首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial folate transporter (MFT) was previously identified in human and hamster cells. Sequence homology of this protein with the inner mitochondrial membrane transporters suggested a domain structure in which the N- and C-termini of the protein are located on the mitochondrial intermembrane-facing surface, with six membrane-spanning regions interspersed by two intermembrane loops and three matrix-facing loops. We now report the functional significance of insertion of the c-myc epitope into the intermembrane loops and of a series of site-directed mutations at hamster MFT residues highly conserved in orthologues. Insertional mutagenesis in the first predicted intermembrane loop eliminated MFT function, but the introduction of a c-myc peptide into the second loop was without effect. Most of the hamster MFT residues studied by site-directed mutagenesis were remarkably resilient to these mutations, except for R249A and G192E, both of which eliminated folate transport activity. Homology modeling, using the crystal structure of the bovine ADP/ATP carrier (AAC) as a scaffold, suggested a similar three-dimensional structure for the MFT and the AAC. An ion-pair interaction in the AAC thought to be central to the mechanism of membrane penetration by ADP is predicted by this homology model to be replaced by a pi-cation interaction in MFT orthologues and probably also in other members of the family bearing the P(I/L)W motif. This model suggests that the MFT R249A and G192E mutations both modify the base of a basket-shaped structure that appears to constitute a trap door for the flux of folates into the mitochondrial matrix.  相似文献   

2.
Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) maintains the cytoplasmic pH homeostasis of many bacteria and higher plants by coupling pyrophosphate (PPi) hydrolysis and proton translocation. H+-PPase accommodates several essential motifs involved in the catalytic mechanism, including the PPi binding motif and Acidic I and II motifs. In this study, 3 intrinsic tryptophan residues, Trp-75, Trp-365, and Trp-602, in H+-PPase from Clostridium tetani were used as internal probes to monitor the local conformational state of the periplasm domain, transmembrane region, and cytoplasmic domain, respectively. Upon binding of the substrate analog Mg-imidodiphosphate (Mg-IDP), local structural changes prevented the modification of tryptophan residues by N-bromosuccinimide (NBS), especially at Trp-602. Following Mg-Pi binding, Trp-75 and Trp-365, but not Trp-602, were slightly protected from structural modifications by NBS. These results reveal the conformation of H+-PPase is distinct in the presence of different ligands. Moreover, analyses of the Stern-Volmer relationship and steady-state fluorescence anisotropy also indicate that the local structure around Trp-602 is more exposed to solvent and varied under different environments. In addition, Trp-602 was identified to be a crucial residue in the H+-PPase that may potentially be involved in stabilizing the structure of the catalytic region by site-directed mutagenesis analysis.  相似文献   

3.
The location of tryptophan residues in the actin macromolecule was studied on the basis of the known 3D structure. For every tryptophan residue the polarity and packing density of their microenvironments were evaluated. To estimate the accessibility of the tryptophan residues to the solvent molecules it was proposed to analyze the radial dependence of the packing density of atoms in the macromolecule about the geometric center of the indole rings of the tryptophan residues. The proposed analysis revealed that the microenvironment of tryptophan residues Trp-340 and Trp-356 has a very high density. So these residues can be regarded as internal and inaccessible to solvent molecules. Their microenvironment is mainly formed by non-polar groups of protein. Though the packing density of the Trp-86 microenvironment is lower, this tryptophan residue is apparently also inaccessible to solvent molecules, as it is located in the inner region of macromolecule. Tryptophan residue Trp-79 is external and accessible to the solvent. All residues that can affect tryptophan fluorescence were revealed. It was found that in the close vicinity of tryptophan residues Trp-79 and Trp-86 there are a number of sulfur atoms of cysteine and methionine residues that are known to be effective quenchers of tryptophan fluorescence. The most essential is the location of SG atom of Cys-10 near the NE1 atom of the indole ring of tryptophan residue Trp-86. On the basis of microenvironment analysis of these tryptophan residues and the evaluation of energy transfer between them it was concluded that the contribution of tryptophan residues Trp-79 and Trp-86 must be low. Intrinsic fluorescence of actin must be mainly determined by two other tryptophan residues--Trp-340 and Trp-356. It is possible that the unstrained conformation of tryptophan residue Trp-340 and the existence of aromatic rings of tyrosine and phenylalanine and proline residues in the microenvironments of tryptophan residues Trp-340 and Trp-356 are also essential to their blue fluorescence spectrum.  相似文献   

4.
Organic cation transporter 3 (OCT3, SLC22A3) is a polyspecific, facilitative transporter expressed in astrocytes and in placental, intestinal, and blood-brain barrier epithelia, and thus elucidating the molecular mechanisms underlying OCT3 substrate recognition is critical for the rational design of drugs targeting these tissues. The pharmacology of OCT3 is distinct from that of other OCTs, and here we investigated the role of a hydrophobic cavity tucked within the translocation pathway in OCT3 transport properties. Replacement of an absolutely conserved Asp by charge reversal (D478E), neutralization (D478N), or even exchange (D478E) abolished MPP+ uptake, demonstrating this residue to be obligatory for OCT3-mediated transport. Mutations at non-conserved residues lining the putative binding pocket of OCT3 to the corresponding residue in OCT1 (L166F, F450L, and E451Q) reduced the rate of MPP+ transport, but recapitulated the higher sensitivity pharmacological profile of OCT1. Thus, interactions of natural polyamines (putrescine, spermidine, spermine) and polyamine-like potent OCT1 blockers (1,10-diaminodecane, decamethonium, bistriethylaminodecane, and 1,10-bisquinuclidinedecane) with wild-type OCT3 were weak, but were significantly potentiated in the mutant OCT3s. Conversely, a reciprocal mutation in OCT1 (F161L) shifted the polyamine-sensitivity phenotype toward that of OCT3. Further analysis indicated that OCT1 and OCT3 can recognize essentially the same substrates, but the strength of substrate-transporter interactions is weaker in OCT3, as informed by the distinct makeup of the hydrophobic cleft. The residues identified here are key contributors to both the observed differences between OCT3 and OCT1 and to the mechanisms of substrate recognition by OCTs in general.  相似文献   

5.
The proton-coupled folate transporter (PCFT/SLC46A1) mediates intestinal folate uptake at acidic pH. Some loss of folic acid (FA) transport mutations in PCFT from hereditary folate malabsorption (HFM) patients cluster in R113, thereby suggesting a functional role for this residue. Herein, unlike non-conservative substitutions, an R113H mutant displayed 80-fold increase in the FA transport Km while retaining parental Vmax, hence indicating a major fall in folate substrate affinity. Furthermore, consistent with the preservation of 9% of parental transport activity, R113H transfectants displayed a substantial decrease in the FA growth requirement relative to mock transfectants. Homology modeling based on the crystal structures of the Escherichia coli transporter homologues EmrD and glycerol-3-phosphate transporter revealed that the R113H rotamer properly protrudes into the cytoplasmic face of the minor cleft normally occupied by R113. These findings constitute the first demonstration that a basic amino acid at position 113 is required for folate substrate binding.  相似文献   

6.
Folylpoly-γ-glutamate synthetase (FPGS) catalyze the addition of multiple glutamates to tetrahydrofolate derivatives. Two mRNAs for the fpgs gene direct isoforms of FPGS to the cytosol and to mitochondria in mouse and human tissues. We sought to clarify the functions of these two compartmentalized isoforms. Stable cell lines were created that express cDNAs for the mitochondrial and cytosolic isoforms of human FPGS under control of a doxycycline-inducible promoter in the AUXB1 cell line. AUXB1 are devoid of endogenous FPGS activity due to a premature translational stop at codon 432 in the fpgs gene. Loss of folates was not measurable from these doxycycline-induced cells or from parental CHO cells over the course of three CHO cell generations. Likewise, there was no detectable transfer of folate polyglutamates either from the cytosol to mitochondria, or from mitochondria to the cytosol. The cell line expressing cytosolic FPGS required exogenous glycine but not thymidine or purine, whereas cells expressing the mitochondrial isoform required exogenous thymidine and purine but not glycine for optimal growth and survival. We concluded that mitochondrial FPGS is required because folate polyglutamates are not substrates for transport across the mitochondrial membrane in either direction and that polyglutamation not only traps folates in the cytosol, but also in the mitochondrial matrix.  相似文献   

7.
8.
The Synechocystis Slr0642 protein and its plastidial Arabidopsis (Arabidopsis thaliana) ortholog At2g32040 belong to the folate-biopterin transporter (FBT) family within the major facilitator superfamily. Both proteins transport folates when expressed in Escherichia coli. Because the structural requirements for transport activity are not known for any FBT protein, we applied mutational analysis to identify residues that are critical to transport and interpreted the results using a comparative structural model based on E. coli lactose permease. Folate transport was assessed via the growth of an E. coli pabA abgT strain, which cannot synthesize or take up folates or p-aminobenzoylglutamate. In total, 47 residues were replaced with Cys or Ala. Mutations at 22 positions abolished folate uptake without affecting Slr0642 expression in membranes, whereas other mutations had no effect. Residues important for function mostly line the predicted central cavity and are concentrated in the core α-helices H1, H4, H7, and H10. The essential residue locations are consistent with a folate-binding site lying roughly equidistant from both faces of the transporter. Arabidopsis has eight FBT proteins besides At2g32040, often lacking conserved critical residues. When six of these proteins were expressed in E. coli or in Leishmania folate or pterin transporter mutants, none showed evidence of folate or pterin transport activity, and only At2g32040 was isolated by functional screening of Arabidopsis cDNA libraries in E. coli. Such negative data could reflect roles in transport of other substrates. These studies provide the first insights into the native structure and catalytic mechanism of FBT family carriers.  相似文献   

9.
Quenching of tryptophan fluorescence of Luciola mingrelica (single tryptophan residue, Trp-419) and Photinus pyralis (two tryptophan residues, Trp-417 and Trp-426) luciferases with different quenchers (I-, Cs+, acrylamide) was studied. The conserved Trp-417(419) residue was shown to be not accessible to charged particles, and positively and negatively charged amino acid residues are located in close vicinity to it. We found previously unreported effective energy transfer from this tryptophan to luciferin during the quenching of the tryptophan fluorescence. The distance between the luciferin molecule and Trp-417(419) was calculated: 11-15 and 12-17 A for P. pyralis and L. mingrelica luciferases, respectively. The role of the conserved Trp residue in the catalysis is discussed. ATP and AMP are also quenchers of the tryptophan fluorescence of the luciferases. In this case, an allosteric mechanism of the interaction of Trp-417(419) with an excess of ATP (AMP) is proposed.  相似文献   

10.
Sheng Y  Khanam N  Tsaksis Y  Shi XM  Lu QS  Bognar AL 《Biochemistry》2008,47(8):2388-2396
The folylpolyglutamate synthetase (FPGS) enzyme of Escherichia coli differs from that of Lactobacillus casei in having dihydrofolate synthetase activity, which catalyzes the production of dihydrofolate from dihydropteroate. The present study undertook mutagenesis to identify structural elements that are directly responsible for the functional differences between the two enzymes. The amino terminal domain (residues 1-287) of the E. coli FPGS was found to bind tetrahydrofolate and dihydropteroate with the same affinity as the intact enzyme. The domain-swap chimera proteins between the E. coli and the L. casei enzymes possess both folate or pteroate binding properties and enzymatic activities of their amino terminal portion, suggesting that the N-terminal domain determines the folate substrate specificity. Recent structural studies have identified two unique folate binding sites, the omega loop in L. casei FPGS and the dihydropteroate binding loop in the E. coli enzyme. Mutants with swapped omega loops retained the activities and folate or pteroate binding properties of the rest of the enzyme. Mutating L. casei FPGS to contain an E. coli FPGS dihydropteroate binding loop did not alter its substrate specificity to using dihydropteroate as a substrate. The mutant D154A, a residue specific for the dihydropteroate binding site in E. coli FPGS, and D151A, the corresponding mutant in the L. casei enzyme, were both defective in using tetrahydrofolate as their substrate, suggesting that the binding site corresponding to the E. coli pteroate binding site is also the tetrahydrofolate binding site for both enzymes. Tetrahydrofolate diglutamate was a slightly less effective substrate than the monoglutamate with the wild-type enzyme but was a 40-fold more effective substrate with the D151A mutant. This suggests that the 5,10-methylenetetrahydrofolate binding site identified in the L. casei ternary structure may bind diglutamate and polyglutamate folate derivatives.  相似文献   

11.
The substrate specificity of the facilitated hexose transporter, GLUT, family, (gene SLC2A) is highly varied. Some appear to be able to translocate both glucose and fructose, while the ability to handle 2-deoxyglucose and galactose does not necessarily correlate with the other two hexoses. It has become generally accepted that a central substrate binding/translocation site determines which hexoses can be transported. However, a recent study showed that a single point mutation of a hydrophobic residue in GLUTs 2, 5 & 7 removed their ability to transport fructose without affecting the kinetics of glucose permeation. This residue is in the 7th transmembrane helix, facing the aqueous pore and lies close to the opening of the exofacial vestibule. This study expands these observations to include the other class II GLUTs (9 & 11) and shows that a three amino acid motif (NXI/NXV) appears to be critical in determining if fructose can access the translocation mechanism. GLUT11 can also transport fructose, but it has the motif DSV at the same position, which appears to function in the same manner as NXI and when all three residues are replaced with NAV fructose transport lost. These results are discussed in relation to possible roles for hydrophobic residues lining the aqueous pore at the opening of the exofacial vestibule. Finally, the possibility that the translocation binding site may not be the sole determinant of substrate specificity for these proteins is examined.  相似文献   

12.
The substrate specificity of the facilitated hexose transporter, GLUT, family, (gene SLC2A) is highly varied. Some appear to be able to translocate both glucose and fructose, while the ability to handle 2-deoxyglucose and galactose does not necessarily correlate with the other two hexoses. It has become generally accepted that a central substrate binding/translocation site determines which hexoses can be transported. However, a recent study showed that a single point mutation of a hydrophobic residue in GLUTs 2, 5 & 7 removed their ability to transport fructose without affecting the kinetics of glucose permeation. This residue is in the 7th transmembrane helix, facing the aqueous pore and lies close to the opening of the exofacial vestibule. This study expands these observations to include the other class II GLUTs (9 & 11) and shows that a three amino acid motif (NXI/NXV) appears to be critical in determining if fructose can access the translocation mechanism. GLUT11 can also transport fructose, but it has the motif DSV at the same position, which appears to function in the same manner as NXI and when all three residues are replaced with NAV fructose transport lost. These results are discussed in relation to possible roles for hydrophobic residues lining the aqueous pore at the opening of the exofacial vestibule. Finally, the possibility that the translocation binding site may not be the sole determinant of substrate specificity for these proteins is examined.  相似文献   

13.
When Naja naja atra phospholipase A2, which contains three tryptophan residues at the 18th, 19th, and 61st positions, was oxidized with N-bromosuccinimide at pH 4.0, its activity decreased in a convex manner with increase in the extent of oxidation of tryptophan residues. The curve shape showed that the tryptophan residue oxidized last is most responsible for the activity. The order of accessibilities of the three tryptophan residues, which was analyzed according to the method reported previously (Mohri et al. (1876) J. Biochem. 100, 883-893), was Trp-61 greater than Trp-19 greater than Trp-18. Thus, Trp-18 was evaluated to be essential for activity. Difference spectra of phospholipase A2 produced by titrating with laurylphosphorylcholine in the presence of Ca2+, which are due in large part to perturbation of the tryptophan residue(s), were retained with phospholipase A2 derivatives containing 1.2 and 2.0 mol of tryptophan residues oxidized but not with the derivative containing 3.0 mol of tryptophan residues oxidized. Such observations led us to assume that Trp-18 is involved in the specific site that interacts with phospholipid.  相似文献   

14.
All 6 tryptophan residues in the human HepG2-type glucose transporter (Glut1) were individually altered by site-directed mutagenesis to investigate the role of these residues in transport function. Tryptophan residues in positions 48, 65, 186, 363, 388, and 412 of Glut1 were changed to either a glycine or leucine residue. Mutant mRNAs were synthesized and injected into Xenopus laevis oocytes. Transporter function as assessed by uptake of 2-deoxy-D-[3H]glucose or transport of 3-O-[3H]methylglucose was decreased in the 388 and 412 mutants but was unaltered in all other mutants. The amount of the mutant transporters expressed in total membrane and plasma membrane fractions was measured using Glut1-specific antibodies. Calculation of the intrinsic transport activity of each of the mutants using these data demonstrated that the reduced transport activity of the 412 mutants was caused entirely by a dramatic decrease in the intrinsic activity of the mutant proteins whereas the reduced activity of the 388 mutants was a result of a decreased level of the protein in oocytes, decreased targeting to the plasma membrane, and a modest decrease in the intrinsic activity. Protease/glycosidase mapping of in vitro translation products indicated that the effects of the 388 and 412 point mutations could not be attributed to a disruption in the ability of the mutant proteins to insert properly into the membrane. The ID50 for cytochalasin B inhibition of 2-deoxyglucose uptake was increased from 5 x 10(-7) M for the wild-type Glut1 to 4 x 10(-6) M in the 388 mutants but was unaltered in the 412 mutants. These observations suggest that 1) Trp-412 may comprise part of a hexose binding site or is involved in maintaining a local tertiary structure critical for transport function; 2) Trp-388 is involved in stabilizing the equilibrium binding of cytochalasin B to the transporter. Trp-388 may therefore lie near a substrate binding site and also appears to participate in stabilization of local tertiary structure important for full catalytic activity and efficient targeting to the Xenopus plasma membrane.  相似文献   

15.
Folic acid is an essential nutrient that is required for one-carbon biosynthetic processes and for methylation of biomolecules. Deficiency of this micronutrient leads to disturbances in normal physiology of cell. Chronic alcoholism is well known to be associated with folate deficiency, which is due in part to folate malabsorption. The present study deals with the regulatory mechanisms of folate uptake in liver during chronic alcoholism. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20 % solution) orally for 3 months, and the molecular mechanisms of folate uptake were studied in liver. The characterization of the folate transport system in liver basolateral membrane (BLM) suggested it to be a carrier mediated and acidic pH dependent, with the major involvement of proton coupled folate transporter and folate binding protein in the uptake. The folate transporters were found to be associated with lipid raft microdomain of liver BLM. Moreover, ethanol ingestion decreased the folate transport by altering the Vmax of folate transport process and downregulated the expression of folate transporters in lipid rafts. The decreased transporter levels were associated with reduced protein and mRNA levels of these transporters in liver. The deranged folate uptake together with reduced folate transporter levels in lipid rafts resulted in reduced folate levels in liver and thereby to its reduced levels in serum of ethanol-fed rats. The chronic ethanol ingestion led to decreased folate uptake in liver, which was associated with the decreased number of transporter molecules in the lipid rafts that can be ascribed to the reduced synthesis of these transporters.  相似文献   

16.
We have used optically detected magnetic resonance (ODMR) to characterize the degree of solvent availability of the tryptophan residues in lysozyme that are likely to be responsible for the observed phosphorescence. From the phosphorescence spectra, ODMR zero-field splittings (zfs), and ODMR line widths, we concur with the X-ray structure [Blake, C. C., Mair, G. A., North, A. C. T., Phillips, D. C., & Sarma, V. R. (1967) Proc. R. Soc. London, ser. B 167, 365-377] that Trp-62 behaves as an exposed residue and Trp-108 is buried. In addition, we present evidence that ODMR can be used in conjunction with conventional phosphorescence to evaluate the degree of order in the microenvironments of tryptophan in a protein containing several tryptophans. By the specific modification of residues Trp-62 and Trp-108, we have identified those portions of the ODMR lines in the native enzyme that are due to those specific residues. Barring major enzyme conformational changes in the vicinity of unmodified tryptophan residues when Trp-62 or Trp-108 are selectively modified, we find that Trp-108 dominates both the phosphorescence and the ODMR signals in native lysozyme. The results are discussed in view of previous fluorescence findings.  相似文献   

17.
Escherichia coli AP endonuclease (ExoIII) and its human homolog (APE1) have the sole tryptophan residue for AP site recognition (AP site recognizer) but these residues are at different positions near the catalytic sites. On the other hand, many bacterial AP endonucleases have two tryptophan residues at the same positions of both ExoIII and APE1. To elucidate whether these residues are involved in AP site recognition, the ExoIII homologs of Thermoplasma volcanium and Lactobacillus plantarum were characterized. These proteins showed AP endonuclease and 3'-5'exonculease activities. In each enzyme, the mutations of the tryptophan residues corresponding to Trp-280 of APE1 caused more significant reductions in activities and binding abilities to the oligonucleotide containing an AP site (AP-DNA) than those corresponding to Trp-212 of ExoIII. These results suggest that the tryptophan residue corresponding to Trp-280 of APE1 is the predominant AP site recognizer, and that corresponding to Trp-212 of ExoIII is the auxiliary recognizer.  相似文献   

18.
The two tryptophan residues, Trp-248 and Trp-330, in tryptophan indole-lyase (tryptophanase) from E. coli have been separately mutated to phenylalanine using site-directed mutagenesis. Both single tryptophan mutant enzymes have full catalytic activity, but exhibit different fluorescence and near-UV circular dichroism spectra. These results indicate that Trp-330 is more deeply buried than is Trp-248, and is in a more asymmetric environment. Neither residue reacts with N-bromosuccinimide (NBS), although tryptophan indole-lyase is inactivated by NBS. These results demonstrate that the tryptophan residues in tryptophan indole-lyase are not catalytically essential.  相似文献   

19.
In most organisms, mitochondrial creatine kinase (MtCK) is present as dimers and octamers with the latter predominating under physiological conditions. An absolutely conserved tryptophan residue (Trp-264 in chicken sarcomeric MtCK) appears to play a key role in octamer stability. Recently, it has been shown that the sponge Tethya aurantia, a member of the most ancient group of living multi-cellular animals, expresses an obligate, dimeric MtCK that lacks this absolutely conserved tryptophan residue, instead possessing a tyrosine in this position. In the present study we confirm that the absolutely conserved tryptophan residue is lacking in other sponge MtCKs where it is instead substituted by histidine or asparagine. Site directed mutations of the Trp-264 in expression constructs of chicken sarcomeric MtCK and the octameric MtCK from the marine worm Chaetopterus destabilized the octameric quaternary structure producing only dimers. A Tyr-->Trp mutation in an expression construct of the Tethya MtCK construct failed to produce octamerization; Tyr-->His and Tyr-->Asn mutations also yielded dimers. These results, in conjunction with analysis of homology models of Chaetopterus and Tethya MtCKs, strongly support the view that while the absolutely conserved tryptophan residue is important in octamer stability, octamer formation involves a complex suite of interactions between a variety of residues.  相似文献   

20.
The 5 tryptophan residues of chicken sarcomeric mitochondrial creatine kinase (Mib-CK) were individually replaced by phenylalanine or cysteine using site-directed mutagenesis. The mutant proteins were analyzed by enzyme kinetics, fluorescence spectroscopy, circular dichroism, and conformational stability studies. In the present work, Trp-223 is identified as an active-site residue whose replacement even by phenylalanine resulted in > or = 96% inactivation of the enzyme. Trp-223 is responsible for a strong (18-21%) fluorescence quenching effect occurring upon formation of a transition state-analogue complex (TSAC;Mib-CK.creatine.MgADP.NO3-), and Trp-223 is probably required for the conformational change leading to the TSAC-induced octamer dissociation of Mib-CK. Replacement of Trp-206 by cysteine led to a destabilization of the active-site structure, solvent exposure of Trp-223, and to the dissociation of the Mib-CK dimers into monomers. However, this dimer dissociation was counteracted by TSAC formation or the presence of ADP alone. Trp-264 is shown to be located at the dimer-dimer interfaces within the Mib-CK octamer, being the origin of another strong (25%) fluorescence quenching effect, which was observed upon the TSAC-induced octamer dissociation. Substitution of Trp-264 by cysteine drastically accelerated the TSAC-induced dissociation and destabilized the octameric structure by one-fourth of the total free interaction energy, probably by weakening hydrophobic contacts. The roles of the other 2 tryptophan residues, Trp-213 and Trp-268, could be less well assigned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号