contributes to the expression of COX-2 remains unclear. Here, we showed that stimulation of A549 cells by adenosine 5'-O-(3-thiotriphosphate) (ATPγS) led to an increase in COX-2 gene expression and prostaglandin E(2) (PGE(2)) synthesis, revealed by Western blotting, RT-PCR, promoter assay, and enzyme-linked immunosorbent assay. In addition, ATPγS induced intracellular reactive oxygen species (ROS) generation through the activation of NADPH oxidase. The increase of ROS level resulted in activation of the c-Src/epidermal growth factor receptor (EGFR)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor (NF)-κB cascade. We also found that activated Akt was translocated into the nucleus and recruited with NF-κB and p300 to form a complex. Thus, activation of p300 modulated the acetylation of histone H4 via the NADPH oxidase/c-Src/EGFR/PI3K/Akt/NF-κB cascade stimulated by ATPγS. Our results are the first to show a novel role of NADPH oxidase-dependent Akt/p65/p300 complex formation that plays a key role in regulating COX-2/PGE(2) expression in ATPγS-treated A549 cells. Taken together, we demonstrated that ATPγS stimulated activation of NADPH oxidase, resulting in generation of ROS, which then activated the downstream c-Src/EGFR/PI3K/Akt/NF-κB/p300 cascade to regulate the expression of COX-2 and synthesis of PGE(2) in A549 cells. Understanding the regulation of COX-2 expression and PGE(2) release by ATPγS on A549 cells may provide potential therapeutic targets of NSCLC.  相似文献   

10.
Tumor malignancy is associated with several cellular properties including proliferation and ability to metastasize. Endothelin-1 (ET-1) the most potent vasoconstrictor plays a crucial role in migration and metastasis of human cancer cells. We found that treatment of human chondrosarcoma (JJ012 cells) with ET-1 increased migration and expression of matrix metalloproteinase (MMP)-13. ET-1-mediated cell migration and MMP-13 expression were reduced by pretreatment with inhibitors of focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), as well as the NF-κB inhibitor and the IκB protease inhibitor. In addition, ET-1 treatment induced phosphorylation of FAK, PI3K, AKT, and mTOR, and resulted in increased NF-κB-luciferase activity that was inhibited by a specific inhibitor of PI3K, Akt, mTOR, and NF-κB cascades. Taken together, these results suggest that ET-1 activated FAK/PI3K/AKT/mTOR, which in turn activated IKKα/β and NF-κB, resulting in increased MMP-13 expression and migration in human chondrosarcoma cells.  相似文献   

11.
12.
The hepatocyte growth factor (HGF)/c‐Met signalling pathway is deregulated in most cancers and associated with a poor prognosis in breast cancer. Cardiotoxin III (CTX III), a basic polypeptide isolated from Naja naja atra venom, has been shown to exhibit anticancer activity. In this study, we use HGF as an invasive inducer to investigate the effect of CTX III on MDA‐MB‐231 cells. When cells were treated with non‐toxic doses of CTX III, CTX III inhibited the HGF‐promoted cell migration and invasion. CTX III significantly suppressed the HGF‐induced c‐Met phosphorylation and downstream activation of phosphatidylinositol 3‐kinase (PI3k)/Akt and extracellular signal‐regulated kinase (ERK) 1/2. Additionally, CTX III similar to wortmannin (a PI3K inhibitor) and U0126 (an upstream kinase regulating ERK1/2 inhibitor) attenuated cell migration and invasion induced by HGF. This effect was paralleled by a significant reduction in phosphorylation of IκBα kinase and IκBα and nuclear translocation of nuclear factor κB (NF‐κB) as well as a reduction of matrix metalloproteinase‐9 (MMP‐9) activity. Furthermore, the c‐Met inhibitor PHA665752 inhibited HGF‐induced MMP‐9 expression, cell migration and invasion, as well as the activation of ERK1/2 and PI3K/Akt, suggesting that ERK1/2 and PI3K/Akt activation occurs downstream of c‐Met activation. Taken together, these findings suggest that CTX III inhibits the HGF‐induced invasion and migration of MDA‐MB‐231 cells via HGF/c‐Met‐dependent PI3K/Akt, ERK1/2 and NF‐κB signalling pathways, leading to the downregulation of MMP‐9 expression. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Recent studies indicate that secondary bile acids promote colon cancer cell proliferation but their role in maintaining cell survival has not been explored. We found that deoxycholyltaurine (DCT) markedly attenuated both unstimulated and TNF-alpha-stimulated programmed cell death in colon cancer cells by a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. To examine the role of bile acids and PI3K signaling in maintaining colon cancer cell survival, we explored the role of signaling downstream of bile acid-induced activation of the epidermal growth factor receptor (EGFR) in regulating both apoptosis and proliferation of HT-29 and H508 human colon cancer cells. DCT caused dose- and time-dependent Akt (Ser(473)) phosphorylation, a commonly used marker of activated PI3K/Akt signaling. Both EGFR kinase and PI3K inhibitors attenuated DCT-induced Akt phosphorylation and Akt activation, as demonstrated by reduced phosphorylation of a GSK-3-paramyosin substrate. Transfection of HT-29 cells with kinase-dead EGFR (K721M) reduced DCT-induced Akt phosphorylation. In HT-29 cells, EGFR and PI3K inhibitors as well as transfection with dominant negative AKT attenuated DCT-induced cell proliferation. DCT-induced PI3K/Akt activation resulted in downstream phosphorylation of GSK-3 (Ser(21/9)) and BAD (Ser(136)), and nuclear translocation (activation) of NF-kappaB, thereby confirming that DCT-induced activation of PI3K/Akt signaling regulates both proproliferative and prosurvival signals. Collectively, these results indicate that DCT-induced activation of post-EGFR PI3K/Akt signaling stimulates both colon cancer cell survival and proliferation.  相似文献   

15.
Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor κB (NF-κB) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cells increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-κB activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-κB activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.  相似文献   

16.
Cholestatic liver disorders are accompanied by the hepatic accumulation of cytotoxic bile acids that induce cell death. Increases in cAMP protect hepatocytes from bile acid-induced apoptosis by a cAMP-guanine exchange factor (cAMP-GEF)/phosphoinositide-3-kinase (PI3K)/Akt pathway. The aim of these studies was to identify the downstream substrate in this pathway and to determine at what level in the apoptotic cascade cytoprotection occurs. Since inhibitory phosphorylation of glycogen synthase kinase-3 (GSK) occurs downstream of PI3K/Akt and this phosphorylation has been implicated in cell survival, we conducted studies to determine whether GSK was downstream in cAMP-GEF/PI3K/Akt-mediated cytoprotection. Our results show that treatment of hepatocytes with the cAMP-GEF-specific analog, 4-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cAMP, results in PI3K-dependent phosphorylation of GSK. Direct chemical inhibition of GSK in rat hepatocytes or human HUH7-NTCP cells with several structurally and functionally distinct inhibitors including bromoindirubin-3'-oxime (BIO), maleimides (SB216763, SB415286), thiadiazolidine derivatives, and LiCl attenuates apoptosis induced by glycochenodeoxycholate (GCDC). In addition, genetic silencing of the GSK β isoform with small interfering RNA attenuates GCDC apoptosis in HUH7-NTCP cells. Adenoviral inhibition of the Rap1 blocks both cAMP-GEF-mediated cytoprotection against GCDC-induced apoptosis and Akt/GSK3β phosphorylation. GCDC-induced phosphorylation of the proapoptotic kinase, c-Jun NH(2)-terminal kinase (JNK) is inhibited by GSK inhibition or cAMP-GEF activation. GCDC-induced apoptosis is accompanied by phosphorylation of the endoplasmic reticulum stress markers pIEF2α and IRE-1, and pretreatment with the cAMP-GEF analog or GSK inhibitors prevents this phosphorylation. Collectively, our results support the presence of a cAMP/cAMP-GEF/Rap1/PI3K/Akt/GSKβ survival pathway in hepatocytes that inhibits bile acid-induced JNK phosphorylation.  相似文献   

17.
目的 研究紫丁香苷的抗乳腺癌作用及分子机制,为紫丁香苷的临床应用提供理论依据。方法 MTT检测紫丁香苷对乳腺癌细胞增殖的抑制作用;台盼蓝、TUNEL和Annexin V-FITC/PI染色检测细胞的凋亡状况,Western bolt检测Caspase-3的活化情况,判断细胞凋亡是否发生;检测凋亡相关蛋白B淋巴细胞瘤2(Bcl-2)的表达,结合JC-1染色探讨紫丁香苷对线粒体凋亡途径的影响;运用PI3K激动剂Recilisib做对比,qRT-PCR和Western bolt检测紫丁香苷调控PI3K/Akt/mTOR通路诱导癌细胞凋亡的作用。结果 紫丁香苷对乳腺癌细胞的增殖具有时间和剂量依赖的抑制作用,能诱导癌细胞发生凋亡。进一步研究发现,紫丁香苷处理后,细胞内Caspase-3被激活,Bcl-2表达下降,线粒体膜电位明显丧失,PI3K、Akt和mTOR的mRNA与蛋白质水平表达无明显变化,但蛋白质磷酸化水平明显下降;Recilisib处理后部分抵消了紫丁香苷对乳腺癌细胞凋亡的作用。结论 紫丁香苷对乳腺癌细胞MDA-MB-231和MCF-7具有良好的抑制作用,其通过抑制PI3K/Akt/mTOR信号通路的活化来抑制细胞增殖并诱导细胞发生线粒体途径的凋亡。紫丁香苷是具有开发潜力的抗乳腺癌药物。  相似文献   

18.
19.
AimsEndothelial dysfunction is a key triggering event in the development of cardiovascular diseases and the current study explored this phenomenon in the context of inflammation, apoptosis, reactive oxygen species (ROS) and the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway during chronic diabetes.Main methodsα-Lipoic acid (ALA) and wortmannin (WM) were chronically administered to aged Goto Kakizaki (GK) rats, a genetic model of non-obese type II diabetes. Key indices of inflammation, apoptosis and oxidative stress were assessed using western blotting, real-time PCR and immunofluoresence-based techniques.Key findingsA chronic inflammation (e.g., increased mRNA/protein levels of TNF-α, ICAM, fractalkine, CD-68, myeloperoxidase) in connection with increased caspase-based apoptotic cell death and heightened state of oxidative stress (HSOS)– appear to exist in diabetic cardiovascular tissues. An assessment of NF-κB dynamics in aged diabetic vessels revealed not only a marked increase in cytosolic phosphorylated levels of IκB-α, NIK, IKK but also an enhancement in nuclear localization of p65 concomitantly with augmented NF-κB-DNA binding activity. Most of the aforementioned cardiovascular-based diabetic abnormalities including reduced activities of PI3K and Akt kinase were ameliorated following chronic ALA therapy. WM, given to GK rats negated the anti-inflammatory and anti-apoptotic actions of ALA.SignificanceOur data highlight a unifying mechanism whereby HSOS through an induction of NF-κB activity together with an impairment in PI3K/Akt pathway favors pro-inflammatory/pro-apoptotic diabetic vascular milieu that culminate in the onset of endothelial dysfunction, a phenomenon which appears to be amenable to treatment with antioxidants and/or PI3/Akt mimetics (e.g., ALA).  相似文献   

20.
Zhu  Xiaojuan  Liu  Shichao  Cao  Zhijiao  Yang  Lei  Lu  Fang  Li  Yulan  Hu  Lili  Bai  Xiaoliang 《Molecular and cellular biochemistry》2021,476(11):3889-3897

Intervertebral disc degeneration (IDD) is a natural problem linked to the inflammation. Higenamine exerts multiple pharmacological properties in inflammation-related disorders. Our study aimed to explore the function of higenamine on interleukin (IL)-1β-caused apoptosis of human nucleus pulposus cells (HNPCs). Cell apoptosis was investigated by TUNEL and flow cytometry. Apoptosis-related biomarkers were determined by qRT-PCR or Western blotting. The protein in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling was measured by Western blotting. We found that higenamine showed little effect on cell apoptosis, but mitigated IL-1β-caused apoptosis in a dose-dependent pattern. Higenamine attenuated IL-1β-induced decrease of Bcl-2 and increase of Bax and cleaved caspase-3. Higenamine did not affect the reactive oxygen species (ROS) level and the PI3K/Akt signaling, but attenuated IL-1β-induced ROS production and inhibition of the PI3K/Akt signaling. IL-1β repressed the activation of the PI3K/Akt pathway, but ROS inhibition using N-acetylcysteine (NAC) rescued this pathway. The PI3K/Akt signaling suppression using LY294002 reversed the inhibitive effect of higenamine on IL-1β-caused apoptosis, and this effect was weakened by ROS inhibition. In conclusion, higenamine attenuates IL-1β-caused apoptosis of HNPCs via ROS-mediated PI3K/Akt pathway.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号