共查询到20条相似文献,搜索用时 0 毫秒
1.
Tssio Brito de Oliveira Rosymar Coutinho de Lucas Ana Silvia de Almeida Scarcella Alex Graa Contato Thiago Machado Pasin Carlos Alberto Martinez Maria de Lourdes Teixeira de Moraes Polizeli 《Molecular ecology》2020,29(8):1550-1559
Climate change is predicted to cause more extreme events, such as heatwaves, and different precipitation patterns. The effects of warming and short‐term drought on soil microbial communities, in particular fungal communities, remain largely unexplored under field conditions. Here, we evaluated how the fungal community of a tropical grassland soil responds to these changes. A field experiment was carried out in a temperature free‐air controlled enhancement (T‐FACE) facility in Ribeirão Preto, Brazil. The isolated and combined effects of drought and a 2°C increase in temperature were investigated. Based on metabarcoding of the ITS2 region, a total of 771 operational taxonomic units were observed. While warming affected the community structure, drought affected the alpha diversity, and the interaction between warming and drought affected both diversity and structure. The change in community composition driven by warming affected only the less abundant species (>1% of the total sequences). The aspect of the fungal communities that was most affected was diversity, which was increased by drought (p < .05), mostly by reducing the dominance of a single species, as observed in the watered plots. In a phylogenetic context, some fungal taxa were favoured by changes in temperature (Hypocreales) and drought (Sordariales) or disadvantaged by both (Pleosporales). It was of note that a water deficit increased the abundance of phytopathogenic fungi, such as Curvularia, Thielavia and Fusarium species. Overall, our results provide evidence that fungal communities in tropical grassland soils have greater sensitivity to drought than to temperature, which might increase the incidence of certain soil‐borne diseases. 相似文献
2.
Differential sensitivity of total and active soil microbial communities to drought and forest management 下载免费PDF全文
Felipe Bastida Irene F. Torres Manuela Andrés‐Abellán Petr Baldrian Rubén López‐Mondéjar Tomáš Větrovský Hans H. Richnow Robert Starke Sara Ondoño Carlos García Francisco R. López‐Serrano Nico Jehmlich 《Global Change Biology》2017,23(10):4185-4203
Climate change will affect semiarid ecosystems through severe droughts that increase the competition for resources in plant and microbial communities. In these habitats, adaptations to climate change may consist of thinning—that reduces competition for resources through a decrease in tree density and the promotion of plant survival. We deciphered the functional and phylogenetic responses of the microbial community to 60 years of drought induced by rainfall exclusion and how forest management affects its resistance to drought, in a semiarid forest ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel, community‐based strategies in the face of climate change. The diversity and the composition of the total and active soil microbiome were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially mediated ecosystem multifunctionality was studied by the integration of soil enzyme activities related to the cycles of C, N, and P. The microbial biomass and ecosystem multifunctionality decreased in drought‐plots, as a consequence of the lower soil moisture and poorer plant development, but this decrease was more notable in unthinned plots. The structure and diversity of the total bacterial community was unaffected by drought at phylum and order level, but did so at genus level, and was influenced by seasonality. However, the total fungal community and the active microbial community were more sensitive to drought and were related to ecosystem multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of ecosystem multifunctionality to drought through changes in the active microbial community. The integration of total and active microbiome analyses avoids misinterpretations of the links between the soil microbial community and climate change. 相似文献
3.
植被退化对滇西北高寒草地土壤微生物群落的影响 总被引:2,自引:0,他引:2
【目的】在同尺度下比较我国滇西北高寒草地土壤(GS)及其退化土壤(DGS)中细菌和真菌群落,研究植被退化对高寒草地土壤微生物群落的影响,并探索其环境驱动因子。【方法】分别以16SrRNA基因和ITS基因作为细菌和真菌分子生态学分析的靶标基因,采用定量PCR法测定基因数量来表征微生物群落丰度,采用Illumina Hiseq测序及生物信息学分析研究土壤微生物群落组成和群落结构。【结果】草地退化后,土壤pH值显著上升0.65个单位,土壤水分、总有机碳、可溶性氮含量和C/N比分别显著下降了18.4%、67.5%、47.2%和71.2%;草地退化显著降低了土壤细菌和真菌群落丰度,降低幅度分别为92.4%和94.9%;草地退化没有影响土壤细菌和真菌群落α-多样性,但显著改变了细菌和真菌群落β-多样性(群落结构);草地退化改变了土壤细菌和真菌在OTU水平上的物种组成,土壤真菌OTU种类变化更为显著;草地退化没有影响土壤细菌在门水平上的群落组成,但改变了细菌在纲水平上的群落组成(如Acidimicrobiia、Betaproteobacteria、Chloroplast等);草地退化没有影响土壤真菌在门水平和纲水平上的群落组成。【结论】本研究发现植被退化后滇西北高寒草地土壤质量显著降低,寄居在土壤中的微生物群落丰度也显著降低、微生物群落结构明显改变。 相似文献
4.
Christiana A. Dietzen Klaus Steenberg Larsen Per L. Ambus Anders Michelsen Marie Frost Arndal Claus Beier Sabine Reinsch Inger Kappel Schmidt 《Global Change Biology》2019,25(9):2970-2977
Elevated atmospheric CO2 concentration and climate change may substantially alter soil carbon (C) dynamics, which in turn may impact future climate through feedback cycles. However, only very few field experiments worldwide have combined elevated CO2 (eCO2) with both warming and changes in precipitation in order to study the potential combined effects of changes in these fundamental drivers of C cycling in ecosystems. We exposed a temperate heath/grassland to eCO2, warming, and drought, in all combinations for 8 years. At the end of the study, soil C stocks were on average 0.927 kg C/m2 higher across all treatment combinations with eCO2 compared to ambient CO2 treatments (equal to an increase of 0.120 ± 0.043 kg C m?2 year?1), and showed no sign of slowed accumulation over time. However, if observed pretreatment differences in soil C are taken into account, the annual rate of increase caused by eCO2 may be as high as 0.177 ± 0.070 kg C m?2 year?1. Furthermore, the response to eCO2 was not affected by simultaneous exposure to warming and drought. The robust increase in soil C under eCO2 observed here, even when combined with other climate change factors, suggests that there is continued and strong potential for enhanced soil carbon sequestration in some ecosystems to mitigate increasing atmospheric CO2 concentrations under future climate conditions. The feedback between land C and climate remains one of the largest sources of uncertainty in future climate projections, yet experimental data under simulated future climate, and especially including combined changes, are still scarce. Globally coordinated and distributed experiments with long‐term measurements of changes in soil C in response to the three major climate change‐related global changes, eCO2, warming, and changes in precipitation patterns, are, therefore, urgently needed. 相似文献
5.
干旱和氮沉降深刻影响着人类世森林生态系统的生命活动与物质循环,进而影响全球碳平衡、并反馈作用于气候变化。土壤微生物驱动元素的生物地球化学循环和关键土壤生态过程,在气候变化生物学研究方面具有核心地位和全球重要性。本文综述了干旱和氮沉降对森林土壤细菌和菌根真菌的影响。提出未来应加强全球变化多因子交互作用对土壤微生物多样性、活性与生态功能的研究;建立野外长期定位站,强化亚热带森林生态系统与全球变化研究;注重土壤生物之间互作及网络研究;利用微生物大数据建立相关的机理模型等。从认识微生物多样性和群落组成对全球变化的响应与适应,逐步发展为调控利用微生物群落服务于森林的优化管理、生态资源的合理保护与可持续利用,为充分发挥微生物减缓全球气候变化的作用提供理论基础。 相似文献
6.
气温上升对草地土壤微生物群落结构的影响 总被引:11,自引:3,他引:11
在 2 0世纪内 ,全球气温已经上升了 0 .6℃ ,并预计到本世纪末仍将上升 1.4~ 5 .8℃。全球气候变暖对生态系统的潜在影响 ,生态系统对气温上升的反馈已成为国际生态学界的研究热点 ,而且所研究的系统也已经从过去简化的模拟系统到复杂的真实生态系统。但是 ,现有对真实生态系统的研究大部分集中在地上植物群落和土壤气体交换等领域 ,对在土壤有机碳分解和保护中起决定作用的土壤微生物研究较少。为此 ,在美国大平原地区进行人工提高气温 (上升 1.8℃ ) ,来研究土壤微生物对气温上升的反应。结果表明 :增温对土壤微生物的总生物量没有显著效应 ,但可以提高微生物的 C∶ N比。另外 ,磷脂肪酸分析发现 ,气温上升显著降低土壤微生物量中的细菌比重 ,提高真菌的份额 ,从而显著提高了群落中真菌与细菌的比值。而且 ,通过对土壤微生物底物利用方式和磷脂肪酸特征的主成份分析 ,发现增温导致了土壤微生物群落结构的转变。可见 ,气温上升可能是通过提高土壤微生物中真菌的优势 ,而导致群落结构的变化。该变化将可以提高微生物对土壤有机碳的利用效率 ,并利于土壤有机碳的保护 相似文献
7.
Effects of simulated long-term climatic change on the bryophytes of a limestone grassland community 总被引:2,自引:0,他引:2
The bryophyte vegetation of upland limestone grassland at Buxton in the southern Pennine Hills (UK) was studied following seven years' continuous simulated climate change treatments. The experimental design involved two temperature regimes (ambient, winter warming by 3°C) in factorial combination with three moisture regimes (normal, summer drought, supplemented summer rainfall) and with five replicate blocks. Percentage cover of the bryophytes was estimated visually using 15 randomly positioned quadrats (30 cm × 30 cm) within each of the 30 3 m × 3 m plots. Significant treatment effects were found but these were relatively modest. Total bryophyte cover and cover of Calliergonella cuspidata and Rhytidiadelphus squarrosus responded negatively to drought, whereas Fissidens dubius increased in the droughted plots. Campyliadelphus chrysophyllus increased with winter warming, while R. squarrosus, Lophocolea bidentata and species richness all decreased. The effects on the total bryophyte flora were further studied by canonical correspondence analysis, which yielded a first axis reflecting the combined effects of the moisture and temperature treatments. However, this analysis and a detrended correspondence analysis of the plot data also revealed that natural factors were more important causes of variation in the grassland community than the simulated climate treatments. It was concluded that dewfall may be an important source of moisture for grassland bryophytes and that this factor may have reduced the impact of the moisture treatments. The absence of some thermophilous species such as Homalothecium lutescens in the plots initially may also have reduced their scope for major vegetational change. 相似文献
8.
Contrasting growth changes in two dominant species of a Mediterranean shrubland submitted to experimental drought and warming 总被引:7,自引:0,他引:7
BACKGROUND AND AIMS: Climate projections predict drier and warmer conditions in the Mediterranean basin in the next decades. The possibility of such climatic changes modifying the growth of two Mediterranean species, Erica multiflora and Globularia alypum, which are common components of Mediterranean shrublands, was assessed. METHODS: A field experiment was performed from March 1999 to March 2002 to prolong the drought period and to increase the night-time temperature in a Mediterranean shrubland, where E. multiflora and G. alypum are the dominant species. Annual growth in stem diameter and length of both species was measured and annual stem biomass production was estimated for 1999, 2000 and 2001. Plant seasonal growth was also assessed. KEY RESULTS: On average, drought treatment reduced soil moisture 22 %, and warming increased temperature by 0.7-1.6 degrees C. Erica multiflora plants in the drought treatment showed a 46 % lower annual stem elongation than controls. The decrease in water availability also reduced by 31 % the annual stem diameter increment and by 43 % the annual stem elongation of G. alypum plants. New shoot growth of G. alypum was also strongly reduced. Allometrically estimated biomass production was decreased by drought in both species. Warming treatment produced contrasting effects on the growth patterns of these species. Warmer conditions increased, on average, the stem basal diameter growth of E. multiflora plants by 35 %, raising also their estimated stem biomass production. On the contrary, plants of G. alypum in the warming treatment showed a 14 % lower annual stem growth in basal diameter and shorter new shoots in spring compared with controls. CONCLUSIONS: The results indicate changes in the annual productivity of these Mediterranean shrubs under near future drier and warmer conditions. They also point to alterations in their competitive abilities, which could lead to changes in the species composition of these ecosystems in the long term. 相似文献
9.
10.
Fire affects the taxonomic and functional composition of soil microbial communities,with cascading effects on grassland ecosystem functioning 总被引:1,自引:0,他引:1
Sihang Yang Qiaoshu Zheng Yunfeng Yang Mengting Yuan Xingyu Ma Nona R. Chiariello Kathryn M. Docherty Christopher B. Field Jessica L. M. Gutknecht Bruce A. Hungate Audrey Niboyet Xavier Le Roux Jizhong Zhou 《Global Change Biology》2020,26(2):431-442
Fire is a crucial event regulating the structure and functioning of many ecosystems. Yet few studies have focused on how fire affects taxonomic and functional diversities of soil microbial communities, along with changes in plant communities and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects in a grassland ecosystem 9 months after an experimental fire at the Jasper Ridge Global Change Experiment site in California, USA. Fire altered soil microbial communities considerably, with community assembly process analysis showing that environmental selection pressure was higher in burned sites. However, a small subset of highly connected taxa was able to withstand the disturbance. In addition, fire decreased the relative abundances of most functional genes associated with C degradation and N cycling, implicating a slowdown of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated above‐ and belowground plant growth, likely enhancing plant–microbe competition for soil inorganic N, which was reduced by a factor of about 2. To synthesize those findings, we performed structural equation modeling, which showed that plants but not microbial communities were responsible for significantly higher soil respiration rates in burned sites. Together, our results demonstrate that fire ‘reboots’ the grassland ecosystem by differentially regulating plant and soil microbial communities, leading to significant changes in soil C and N dynamics. 相似文献
11.
Ingibjörg S. Jónsdóttir Borgthór Magnússon† Jón Gudmundsson‡ Ásrún Elmarsdóttir† Hreinn Hjartarson§ 《Global Change Biology》2005,11(4):553-563
Facing an increased threat of rapid climate change in cold‐climate regions, it is important to understand the sensitivity of plant communities both in terms of degree and direction of community change. We studied responses to 3–5 years of moderate experimental warming by open‐top chambers in two widespread but contrasting tundra communities in Iceland. In a species‐poor and nutrient‐deficient moss heath, dominated by Racomitrium lanuginosum, mean daily air temperatures at surface were 1–2°C higher in the warmed plots than the controls whereas soil temperatures tended to be lower in the warmed plots throughout the season. In a species‐rich dwarf shrub heath on relatively rich soils at a cooler site, dominated by Betula nana and R. lanuginosum, temperature changes were in the same direction although more moderate. In the moss heath, there were no detectable community changes while significant changes were detected in the dwarf shrub heath: the abundance of deciduous and evergreen dwarf shrubs significantly increased (>50%), bryophytes decreased (18%) and canopy height increased (100%). Contrary to some other studies of tundra communities, we detected no changes in species richness or other diversity measures in either community and the abundance of lichens did not change. It is concluded that the sensitivity of Icelandic tundra communities to climate warming varies greatly depending on initial conditions in terms of species diversity, dominant species, soil and climatic conditions as well as land‐use history. 相似文献
12.
Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland 总被引:2,自引:0,他引:2
Yunfeng Yang Linwei Wu Qiaoyan Lin Mengting Yuan Depeng Xu Hao Yu Yigang Hu Jichuang Duan Xiangzhen Li Zhili He Kai Xue Joy van Nostrand Shiping Wang Jizhong Zhou 《Global Change Biology》2013,19(2):637-648
Microbes play key roles in various biogeochemical processes, including carbon (C) and nitrogen (N) cycling. However, changes of microbial community at the functional gene level by livestock grazing, which is a global land‐use activity, remain unclear. Here we use a functional gene array, GeoChip 4.0, to examine the effects of free livestock grazing on the microbial community at an experimental site of Tibet, a region known to be very sensitive to anthropogenic perturbation and global warming. Our results showed that grazing changed microbial community functional structure, in addition to aboveground vegetation and soil geochemical properties. Further statistical tests showed that microbial community functional structures were closely correlated with environmental variables, and variations in microbial community functional structures were mainly controlled by aboveground vegetation, soil C/N ratio, and NH4+‐N. In‐depth examination of N cycling genes showed that abundances of N mineralization and nitrification genes were increased at grazed sites, but denitrification and N‐reduction genes were decreased, suggesting that functional potentials of relevant bioprocesses were changed. Meanwhile, abundances of genes involved in methane cycling, C fixation, and degradation were decreased, which might be caused by vegetation removal and hence decrease in litter accumulation at grazed sites. In contrast, abundances of virulence, stress, and antibiotics resistance genes were increased because of the presence of livestock. In conclusion, these results indicated that soil microbial community functional structure was very sensitive to the impact of livestock grazing and revealed microbial functional potentials in regulating soil N and C cycling, supporting the necessity to include microbial components in evaluating the consequence of land‐use and/or climate changes. 相似文献
13.
Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species 总被引:1,自引:0,他引:1
ANKE JENTSCH † JUERGEN KREYLING ‡ JEGOR BOETTCHER-TRESCHKOW† CARL BEIERKUHNLEIN‡ 《Global Change Biology》2009,15(4):837-849
Shifts in the phenology of plant and animal species or in the migratory arrival of birds are seen as ‘fingerprints’ of global warming. However, even if such responses have been documented in large continent‐wide datasets of the northern hemisphere, all studies to date correlate the phenological pattern of various taxa with gradual climatic trends. Here, we report a previously unobserved phenomenon: severe drought and heavy rain events caused phenological shifts in plants of the same magnitude as one decade of gradual warming. We present data from two vegetation periods in an experimental setting containing the first evidence of shifted phenological response of 10 grassland and heath species to simulated 100‐year extreme weather events in Central Europe. Averaged over all species, 32 days of drought significantly advanced the mid‐flowering date by 4 days. The flowering length was significantly extended by 4 days. Heavy rainfall (170 mm over 14 days) had no significant effect on the mid‐flowering date. However, heavy rainfall reduced the flowering length by several days. Observed shifts were species‐specific, (e.g. drought advanced the mid‐flowering date for Holcus lanatus by 1.5 days and delayed the mid‐flowering date for Calluna vulgaris by 5.7 days, heavy rain advanced mid‐flowering date of Lotus corniculatus by 26.6 days and shortened the flowering length of the same species by 36.9 days). Interestingly, the phenological response of individual species was modified by community composition. For example, the mid‐flowering date of C. vulgaris was delayed after drought by 9.3 days in communities composed of grasses and dwarf shrubs compared with communities composed of dwarf shrubs only. This indicates that responses to extreme events are context specific. Additionally, the phenological response of experimental communities to extreme weather events can be modified by the functional diversity of a stand. Future studies on phenological response patterns related to climate change would profit from explicitly addressing the role of extreme weather events. 相似文献
14.
Marion Prudent Samuel Dequiedt Camille Sorin Sylvie Girodet Virginie Nowak Gérard Duc Christophe Salon Pierre-Alain Maron 《Plant, cell & environment》2020,43(4):1023-1035
The cultivation of legumes shows promise for the development of sustainable agriculture, but yield instability remains one of the main obstacles for its adoption. Here, we tested whether the yield stability (i.e., resistance and resilience) of pea plants subjected to drought could be enhanced by soil microbial diversity. We used a dilution approach to manipulate the microbial diversity, with a genotype approach to distinguish the effect of symbionts from that of microbial diversity as a whole. We investigated the physiology of plants in response to drought when grown on a soil containing high or low level of microbial diversity. Plants grown under high microbial diversity displayed higher productivity and greater resilience after drought. Yield losses were mitigated by 15% on average in the presence of high soil microbial diversity at sowing. Our study provides proof of concept that the soil microbial community as a whole plays a key role for yield stability after drought even in plant species living in relationships with microbial symbionts. These results emphasize the need to restore soil biodiversity for sustainable crop management and climate change adaptation. 相似文献
15.
We investigated how the legacy of warming and summer drought affected microbial communities in five different replicated long‐term (>10 years) field experiments across Europe (EU‐FP7 INCREASE infrastructure). To focus explicitly on legacy effects (i.e., indirect rather than direct effects of the environmental factors), we measured microbial variables under the same moisture and temperature in a brief screening, and following a pre‐incubation at stable conditions. Specifically, we investigated the size and composition of the soil microbial community (PLFA) alongside measurements of bacterial (leucine incorporation) and fungal (acetate in ergosterol incorporation) growth rates, previously shown to be highly responsive to changes in environmental factors, and microbial respiration. We found no legacy effects on the microbial community size, composition, growth rates, or basal respiration rates at the effect sizes used in our experimental setup (0.6 °C, about 30% precipitation reduction). Our findings support previous reports from single short‐term ecosystem studies thereby providing a clear evidence base to allow long‐term, broad‐scale generalizations to be made. The implication of our study is that warming and summer drought will not result in legacy effects on the microbial community and their processes within the effect sizes here studied. While legacy effects on microbial processes during perturbation cycles, such as drying–rewetting, and on tolerance to drought and warming remain to be studied, our results suggest that any effects on overall ecosystem processes will be rather limited. Thus, the legacies of warming and drought should not be prioritized factors to consider when modeling contemporary rates of biogeochemical processes in soil. 相似文献
16.
Mark A. Bradford Matthew D. Wallenstein Steven D. Allison Kathleen K. Treseder Serita D. Frey Brian W. Watts Christian A. Davies Thomas R. Maddox Jerry M. Melillo Jacqueline E. Mohan James F. Reynolds 《Ecology letters》2009,12(7):E15-E18
Hartley et al. question whether reduction in R mass , under experimental warming, arises because of the biomass method. We show the method they treat as independent yields the same result. We describe why the substrate-depletion hypothesis may not solely explain observed responses, and urge caution in interpretation of the seasonal data. 相似文献
17.
Cara A. Faillace Arnaud Sentis José M. Montoya 《Biological reviews of the Cambridge Philosophical Society》2021,96(5):1933-1950
Eco-evolutionary dynamics can mediate species and community responses to habitat warming and fragmentation, two of the largest threats to biodiversity and ecosystems. The eco-evolutionary consequences of warming and fragmentation are typically studied independently, hindering our understanding of their simultaneous impacts. Here, we provide a new perspective rooted in trade-offs among traits for understanding their eco-evolutionary consequences. On the one hand, temperature influences traits related to metabolism, such as resource acquisition and activity levels. Such traits are also likely to have trade-offs with other energetically costly traits, like antipredator defences or dispersal. On the other hand, fragmentation can influence a variety of traits (e.g. dispersal) through its effects on the spatial environment experienced by individuals, as well as properties of populations, such as genetic structure. The combined effects of warming and fragmentation on communities should thus reflect their collective impact on traits of individuals and populations, as well as trade-offs at multiple trophic levels, leading to unexpected dynamics when effects are not additive and when evolutionary responses modulate them. Here, we provide a road map to navigate this complexity. First, we review single-species responses to warming and fragmentation. Second, we focus on consumer–resource interactions, considering how eco-evolutionary dynamics can arise in response to warming, fragmentation, and their interaction. Third, we illustrate our perspective with several example scenarios in which trait trade-offs could result in significant eco-evolutionary dynamics. Specifically, we consider the possible eco-evolutionary consequences of (i) evolution in thermal performance of a species involved in a consumer–resource interaction, (ii) ecological or evolutionary changes to encounter and attack rates of consumers, and (iii) changes to top consumer body size in tri-trophic food chains. In these scenarios, we present a number of novel, sometimes counter-intuitive, potential outcomes. Some of these expectations contrast with those solely based on ecological dynamics, for example, evolutionary responses in unexpected directions for resource species or unanticipated population declines in top consumers. Finally, we identify several unanswered questions about the conditions most likely to yield strong eco-evolutionary dynamics, how better to incorporate the role of trade-offs among traits, and the role of eco-evolutionary dynamics in governing responses to warming in fragmented communities. 相似文献
18.
垃圾堆肥复合菌剂对干旱胁迫下草坪植物生理生态特性的影响 总被引:1,自引:0,他引:1
从生活垃圾堆肥中提取有益微生物菌种,配成不同浓度的复合微生物菌剂(CM),施入草坪基质,研究了复合微生物菌剂对干旱胁迫下草坪植物生理生态特性的影响。结果表明:在干旱胁迫下,接种过复合微生物菌剂的草坪植物叶片的丙二醛(MDA)含量显著低于未接种菌剂的对照,超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性显著高于对照。不同草坪植物品种生理生态特性在接种CM后对干旱胁迫的响应程度不同。即高羊茅(Festuca arundinacea L.),当接种200倍稀释液的菌剂,叶片SOD、POD和CAT活性达到最大,分别是对照的8.13、1.53和2.46倍;而黑麦草(Lolium perenne L.)则当接种100倍稀释液的菌剂,POD和CAT活性分别高出对照64.4%和56.1%,而SOD活性是对照的6.50倍。和对照相比,各接种菌剂处理的脯氨酸(Pro)含量、可溶性蛋白含量明显降低,离体叶片持水力却保持了较高的水平。上述结果表明,接种复合微生物菌剂后,植物能够通过自身的保护酶活性和渗透调节物质含量来减轻干旱伤害,维持植物体的正常生理代谢功能,从而有效缓解干旱胁迫对草坪植物的伤害,提高草坪植物的抗旱性,为干旱环境草坪植物的建植提供依据。 相似文献
19.
自然增温对南亚热带森林土壤微生物群落与有机碳代谢功能基因的影响 总被引:2,自引:0,他引:2
基于海拔高度下降气温上升的关系,将模拟的生态系统(含植物和土壤)从高海拔整体移位至低海拔地区,实现自然增温的效果。通过对自然增温条件下土壤环境因子及其相关理化性质的动态监测,结合磷脂脂肪酸分析与宏基因组学方法,测定土壤微生物群落结构以及与土壤有机碳分解相关基因丰度,探究自然增温对鼎湖山南亚热带山地常绿阔叶林土壤有机碳代谢的影响及其微生物学机制。结果表明:(1)增温处理显著改变了0—10 cm土壤温度与湿度:2016—2018年间土壤温度显著上升2.48℃,湿度显著下降23.93%。(2)增温处理下,干季土壤有机碳含量与湿季土壤硝态氮含量显著降低,其他土壤理化因子无显著变化。(3)增温处理下,干季和湿季土壤微生物群落结构发生改变,且湿季变化显著。土壤湿度是影响干季和湿季土壤微生物群落结构变化的主要因子,解释了干季50.2%的变异度与湿季79.2%的变异度。(4)宏基因组结果表示:增温抑制了干季山地常绿阔叶林土壤有机碳代谢基因丰度,增强了湿季山地常绿阔叶林土壤有机碳代谢基因丰度。以上结果表明,增温通过改变土壤微生物生物量和群落结构以及有机碳代谢相关功能基因的丰度,最终影响南亚热带山地常绿阔... 相似文献
20.
Elizabeth Starks Ryan Cooper Peter R. Leavitt Björn Wissel 《Global Change Biology》2014,20(4):1032-1042
The anticipated impacts of climate change on aquatic biota are difficult to evaluate because of potentially contrasting effects of temperature and hydrology on lake ecosystems, particularly those closed‐basin lakes within semiarid regions. To address this shortfall, we quantified decade‐scale changes in chemical and biological properties of 20 endorheic lakes in central North America in response to a pronounced transition from a drought to a pluvial period during the early 21st century. Lakes exhibited marked temporal changes in chemical characteristics and formed two discrete clusters corresponding to periods of substantially different effective moisture (as Palmer Drought Severity Index, PDSI). Discriminant function analysis (DFA) explained 90% of variability in fish assemblage composition and showed that fish communities were predicted best by environmental conditions during the arid interval (PDSI 2). DFA also predicted that lakes could support more fish species during pluvial periods, but their occurrences may be limited by periodic stress due to recurrent droughts and physical barriers to colonization. Zooplankton taxonomic assemblages in fishless lakes were resilient to short‐term changes in meteorological conditions, and did not vary between drought and deluge periods. Conversely, zooplankton taxa in fish‐populated lakes decreased substantially in biomass during the wet interval, likely due to increased zooplanktivory by fish. The powerful effects of such climatic variability on hydrology and the strong subsequent links to water chemistry and biota indicate that future changes in global climate could result in significant restructuring of aquatic communities. Together these findings suggest that semiarid lakes undergoing temporary climate shifts provide a useful model system for anticipating the effects of global climate change on lake food webs. 相似文献