首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The desire of many to look young for their age has led to the establishment of a large cosmetics industry. However, the features of appearance that primarily determine how old women look for their age and whether genetic or environmental factors predominately influence such features are largely unknown. We studied the facial appearance of 102 pairs of female Danish twins aged 59 to 81 as well as 162 British females aged 45 to 75. Skin wrinkling, hair graying and lip height were significantly and independently associated with how old the women looked for their age. The appearance of facial sun-damage was also found to be significantly correlated to how old women look for their age and was primarily due to its commonality with the appearance of skin wrinkles. There was also considerable variation in the perceived age data that was unaccounted for. Composite facial images created from women who looked young or old for their age indicated that the structure of subcutaneous tissue was partly responsible. Heritability analyses of the appearance features revealed that perceived age, pigmented age spots, skin wrinkles and the appearance of sun-damage were influenced more or less equally by genetic and environmental factors. Hair graying, recession of hair from the forehead and lip height were influenced mainly by genetic factors whereas environmental factors influenced hair thinning. These findings indicate that women who look young for their age have large lips, avoid sun-exposure and possess genetic factors that protect against the development of gray hair and skin wrinkles. The findings also demonstrate that perceived age is a better biomarker of skin, hair and facial aging than chronological age.  相似文献   

2.
Skin aging is a complex phenomenon in which several mechanisms operate simultaneously. Among them, intrinsic aging is a time-dependent process, which leads to gradual skin changes affecting its structure and function such as thinning down of both epidermal and dermal compartments and a flattening and fragility of the dermo-epidermal junction. Today, several approaches have been proposed for the generation of aged skin in vitro, including skin explants from aged donors and three-dimensional skin equivalent treated by aging-inducing chemical compounds or engineered with human cells isolated from aged donors.The aim of this study was to develop and validate a new in vitro model of aging based on skin equivalent demonstrating the same phenotypic changes that were observed in chronological aging.By using prolonged culture as a proxy for cellular aging, we extended to 120 days the culture time of a skin equivalent model based on collagen–glycosaminoglycan–chitosan porous polymer and engineered with human skin cells from photo-protected sites of young donors. Morphological, immunohistological and ultrastructural analysis at different time points of the culture allowed characterizing the phenotypic changes observed in our model in comparison to samples of non photo-exposed normal human skin from different ages.We firstly confirmed that long-term cultured skin equivalents are still morphologically consistent and functionally active even after 120 days of culture. However, similar to in vivo chronological skin aging a significant decrease of the epidermis thickness as well as the number of keratinocyte expressing proliferation marker Ki67 are observed in extended culture time skin equivalent. Epidermal differentiation markers loricrin, filaggrin, involucrin and transglutaminase, also strongly decreased. Ultrastructural analysis of basement membrane showed typical features of aged skin such as duplication of lamina densa and alterations of hemidesmosomes. Moreover, the expression of hyaluronan and its surface receptor CD44 drastically decreased as observed during chronological skin aging. Finally, we found that the level of p16INK4A expression significantly increased supporting cellular senescence process associated to our model.To conclude, the major morphological and ultrastructural epidermal modifications observed in both our extended culture skin equivalent model and skin biopsies from old donors validate the relevance of our model for studying chronological aging, understanding and elucidating age-related modifications of basic skin biological processes. In addition, our model provides a unique tool for identifying new targeted molecules intended at improving the appearance of aging skin.  相似文献   

3.
The healing of wounds is a complex process and the contraction of the resulting scar can have a negative impact on the neighbouring skin. A finite element model of skin simulating the contraction of a scar and deformation of the surrounding skin is presented. The skin is represented by an orthotropic–viscoelastic constitutive law, which is validated against experimental data in the literature. A simplified experimental model of a contracting scar in real skin is also developed. The pattern and size of the wrinkles formed around the contracting scar in the finite element model compare favourably with those formed in the experimental model. The orthotropic nature of skin plays a significant role in the behaviour of skin around scars—the wrinkles have a preferential orientation that corresponds to a direction perpendicular to the Langer's lines in the skin. The pre-stress in skin (a property that is ignored in many skin models) is shown to be an important factor in wrinkle formation around scars. The proposed model can be used to analyse the suturing and closure of wounds of various shapes.  相似文献   

4.
Bioactive compounds from natural resources against skin aging   总被引:1,自引:0,他引:1  
Skin aging involves degradation of extracellular matrix (ECM) in both the epidermal and dermal layers, it leaves visible signs on the surface of skin and the physical properties of the skin are modified. Chronological aging is due to passage of time, whereas premature aging occurred due to some environmental factors on skin produces visible signs such as irregular dryness, dark/light pigmentation, sallowness, severe atrophy, telangiectases, premalignant lesions, laxity, leathery appearance and deep wrinkling. There are several synthetic skincare cosmetics existing in the market to treat premature aging and the most common adverse reactions of those include allergic contact dermatitis, irritant contact dermatitis, phototoxic and photo-allergic reactions. Recent trends in anti-aging research projected the use of natural products derived from ancient era after scientific validation. Ample varieties of phytomolecules such as aloin, ginsenoside, curcumin, epicatechin, asiaticoside, ziyuglycoside I, magnolol, gallic acid, hydroxychavicol, hydroxycinnamic acids, hydroxybenzoic acids, etc. scavenges free radicals from skin cells, prevent trans-epidermal water loss, include a sun protection factor (SPF) of 15 or higher contribute to protect skin from wrinkles, leading to glowing and healthy younger skin. Present era of treating aging skin has become technologically more invasive; but herbal products including botanicals are still relevant and combining them with molecular techniques outlined throughout this review will help to maximize the results and maintain the desired anti-skin aging benefits.  相似文献   

5.
Skin undergoes dramatic age-related changes in its mechanical properties, including changes in tissue hydration and resiliency. Proteoglycans are macromolecular conjugates of protein and carbohydrate (glycosaminoglycan) which are involved in these tissue properties. In order to examine whether age-related changes in skin proteoglycans may contribute to the age-related changes in the mechanical properties of skin, proteoglycans from human skin of various ages were extracted and analyzed. Samples were obtained from two different fetal ages, from mature skin, and from senescent skin. As a function of age, there is a decrease in the proportion of large chondroitin sulfate proteoglycans (versican) and a concomitant increase in the proportion of small dermatan sulfate proteoglycans (decorin). Based on reactivity with antibodies to various chondroitin sulfate epitopes, fetal versican differs from the versican found in older skin with respect to the chondroitin sulfate chains. Also, the decorin of fetal skin is slightly larger, while the decorin of older skin shows greater polydispersity in both its size and its charge to mass ratio. There are also age-related differences in the size and polydispersity of the core proteins of decorin. The most pronounced change in skin proteoglycans is the appearance in mature skin of a proteoglycan which is smaller than decorin, but which has the same amino terminal amino acid sequence as decorin. This small proteoglycan is abundant in mature skin and may be a catabolic fragment of decorin or an alternatively spliced form of decorin. In light of the known ability of decorin to influence collagen fibrillogenesis and fibril diameter, the appearance of this small decorin-related proteoglycan may have a significant effect on skin elasticity. The observation that proteoglycans in skin show dramatic age-related differences suggests that these changes may be involved in the age-related changes in the physical properties of skin.  相似文献   

6.
The conclusion about a higher reserve potential of capillary bloodstream and variability of the acoustic properties of integumentary limb tissues in athletes is made based on studying the microcirculatory and anisotropic mechanical—acoustic properties of the limb skin in male athletes of high qualification (track-and-field athletes and wrestlers of the Greco-Roman style) at the age of 19–25 years and nonathletes at the age of 17–25 years. The revealed phenomena are based on the adaptive responses of the support-motor system to regular increased physical loads. A growth in capillary blood flow in the shank skin during a functional ischemic test is revealed to be higher in track-and-field athletes in comparison with the indicators in nonathletes. The reserve index of the capillary blood flow is 66.2% exceeded. The speed of propagation of a surface acoustic wave (SSAW) in the shank skin surpassed the corresponding SSAW parameters in the femoral integumentary tissue in the group of athletes and in the subjects of the control group. A similar excess of the SSAW index is observed in the forearm skin with respect to the shoulder parameters. The plastic reserves of the skin during change in the spatial position of a limb are revealed, which indicates the dynamic character of its viscoelastic properties during making movements. The mechanisms of the observed phenomena are supposed to be based on the structural distinctions of the skin and intensity of the capillary blood flow.  相似文献   

7.
小鼠皮肤及其毛囊早期发育的组织学观察   总被引:1,自引:0,他引:1  
目的探讨小鼠皮肤及其毛囊的早期发育规律。方法采用常规石蜡切片和H-E染色技术,观察昆明系小鼠出生前后皮肤及其毛囊的形态发育。结果(1)孕龄16 d胎鼠的皮肤表面形成凹凸不平的深褶皱,但在生后3 d~5 d不仅皱褶的数量减少,而且凹陷变浅;(2)胎鼠孕龄16 d至19 d,其皮肤的表皮、真皮及皮肤总厚度呈现平稳增厚。但是,出生后,其表皮、真皮和皮肤总厚度急剧降低;在生后第1天至第9天,表皮呈现平稳增厚,而真皮则在生后快速厚度,第7天达到最高值(1861.50μm);(3)孕龄16 d的胎鼠皮肤中可观察到初级毛囊,至生后第7天其密度呈现平稳增长;与其相比,次级毛囊从18 d胎鼠开始出现,其密度增长非常迅速,出生后第7天达到1257.14/mm;毛囊的总密度与次级毛囊呈现相似的变化趋势。出生第7天后,由于毛囊的数量急剧增加,无法观察初级毛囊和次级毛囊的变化规律;(4)初级毛囊和次级毛囊的长度与深度变化在出生前后的相对缓慢,与其相比在第3天以后至第7天呈现迅速变化趋势。结论小鼠皮肤及其毛囊的生长性发育发生在胎儿晚期和生后的早期,而其周期性变化可能从出生后的第9天以后开始出现;在孕期16 d至生后第7天可能是检测毛囊特异性基因表达的最佳期。  相似文献   

8.
When a wound heals, as everyone has observed, it contracts, thickens and wrinkles the neighbouring skin, forming a scar. The morphology of the scar depends on the type of wound; an urgent tracheotomy leads to a very different scar than a carefully planned face lift. The surgical challenges of intrusive procedures such as removal of skin lesions, skin transplantation or grafting, and scar removal are complicated by the complex geometry and stress states in different parts of the body. We show that, for relatively general conditions, the nature of the localisation of the scar is determined by the background tension of the skin which can arrest the formation of wrinkles around a scar. Our physical experiments to simulate this procedure indicate that the region deformed by the defect has a characteristic length scale r* approximately 1 square root of tau, where tau is the natural tension of the skin.  相似文献   

9.
10.
The renin–angiotensin system is known to be involved in skin remodeling and inflammation. Previously, we reported that ultraviolet B (UVB) irradiation enhanced angiotensin-converting enzyme (ACE) expression and angiotensin II levels in hairless mouse skin, and an ACE inhibitor, enalapril maleate (EM), accelerated repair of UVB-induced wrinkles. In this study, we analyzed gene expression profiles by DNA microarray and protein distribution patterns using an immunofluorescence method to clarify the process of EM-accelerated wrinkle repair in UVB-irradiated hairless mouse skin. In the microarray analysis, we detected EM-induced up-regulation of various extracellular matrix (ECM)-related genes in the UVB-irradiated skin. In the immunofluorescence, we confirmed that type I collagen α1 chain, fibrillin 1, elastin and dystroglycan 1 in the skin decreased after repeated UVB irradiation but staining for these proteins was improved by EM treatment. In addition, ADAMTS2 and MMP-14 also increased in the EM-treated skin. Although the relationship between these molecules and wrinkle formation is not clear yet, our present data suggest that the molecules are involved in the repair of UVB-induced wrinkles.  相似文献   

11.
The mechanical properties of cancellous bone depend on its architecture and the tissue properties of the mineralized matrix. The architecture is continuously adapted to external loads. In this paper, it was assumed that changes in tissue properties leading to changes in tissue deformation can induce adaptation of the architecture. We asked whether changes in cancellous bone architecture with aging and in e.g. early osteoarthrosis can be explained from changes in tissue properties.This was investigated using computer models in which the cancellous architecture was adapted to external loads. Bone tissue with deformations below a certain threshold was resorbed, deformations above another threshold induced formation. Deformations between these two boundaries, in the 'lazy zone', did not induce bone adaptation. The effects of changes in bone tissue stiffness on bone mass, global stiffness and architecture were investigated. The bone gain (40-60%) resulting from a 50% decrease in tissue stiffness (simulating diseased tissue) was much larger than the bone loss (2-30%) resulting from a 50% increase in tissue stiffness (simulating highly mineralized, old tissue). The adaptation induced by a decrease in tissue stiffness resulted in an almost constant stiffness in the main load bearing direction, but the transversal stiffness decreased. An increased tissue stiffness resulted in a higher stiffness in the main direction and overcompensation in the transversal directions: the global stiffness could become even smaller than the stiffness of the original model. Concluding, we showed that changes in trabecular bone in aging and diseases can be partly explained from changes in tissue properties.  相似文献   

12.
The purpose of this study was to investigate whether age-related changes in motor unit (MU) contractile properties are reflected in parameters of motor unit action potentials (MUAPs). MUs of the medial gastrocnemius muscle were functionally isolated in anaesthetized Wistar rats. A control group of young animals (5–10 mo) was compared to two groups of old rats (24–25 mo and 28–30 mo). The basic contractile properties of MUs as well as the amplitude, total duration, peak-to-peak time, and number of turns within MUAPs were measured. Effects of aging were mainly observed for fast fatigable MUs (a prolongation of MUAPs and increased number of turns). The MUAP amplitude did not change significantly with aging in either MU type, but it correlated to the twitch or tetanic forces, which tended to increase with age, especially for slow MUs. We concluded that the prolongation of MUAPs and the greater incidence of signal turns was probably a result of a decrease in muscle fiber conduction velocity and/or an increase in their dispersion, and enlargement of MU territories – presumably caused by axonal sprouting of surviving motoneurons. The latter might also be responsible for the observed age-related tendency for a increase in MUAP amplitudes in slow MUs.  相似文献   

13.
The effect of a rapid change in pHe (pH of bathing solution) on the isometric tetanic tension developed by sartorius muscles of toads acclimated to 5 and 25 degrees C was measured at 5 and 25 degrees C. The pH was altered by changing the carbon dioxide concentration of a bicarbonate buffered physiological solution. Acclimation temperature did not modify the response to a rapid change in pH, but test temperature did. Following a pH decrease from 9.0 to 6.0, tetanic tension decreased at a faster rate at 5 degrees C than at 25 degrees C. A new steady state was reached in 15 min at 5 degrees C but in 40 min at 25 degrees C. Following a pH increase from 6.0 to 8.5, tetanic tension increased at a faster rate at 25 degrees C than at 5 degrees C. A new steady state was reached in 60 min at 5 degrees C but in 10 min at 25 degrees C. We conclude that the rate of carbon dioxide diffusion through the sartorius muscle is only one factor that determines how rapidly tetanic tension changes following the step change in pH, and that muscle resists pH change more effectively at higher temperatures.  相似文献   

14.
Facial skin treatments with laser resurfacing, dermabrasion, and chemical peels were responsible for a significant portion of the 2.7 million cosmetic procedures performed in 1998. Perioral wrinkles are a common problem for which plastic surgical consultation is obtained. The aim of this study was to compare and quantify the advantages and disadvantages of laser resurfacing versus dermabrasion in the treatment of perioral wrinkles. Twenty female patients provided informed consent and participated in the study. Half of the perioral area was treated with dermabrasion and half was treated with the UltraPulse CO2 laser. The two procedures were compared using high-quality photographs; a biophysical evaluation of skin color, hydration, and mechanical properties; and patient evaluation of outcomes. Photographs were evaluated by 10 board-certified plastic surgeons who were blinded to the treatment methods. The laser treatment had a significantly higher erythema score at 1 month and a small but significantly greater improvement in perioral wrinkles at 6 months. Thirteen subjects selected the laser treatment as producing the best result, despite the greater intraoperative pain for this procedure. Biomechanical measurements suggest that the laser treatment produced a skin state more similar to skin in younger patients, presumably with higher levels and/or greater organization of the collagen and elastin. Patient preference was inferred from the resurfacing method that they would recommend to a friend. Although the laser was selected as the best result in a majority of cases, patient preference was equally distributed between the two treatments. The authors think that by studying and quantifying the biophysical changes that occur as a result of CO2 laser resurfacing, greater improvements in restoring actinic damage (e.g., wrinkles) can be achieved. Patients consider more than the objective skin changes from a resurfacing technique when making a recommendation to a friend.  相似文献   

15.
H E Huxley  A Stewart  H Sosa    T Irving 《Biophysical journal》1994,67(6):2411-2421
We have used a small angle scattering system assembled on the high flux multipole wiggler beam line at CHESS (Cornell) to make very accurate spacing measurements of certain meridional and layer-line reflections from contracting muscles. During isometric contraction, the actin 27.3 A reflection increases in spacing from its resting value by approximately 0.3%, and other actin reflections, including the 59 and 51 A off-meridional reflections, show corresponding changes in spacing. When tension is augmented or diminished by applying moderate speed length changes to a contracting muscle, changes in spacing in the range of 0.19-0.24% (when scaled to full isometric tension) can be seen. The larger difference between the resting and isometric spacings suggests either nonlinearity at low tension levels or the presence of a component related to activation itself. Myosin filaments also show similar increases in axial period during slow stretch, in addition to the well known larger change associated with activation. An actin spacing change of 0.25-0.3% can also be measured during a 2 ms time frame immediately after a quick release, showing that the elastic behavior is rapid. These observations of filament extensions totaling 2-3 nm per half-sarcomere may necessitate some significant revision of the interpretation of a number of mechanical experiments in muscle, in which it has usually been assumed that virtually all of the elasticity resides in the cross-bridges.  相似文献   

16.
Fish scales-derived collagen peptides (CPs) are characterized by their specific amino acid composition with a high concentration of glycine, proline and hydroxyproline. These amino acids have been known to exert beneficial effects on human skin. The aim of the present study was to examine the effects of collagen peptides obtained from fish scales on changes in periorbital wrinkles, facial skin hydration, and skin elasticity in healthy women aged 30–60 years. In the present randomized, placebo-controlled, double-blind trial, 71 subjects consumed a 20 mL beverage containing 3000 mg of CPs or placebo once per day over 12 weeks. Significant decreases in periorbital wrinkles (p?<?0.05) were observed in the treatment group after 12 weeks of CPs ingestion compared to the control group. This study also demonstrated a consistent trend of enhanced facial skin moisture (p?<?0.001) and skin elasticity (p?<?0.001) by dietary intake of CPs without any side effects or adverse events. These findings indicate that fish-derived CPs hold great promise as a natural supplement with cutaneous anti-aging properties.  相似文献   

17.
The size increase of skin epithelial cells during aging is well-known. Here we demonstrate that treatment of aging cells with cytochalasin B substantially decreases cell size. This decrease was demonstrated on a mouse model and on human skin cells in vitro. Six nude mice were treated by topical application of cytochalasin B on skin of the dorsal left midsection for 140 days (the right side served as control for placebo treatment). An average decrease in cell size of 56±16% resulted. A reduction of cell size was also observed on primary human skin epithelial cells of different in vitro age (passages from 1 to 8). A cell strain obtained from a pool of 6 human subjects was treated with cytochalasin B in vitro for 12 hours. We observed a decrease in cell size that became statistically significant and reached 20–40% for cells of older passage (6–8 passages) whereas no substantial change was observed for younger cells. These results may be important for understanding the aging processes, and for cosmetic treatment of aging skin.  相似文献   

18.
Growth differentiation factor 15 (GDF15) is a stress-responsive cytokine also known as a mitokine; however, its role in mitochondrial homeostasis and cellular senescence remained elusive. We show here that knocking down GDF15 expression in human dermal fibroblasts induced mitochondrial dysfunction and premature senescence, associated with a distinct senescence-associated secretory phenotype. Fibroblast-specific loss of GDF15 expression in a model of 3D reconstructed human skin induced epidermal thinning, a hallmark of skin aging. Our results suggest GDF15 to play a so far undisclosed role in mitochondrial homeostasis to delay both the onset of cellular senescence and the appearance of age-related changes in a 3D human skin model.  相似文献   

19.
Several lines of evidence point to European managed grassland ecosystems being a sink of carbon. In this study, we apply ORCHIDEE‐GM a process‐based carbon cycle model that describes specific management practices of pastures and the dynamics of carbon cycling in response to changes in climatic and biogeochemical drivers. The model is used to simulate changes in the carbon balance [i.e., net biome production (NBP)] of European grasslands over 1991–2010 on a 25 km × 25 km grid. The modeled average trend in NBP is 1.8–2.0 g C m?2 yr?2 during the past two decades. Attribution of this trend suggests management intensity as the dominant driver explaining NBP trends in the model (36–43% of the trend due to all drivers). A major change in grassland management intensity has occurred across Europe resulting from reduced livestock numbers. This change has ‘inadvertently’ enhanced soil C sequestration and reduced N2O and CH4 emissions by 1.2–1.5 Gt CO2‐equivalent, offsetting more than 7% of greenhouse gas emissions in the whole European agricultural sector during the period 1991–2010. Land‐cover change, climate change and rising CO2 also make positive and moderate contributions to the NBP trend (between 24% and 31% of the trend due to all drivers). Changes in nitrogen addition (including fertilization and atmospheric deposition) are found to have only marginal net effect on NBP trends. However, this may not reflect reality because our model has only a very simple parameterization of nitrogen effects on photosynthesis. The sum of NBP trends from each driver is larger than the trend obtained when all drivers are varied together, leaving a residual – nonattributed – term (22–26% of the trend due to all drivers) indicating negative interactions between drivers.  相似文献   

20.
Aging in the epidermis is marked by a gradual decline in barrier function, impaired wound healing, hair loss, and an increased risk of cancer. This could be due to age‐related changes in the properties of epidermal stem cells and defective interactions with their microenvironment. Currently, no biochemical tools are available to detect and evaluate the aging of epidermal stem cells. The cellular glycosylation is involved in cell–cell communications and cell–matrix adhesions in various physiological and pathological conditions. Here, we explored the changes of glycans in epidermal stem cells as a potential biomarker of aging. Using lectin microarray, we performed a comprehensive glycan profiling of freshly isolated epidermal stem cells from young and old mouse skin. Epidermal stem cells exhibited a significant difference in glycan profiles between young and old mice. In particular, the binding of a mannose‐binder rHeltuba was decreased in old epidermal stem cells, whereas that of an α2‐3Sia‐binder rGal8N increased. These glycan changes were accompanied by upregulation of sialyltransferase, St3gal2 and St6gal1 and mannosidase Man1a genes in old epidermal stem cells. The modification of cell surface glycans by overexpressing these glycogenes leads to a defect in the regenerative ability of epidermal stem cells in culture. Hence, our study suggests the age‐related global alterations in cellular glycosylation patterns and its potential contribution to the stem cell function. These glycan modifications detected by lectins may serve as molecular markers for aging, and further functional studies will lead us to a better understanding of the process of skin aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号