首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identifying plausible mechanisms for compartmentalization and accumulation of the organic intermediates of early metabolic cycles in primitive cells has been a major challenge in theories of life’s origins. Here, we propose a mechanism, where positive membrane potentials elevate the concentration of the organic intermediates. Positive membrane potentials are generated by positively charged surfaces of protocell membranes due to accumulation of transition metals. We find that (i) positive membrane potentials comparable in magnitude to those of modern cells can increase the concentration of the organic intermediates by several orders of magnitude; (ii) generation of large membrane potentials destabilize ion distributions; (iii) violation of electroneutrality is necessary to induce nonzero membrane potentials; and (iv) violation of electroneutrality enhances osmotic pressure and diminishes reaction efficiency, resulting in an evolutionary driving force for the formation of lipid membranes, specialized ion channels, and active transport systems.  相似文献   

2.
ABSTRACT

The assignment of specific ribosomal functions to individual ribosomal proteins is difficult due to the enormous cooperativity of the ribosome; however, important roles for distinct ribosomal proteins are becoming evident. Although rRNA has a major role in certain aspects of ribosomal function, such as decoding and peptidyl-transferase activity, ribosomal proteins are nevertheless essential for the assembly and optimal functioning of the ribosome. This is particularly true in the context of interactions at the entrance pore for mRNA, for the translation-factor binding site and at the tunnel exit, where both chaperones and complexes associated with protein transport through membranes bind.  相似文献   

3.
Ravi C. Dutta 《Molecular simulation》2019,45(14-15):1148-1162
ABSTRACT

An understanding of interfacial barriers underpinning fluid transport in nanoporous membranes is critical for the design of efficient next generation membranes, to harness their potential for industrial scale separations. Such barriers include the contribution of external and internal interfacial barriers, and strongly depend on smoothness of the pore surface, pore size, shape, tortuosity, structural defects such as pore blockage and thermodynamic state of the fluid. We review recent progress in the transport of a fluid through nanoporous membrane materials such as zeolites and carbon nanotubes, which hold promise for industrial significance, but their application is subject to strong interfacial barriers. The contribution of interfacial barriers to the overall transport in these membrane materials is found to be particularly significant when the pore surface is uniform as well as at low temperatures and pressures. Further, such barriers that arise from internal defects such as grain boundaries are found to be remarkable and detrimental to separation kinetics. The internal interfacial barriers are found to be significant, and are enhanced when a dense medium such as a polymer is present at the interface, suggesting that interfacial barriers can play a key role in mixed matrix membranes and is an important area requiring further attention.  相似文献   

4.
The primary targets of defense peptides are plasma membranes, and the induced irreversible depolarization is sufficient to exert antimicrobial activity although secondary modes of action might be at work. Channels or pores underlying membrane permeabilization are usually quite large with single-channel conductances two orders of magnitude higher than those exhibited by physiological channels involved, e.g., in excitability. Accordingly, the ion specificity and selectivity are quite low. Whereas, e.g., peptaibols favor cation transport, polycationic or basic peptides tend to form anion-specific pores. With dermaseptin B2, a 33 residue long and mostly α-helical peptide isolated from the skin of the South American frog Phyllomedusa bicolor, we found that the ion specificity of its pores induced in bilayers is modulated by phospholipid-charged headgroups. This suggests mixed lipid–peptide pore lining instead of the more classical barrel–stave model. Macroscopic conductance is nearly voltage independent, and concentration dependence suggests that the pores are mainly formed by dermaseptin tetramers. The two most probable single-channel events are well resolved at 200 and 500 pS (in 150 mM NaCl) with occasional other equally spaced higher or lower levels. In contrast to previous molecular dynamics previsions, this study demonstrates that dermaseptins are able to form pores, although a related analog (B6) failed to induce any significant conductance. Finally, the model of the pore we present accounts for phospholipid headgroups intercalated between peptide helices lining the pore and for one of the most probable single-channel conductance.  相似文献   

5.
Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (∼16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules.  相似文献   

6.
Summary The three types of porin (matrix-proteins) fromSalmonella typhimurium with molecular weights of 38,000, 39,000 and 40,000 were reconstituted with lipid bilayer membranes either as a trimer or as an oligomer (complex I). The specific conductance of the membranes increased several orders of magnitude after the addition of the porins into the aqueous phase bathing the membranes. A linear relationship between protein concentration in the aqueous phase and membrane conductance was found. In the case of lower protein concentrations (10–12 m), the conductance increased in a stepwise fashion with a single conductance increment of 2.3 nS in 1m KCl. For a given salt the conductance increment was found to be largely independent of the particular porin (38 K, 39K or 40 K) and on the state of aggregation, although porin oligomers showed an up to 10 times smaller conductance increase in macroscopic conductance measurements. The conductance pathway has an ohmic current voltage characteristic and a poor selectivity for different alkali ions. Further information on the structure of the pores formed by the different porins fromSalmonella was obtained from the selectivity for various ions. From the permeability of the pore for large ions (Tris+, glucosamine+, Hepes_ a minimum pore diameter of 0.8 nm is estimated. This value is in agreement with the size of the pore as calculated from the conductance data for 1m KCl (1.4 nm for a pore length of 7.5 nm). The pore diameter may well account for the sugar permeability which has been found in reconstituted vesicles. The findings reported here are consistent with the assumption that the different porins form large aqueous channels in the lipid bilayer membranes and that the single condutance unit is a trimer. In addition, it is suggested that one trimer contains only one pore rather than a bundle of pores.  相似文献   

7.
The Mechanism of Isotonic Water Transport   总被引:15,自引:4,他引:11       下载免费PDF全文
The mechanism by which active solute transport causes water transport in isotonic proportions across epithelial membranes has been investigated. The principle of the experiments was to measure the osmolarity of the transported fluid when the osmolarity of the bathing solution was varied over an eightfold range by varying the NaCl concentration or by adding impermeant non-electrolytes. An in vitro preparation of rabbit gall bladder was suspended in moist oxygen without an outer bathing solution, and the pure transported fluid was collected as it dripped off the serosal surface. Under all conditions the transported fluid was found to approximate an NaCl solution isotonic to whatever bathing solution used. This finding means that the mechanism of isotonic water transport in the gall bladder is neither the double membrane effect nor co-diffusion but rather local osmosis. In other words, active NaCl transport maintains a locally high concentration of solute in some restricted space in the vicinity of the cell membrane, and water follows NaCl in response to this local osmotic gradient. An equation has been derived enabling one to calculate whether the passive water permeability of an organ is high enough to account for complete osmotic equilibration of actively transported solute. By application of this equation, water transport associated with active NaCl transport in the gall bladder cannot go through the channels for water flow under passive conditions, since these channels are grossly too impermeable. Furthermore, solute-linked water transport fails to produce the streaming potentials expected for water flow through these passive channels. Hence solute-linked water transport does not occur in the passive channels but instead involves special structures in the cell membrane, which remain to be identified.  相似文献   

8.
The proteins of the outer membrane from rat liver mitochondria have been subfractionated by means of density gradient centrifugation. The different polypeptides of the membrane were incorporated into asolectin vesicles and black lipid membranes. It was observed that a polypeptide of Mr 32 000 renders asolectin vesicles permeable to ADP and forms pores in bilayer membrane. These pores showed the same properties as the channels which are formed in the lipid membrane after addition of Triton X-100 solubilized complete outer membrane. The properties of the pore are as follows: (1) The formation of pores depends on the type of phospholipid used for the preparation of the black membranes. (2) The pore is inserted asymmetrically into the membrane. (3) The pore is voltage gated but does not switch off completely at higher voltages. The pore seems to show different conductance states decreasing conductance being observed at increasing voltage. The implications of these findings for the regulation of transport processes across the outer membrane are discussed.  相似文献   

9.
Vibrio harveyi is known to cause fatal vibriosis in marine animals. Here, an outer membrane protein from V. harveyi, namely, VhOmp, was isolated and functionally characterized in terms of pore-forming contact with artificial lipid membranes. The native VhOmp exists as a trimer of a molecular weight similar to that of the porin OmpF from Escherichia coli. Reconstitution of VhOmp into black lipid membranes demonstrated its ability to form ion channels. The average pore conductance of VhOmp was revealed to be about 0.9 and 2 nS in 0.2 and 1 M KCl, respectively. Within transmembrane potentials of ±100 mV, VhOmp pores behaved as ohmic conduits, and their conductance scaled linearly with voltage. Nonlinear plots of the pore conductance versus symmetrical salt concentrations at either side of the protein-incorporating membrane suggested the influence of interior channel functionalities on the passage of charged species. In the presence of Omp-specific polyclonal antibodies, the pore-forming property of VhOmp was modulated so that the usual step-like current increments were replaced by random transitory current fluctuations. VhOmp exhibited a strong biological activity by causing hemolysis of human red blood cells, indicating that VhOmp may act as a crucial determinant during bacterial infection to animal host cells.  相似文献   

10.
The incorporation of porin protein F from the outer membrane of Pseudomonas aeruginosa into artificial lipid bilayers results in an increase of the membrane conductance by many orders of magnitude. The membrane conductance is caused by the formation of large ion-permeable channels with a single-channel conductance in the order of 5 nS for 1 M alkali chlorides. The conductance has an ohmic current vs. voltage relationship. Further information on the structure of the pore formed by protein F was obtained by determining the single-channel conductance for various species differing in charge and size, and from zero-current potential measurements. The channel was found to be permeable for large organic ions (Tris+, N(C2H5)4+, Hepes?) and a channel diameter of 2.2 nm could be estimated from the conductance data (pore length of 7.5 nm). At neutral pH the pore is about two times more permeable for cations than for anions, possibly caused by negative charges in the pore. The consistent observation of large water filled pores formed by porin protein F in model membrane systems is discussed in the light of the known low permeability of the Ps. aeruginosa outer membrane towards antibiotics. It is suggested that this results from a relatively low proportion of open functional porin protein F pores in vivo.  相似文献   

11.
Abstract

The flux through nanoscale pore is one of the key quantities in many processes including membrane applications and fluid separation. Whereas many efforts have been dedicated to the investigation of the fluid flux in nano-channels, the fluid transport behaviours in the block-pores, which contain distinct parts with different geometries or interactions with fluid, are still poorly understood. In this work, by combining both non-equilibrium dynamics simulation and density functional theory, we developed an efficient method for investigating the fluid flux in the block-pores, with which the fluxes of benzene in graphene block slit pores containing a hydrophobic and a hydrophilic region are thereafter investigated. We demonstrate that a region with a stronger interaction with fluid generates a bottleneck for the fluid flow, which greatly suppresses the flux in the pore even though there is no geometrical variation. By tuning the fluid-substrate interaction, the flux inside can be controlled. This study gives clues for the practical application of membrane design.  相似文献   

12.
alpha-Hemolysin (HlyA) is an extracellular protein toxin (117 kDa) secreted by Escherichia coli that targets the plasma membranes of eukaryotic cells. We studied the interaction of this toxin with membranes using planar phospholipid bilayers. For all lipid mixtures tested, addition of nanomolar concentrations of toxin resulted in an increase of membrane conductance and a decrease in membrane stability. HlyA decreased membrane lifetime up to three orders of magnitude in a voltage-dependent manner. Using a theory for lipidic pore formation, we analyzed these data to quantify how HlyA diminished the line tension of the membrane (i.e., the energy required to form the edge of a new pore). However, in contrast to the expectation that adding the positive curvature agent lysophosphatidylcholine would synergistically lower line tension, its addition significantly stabilized HlyA-treated membranes. HlyA also appeared to thicken bilayers to which it was added. We discuss these results in terms of models for proteolipidic pores.  相似文献   

13.
The blockade of CLC-0 chloride channels by p-chlorophenoxy acetate (CPA) has been thought to be state dependent; the conformational change of the channel pore during the “fast gating” alters the CPA binding affinity. Here, we examine the mechanism of CPA blocking in pore-open mutants of CLC-0 in which the residue E166 was replaced by various amino acids. We find that the CPA-blocking affinities depend upon the volume and the hydrophobicity of the side chain of the introduced residue; CPA affinity can vary by three orders of magnitude in these mutants. On the other hand, mutations at the intracellular pore entrance, although affecting the association and dissociation rates of the CPA block, generate only a modest effect on the steady-state blocking affinity. In addition, various amphiphilic compounds, including fatty acids and alkyl sulfonates, can also block the pore-open mutants of CLC-0 through a similar mechanism. The blocking affinity of fatty acids and alkyl sulfonates increases with the length of these amphiphilic blockers, a phenomenon similar to the block of the Shaker K+ channel by long-chain quaternary ammonium (QA) ions. These observations lead us to propose that the CPA block of the open pore of CLC-0 is similar to the blockade of voltage-gated K+ channels by long-chain QAs or by the inactivation ball peptide: the blocker first uses the hydrophilic end to “dock” at the pore entrance, and the hydrophobic part of the blocker then enters the pore to interact with a more hydrophobic region of the pore. This blocking mechanism appears to be very general because the block does not require a precise structural fit between the blocker and the pore, and the blocking mechanism applies to the cation and anion channels with unrelated pore architectures.  相似文献   

14.
Gramicidin incorporation to DPPC or lecithin-PC large unilamellar vesicles (LUVs) leads to pore formation that, under hyper-osmotic conditions, produces a noticeable increase in the rate of trans-membrane water flow. This pore formation is more efficient in the more fluid lecithin-PC LUVs. Exposure of these vesicles to peroxyl radicals generated in the aerobic thermolysis of 2,2'-azo-bis(2-amidinopropane) (AAPH), changes the physical properties of the bilayer (as sensed employing fluorescent probes), modifies gramicidin molecules (as sensed by the decrease in Trp fluorescence) and notably reduces the transbilayer rate of water outflow. In order to evaluate if this reduced water-transport capacity is due to changes in the membrane due to lipid-peroxidation and/or direct damage to gramicidin channels, results obtained in the oxidable vesicles (lecithin-PC) were compared to those obtained in DPPC vesicles. The data obtained show that most of the water transport efficiency loss can be ascribed to a direct disruption of gramicidin channels by AAPH derived peroxyl radicals.  相似文献   

15.
BackgroundCells secrete heterogeneous populations of extracellular vesicles (EVs) via unknown mechanisms. EV biogenesis has been postulated to involve lipid-protein clusters, also known as membrane microdomains.MethodsMembrane properties and heterogeneity of melanoma-derived EVs were analyzed by a detergent solubilization assay, sucrose density gradient ultracentrifugation and immunoprecipitation. EV secretion was modulated by RNA interference and pharmacological treatments.ResultsWe identified two EV membranes (low-density exosomal detergent-insoluble membranes [EV-DIMs]; EV detergent-soluble membranes [EV-DSMs]) and discovered an abundant, novel type of high-density EV-DIMs. The high-density EV-DIMs accumulated the microdomain-resident protein flotillin-1, as well as a disintegrin and metalloproteinase domain containing protein 10 (Adam10), the hepatocyte growth factor receptor Met and its proteolytic fragments. Low-density EV-DIMs also contained flotillin-1. EV-DSMs were enriched with tetraspanin CD81, melanogenic enzymes and proteolytic fragments of Adam10. Intact and fragmented forms of Adam10, which resided in distinct membrane types, were secreted by different EVs. The fragmented form of Met was associated with DIMs much more efficiently than the intact form and they were secreted by distinct EVs. We identified that the endosomal sorting complexes required for transport machinery was indispensable for EV secretion of both mature and fragmented forms of Adam10 and Met.ConclusionThe findings of this study reveal the role of the interplay between membrane organization and sorting machineries in generating the heterogeneity of EVs.General significanceThis study provides novel insights into important aspects of EV biogenesis.  相似文献   

16.
K channels mediate the selective passage of K+ across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K+ transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker’s reported ∼20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K+ is set to ∼4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K+], beyond that of P475D, suggesting an ∼200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum conductance of the large conductance K (BK) channel (the K channel of highest conductance), reducing the energy gap between their K+ transport rates to ∼1 kT. Thus, although Shaker’s pore sustains ion translocation as the BK channel’s does, higher energetic costs of ion stabilization or higher friction with the ion’s rigid hydration cage in its narrower aqueous cavity may entail higher resistance.  相似文献   

17.
In previous in vivo studies, amyloid fibers formed from a peptide ubiquitous in human seminal fluid (semen-derived enhancer of viral infection (SEVI)) were found to dramatically enhance the infectivity of the HIV virus (3–5 orders of magnitude by some measures). To complement those studies, we performed in vitro assays of PAP248-286, the most active precursor to SEVI, and other polycationic polymers to investigate the physical mechanisms by which the PAP248-286 promotes the interaction with lipid bilayers. At acidic (but not at neutral) pH, freshly dissolved PAP248-286 catalyzes the formation of large lipid flocculates in a variety of membrane compositions, which may be linked to the promotion of convective transport in the vaginal environment rather than transport by a random Brownian motion. Furthermore, PAP248-286 is itself fusiogenic and weakens the integrity of the membrane in such a way that may promote fusion by the HIV gp41 protein. An α-helical conformation of PAP248-286, lying parallel to the membrane surface, is implicated in promoting bridging interactions between membranes by the screening of the electrostatic repulsion that occurs when two membranes are brought into close contact. This suggests that nonspecific binding of monomeric or small oligomeric forms of SEVI in a helical conformation to lipid membranes may be an additional mechanism by which SEVI enhances the infectivity of the HIV virus.  相似文献   

18.
The subcellular localization and secretion of proteins synthesized in the cytosol are determined by short amino acid sequences in their molecules. N-terminal transit peptides provide for protein translocation across the membranes of the ER, mitochondria, plastids, and microbodies. Later, these peptides are cleaved off by processing peptidases. C-terminal peptides direct some proteins into microbodies and vacuoles. Transport into the nucleus and insertion in the membranes are determined by the specific sequences that reside in the molecule of the mature protein. Specific receptors associated with the protein-translocating channel recognize transit peptides. Protein unfolding is required for successful protein transport through these channels. Chaperones maintain proteins in such a state. Folded proteins cross the nuclear pore complex and the membrane of microbodies. Protein transport is tightly associated with their processing. During the vesicular protein transport within the endomembrane system (ER, Golgi apparatus, plasma membrane, and vacuoles), correct protein targeting is ensured by protein sorting during vesicle loading, the assembly of corresponding protein coats, vesicle transport to the acceptor membrane, and specific membrane fusion.  相似文献   

19.
The effects of bovine serum albumin adsorption on the transport characteristics of asymmetric poly(ether sulfone) ultrafiltration membranes were determined using polydisperse dextrans with gel permeation chromatography. Actual dextran sieving coefficients were evaluated from observed sieving data for both the clean and preadsorbed membranes using a stagnant film model. The flux dependence of the actual dextran sieving coefficients was used to evaluate the intrinsic membrane hindrance factors for convective (i.e., sieving) and diffusive transport for the different molecular weight dextrans using classical membrane transport theory. Protein adsorption caused a reduction in both dextran sieving and diffusion, with the magnitude of the reduction a function of the dextran molecular weight and pore size. The effects of adsorption on the specific pore area and the membrane porosity were then determined using a recent model for solute transport through asymmetric ultrafiltration membranes. The data indicate that protein adsorption occurs preferentially in the larger membrane pores, causing a greater reduction in solute sieving compared to the membrane hydraulic permeability and porosity than would be predicted on the basis of either a simple pore blockage or pore constriction model.  相似文献   

20.
Despite being synthesized in the cytosol without a leader sequence, the soluble 253-residue mammalian protein CLIC4 (Chloride Intracellular Channel 4, or p64H1), a structural homologue of Omega-type glutathione-S-transferase, autoinserts into membranes to form an integral membrane protein with ion channel activity. A predicted transmembrane domain (TMD) near the N-terminus of CLIC4 could mediate membrane insertion, and contribute to oligomeric pores, with minimal reorganization of the soluble protein structure. We tested this idea by reconstituting recombinant CLIC4 in planar bilayers containing phosphatidyethanolamine, phosphatidylserine and cholesterol, recording ion channels with a maximum conductance of approximately 15 pS in KCl under both oxidizing and reducing conditions. The channels discriminated poorly between anions and cations, incompatible with the current "CLIC" nomenclature, and their conductance was modified by the trans (external or luminal) redox potential, as previously observed for CLIC1. We then reconstituted a truncated version of the protein, limited to the first 61 residues containing the predicted TMD. This included a single trans cysteine residue in the putative pore-forming subunits, at the external entrance to the pore. The truncated protein formed non-selective channels with a reduced conductance, but they retained their trans-redox sensitivity, and could still be blocked or inactivated by trans (not cis) thiol-reative dithiobisnitrobenzoic acid. We suggest that oligomers containing the putative TMD are essential components of the CLIC4 pore. However, the pore is inherently non-selective, and any ionic selectivity in CLIC4 (and other membrane CLICs) may be attributable to other regions of the protein, including the channel vestibules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号