首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deposits of amyloid fibrils characterize a diverse group of human diseases that includes Alzheimer disease, Creutzfeldt-Jakob disease and type II diabetes. Amyloid fibrils formed from different polypeptides contain a common cross-β spine. Nevertheless, amyloid fibrils formed from the same polypeptide can occur in a range of structurally different morphologies. The heterogeneity of amyloid fibrils reflects different types of polymorphism: (1) variations in the protofilament number, (2) variations in the protofilament arrangement and (3) different polypeptide conformations. Amyloid fibril polymorphism implies that fibril formation can lead, for the same polypeptide sequence, to many different patterns of inter- or intra-residue interactions. This property differs significantly from native, monomeric protein folding reactions that produce, for one protein sequence, only one ordered conformation and only one set of inter-residue interactions.Key words: Alzheimer disease, aggregation, neurodegeneration, prion, protein folding  相似文献   

2.
《朊病毒》2013,7(2):89-93
Deposits of amyloid fibrils characterize a diverse group of human diseases that includes Alzheimer’s disease, Creutzfeldt-Jakob disease and type II diabetes. Amyloid fibrils formed from different polypeptides contain a common cross-β spine. Nevertheless, amyloid fibrils formed from the same polypeptide can occur in a range of structurally different morphologies. The heterogeneity of amyloid fibrils reflects different types of polymorphism: (i) variations in the protofilament number, (ii) variations in the protofilament arrangement and (iii) different polypeptide conformations. Amyloid fibril polymorphism implies that fibril formation can lead, for the same polypeptide sequence, to many different patterns of inter- or intra-residue interactions. This property differs significantly from native, monomeric protein folding reactions that produce, for one protein sequence, only one ordered conformation and only one set of inter-residue interactions.  相似文献   

3.
Gangliosides induced a smelting process in nanostructured amyloid fibril-like films throughout the surface properties contributed by glycosphingolipids when mixed with 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/Aβ(1–40) amyloid peptide. We observed a dynamical smelting process when pre-formed amyloid/phospholipid mixture is laterally mixed with gangliosides. This particular environment, gangliosides/phospholipid/Aβ(1–40) peptide mixed interfaces, showed complex miscibility behavior depending on gangliosides content. At 0% of ganglioside covered surface respect to POPC, Aβ(1–40) peptide forms fibril-like structure. In between 5 and 15% of gangliosides, the fibrils dissolve into irregular domains and they disappear when the proportion of gangliosides reach the 20%. The amyloid interfacial dissolving effect of gangliosides is taken place at lateral pressure equivalent to the organization of biological membranes.Domains formed at the interface are clearly evidenced by Brewster Angle Microscopy and Atomic Force Microscopy when the films are transferred onto a mica support. The domains are thioflavin T (ThT) positive when observed by fluorescence microscopy.We postulated that the smelting process of amyloids fibrils-like structure at the membrane surface provoked by gangliosides is a direct result of a new interfacial environment imposed by the complex glycosphingolipids. We add experimental evidence, for the first time, how a change in the lipid environment (increase in ganglioside proportion) induces a rapid loss of the asymmetric structure of amyloid fibrils by a simple modification of the membrane condition (a more physiological situation).  相似文献   

4.
Alzheimer??s disease (AD) is among the most important health-care problems in the world. The two pathological hallmarks of AD are extracellular neuritic amyloid plaques and intracellular neurofibrillary tangles. The aggregation of A?? and ??-sheet formation are considered to be the critical events which render these peptides neurotoxic. AD is affecting a large percentage of the elderly around the world. Many studies have been done on drugs to cure or at least slow Alzheimer??s disease. Most drugs produced for this disease aim at compensating for the performance of specific cell groups affected by the disease or restoring the function of these cells.This study examined the interaction of crocin, the main pigment of saffron, with the amyloid-?? peptides 1?+?40 (A?? 40) to determine the effects on peptide conformation and fibril formation using fluorescence spectroscopy, CD spectroscopy and electron microscopy. ThT data demonstrated the appearance of well-defined amyloid fibrils indicating an enhanced nucleation of A??40. Incubation of pre-formed A??40 fibrils with crocin resulted in extensive lateral aggregation and precipitation of the fibrils. Consistent with this, electron microscopy data indicated that crocin decreased the number of fibrils formed and significantly reduced the average fibril length of A??40 as assessed by low levels of thioflavin T binding data. The mechanism by which, crocin prevented fibril formation was demonstrated by ANS binding assay and CD spectroscopy. In summary, crocin interacts with A?? peptides and prevents amyloid formation. This means that it has the potential to be an important therapeutic drug against AD.  相似文献   

5.
Neuroinflammation has been reported to be associated with Alzheimer’s disease (AD) pathogenesis. Neuroinflammation is generally considered as an outcome of glial activation; however, we recently demonstrated that T helper (Th)17 cells, a subpopulation of proinflammatory CD4+ T cells, are also involved in AD pathogenesis. Transforming growth factor (TGF)-β1, a cytokine that can be expressed in the brain, can be immunosuppressive, but its effects on lymphocyte-mediated neuroinflammation in AD pathogenesis have not been well addressed. In the current study we administered TGF-β1 via intracerebroventricle (ICV) and intranasal (IN) routes in AD model rats to investigate its antiinflammatory and neuroprotective effects. The AD rat model was prepared by bilateral hippocampal injection of amyloid-β (Aβ)1–42. TGF-β1 was administered via ICV one hour prior to Aβ1–42 injection or via both nares seven days after Aβ1–42 injection. ICV administration of TGF-β1 before Aβ1–42 injection remarkably ameliorated Aβ1–42-induced neurodegeneration and prevented Aβ1–42-induced increases in glia-derived proinflammatory mediators (TNF-α, IL-1β and iNOS), as well as T cell-derived proinflammatory cytokines (IFN-γ, IL-2, IL-17 and IL-22), in the hypothalamus, serum or cerebrospinal fluid (CSF) in a concentration-dependent manner. TGF-β1 pretreatment also prevented Aβ1–42-induced decreases in the neurotrophic factors, IGF-1, GDNF and BDNF, and in the antiinflammatory cytokine, IL-10. Similarly, IN administration of TGF-β1 after Aβ1–42 injection reduced neurodegeneration, elevation of proinflammatory mediators and cytokines, and reduction of neurotrophic and antiinflammatory factors, in the hypothalamus, serum or CSF. These findings suggest that TGF-β1 suppresses glial and T cell-mediated neuroinflammation and thereby alleviates AD-related neurodegeneration. The effectiveness of IN administered TGF-β1 in reducing Aβ1–42 neurotoxicity suggests a possible therapeutic approach in patients with AD.  相似文献   

6.
NMR spectroscopy combined with paramagnetic relaxation agents was used to study the positioning of the 40-residue Alzheimer Amyloid β-peptide Aβ(1–40) in SDS micelles. 5-Doxyl stearic acid incorporated into the micelle or Mn2+ ions in the aqueous solvent were used to determine the position of the peptide relative to the micelle geometry. In SDS solvent, the two α-helices induced in Aβ(1–40), comprising residues 15–24, and 29–35, respectively, are surrounded by flexible unstructured regions. NMR signals from these unstructured regions are strongly attenuated in the presence of Mn2+ showing that these regions are positioned mostly outside the micelle. The central helix (residues 15–24) is significantly affected by 5-doxyl stearic acid however somewhat less for residues 16, 20, 22 and 23. This α-helix therefore resides in the SDS headgroup region with the face with residues 16, 20, 22 and 23 directed away from the hydrophobic interior of the micelle. The C-terminal helix is protected both from 5-doxyl stearic acid and Mn2+, and should be buried in the hydrophobic interior of the micelle. The SDS micelles were characterized by diffusion and 15N-relaxation measurements. Comparison of experimentally determined translational diffusion coefficients for SDS and Aβ(1–40) show that the size of SDS micelle is not significantly changed by interaction with Aβ(1–40). Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
A method based on capillary electrophoresis (CE) with UV absorbance detection is presented to characterize synthetic amyloid beta (Aβ) peptide preparations at different aggregation states. Aggregation of Aβ (1-40) and Aβ (1-42) is closely linked to Alzheimer's disease (AD), and studying how Aβ peptides self-assemble to form aggregates is the focus of intense research. Developing methods capable of identifying, characterizing and quantifying a wide range of Aβ species from monomers to fully formed fibrils is critical for AD research and is a major analytical challenge. Monomer and fibril samples of Aβ (1-40) and Aβ (1-42) were prepared and characterized for this study. The monomer-equivalent concentration for each sample was determined by HPLC-UV, and aggregate formation was confirmed and characterized by transmission electron microscopy. The same samples were studied using CE with UV absorbance detection. Analysis by mass spectrometry of collected CE fractions was used to confirm the presence of Aβ for some CE-UV peaks. The CE-UV method reported here clearly indicates that monomeric and aggregated Aβ were electrophoretically separated, and substantial differences in the electrophoretic profiles between samples of Aβ (1-40) and Aβ (1-42) were observed. This CE-UV method can differentiate between Aβ monomer, oligomeric intermediates, and mature fibrils.  相似文献   

8.
9.
Amyloid beta peptide (A) is a small peptide present in normal cells and aggregated A is the main constituent of the extracellular amyloid plaques found in Alzheimers disease (AD) brain. Recent studies suggest that soluble A oligomers are neurotoxic rather than amyloid fibrils found in amyloid plaques. This study using multidimensional NMR spectroscopy and circular dichroism (CD) provides the first direct evidence that alterations in membrane structure can trigger the conversion of soluble -helical monomeric A into oligomeric A in a -sheet conformation.  相似文献   

10.
We have developed a highly efficient method for purification of the recombinant product Aβ(1-40) peptide. The concentration dependence of amyloid formation by recombinant Aβ(1-40) peptide was studied using fluorescence spectroscopy and electron microscopy. We found that the process of amyloid formation is preceded by lag time, which indicates that the process is nucleation-dependent. Further exponential growth of amyloid fibrils is followed by branching scenarios. Based on the experimental data on the concentration dependence, the sizes of the folding nuclei of fibrils were calculated. It turned out that the size of the primary nucleus is one “monomer” and the size of the secondary nucleus is zero. This means that the nucleus for new aggregates can be a surface of the fibrils themselves. Using electron microscopy, we have demonstrated that fibrils of these peptides are formed by the association of rounded ring structures.  相似文献   

11.
Amyloid-beta protein (Aβ) accumulation in the brain, which is influenced by several factors, is a hallmark of Alzheimer's disease (AD). Despite the important role of histidine in stabilizing the fibrillar structure of the Aβ peptide at neutral pH, the effect of histidine tautomerism on Aβ peptide aggregation is still largely unknown. Histidine is in equilibrium between δ and ε tautomers and there are three histidine residues (H6, H13, and H14) in the Aβ(1–40) peptide. We performed molecular dynamics simulation on (δδδ) and (εεε) histidine tautomers with different initial homodimeric configurations to elucidate structural and aggregation features. Results indicate that (εεε) homodimers have very low propensity or almost no tendency to form β-sheets, whereas (δδδ) dimers predominantly form β-sheets due to interactions between central hydrophobic core (CHC) residues and C-terminal residues. β-sheet formation occurred in the same regions of each dimer chain at the CHC and C-/N- terminals for different configurations of (δδδ). These results suggest that (δδδ) has an important role in AD progression. Our study provides deeper insight into the effect of tautomerism of histidine residues in Aβ(1–40) on amyloid aggregation.  相似文献   

12.
Amyloid fibril formation is associated with a number of debilitating systemic and neurodegenerative diseases. One of the most prominent is Alzheimer disease in which aggregation and deposition of the Aβ peptide occur. Aβ is widely considered to mediate the extensive neuronal loss observed in this disease through the formation of soluble oligomeric species, with the final fibrillar end product of the aggregation process being relatively inert. Factors that influence the aggregation of these amyloid-forming proteins are therefore very important. We have screened a library of 96 amphipathic molecules for effects on Aβ(1-42) aggregation and self-association. We find, using thioflavin T fluorescence and electron microscopy assays, that 30 of the molecules inhibit the aggregation process, whereas 36 activate fibril formation. Several activators and inhibitors were subjected to further analysis using analytical ultracentrifugation and circular dichroism. Activators typically display a 1:10 peptide:detergent stoichiometry for maximal activation, whereas the inhibitors are effective at a 1:1 stoichiometry. Analytical ultracentrifugation and circular dichroism experiments show that activators promote a mixture of unfolded and β-sheet structures and rapidly form large aggregates, whereas inhibitors induce α-helical structures that form stable dimeric/trimeric oligomers. The results suggest that Aβ(1-42) contains at least one small molecule binding site, which modulates the secondary structure and aggregation processes. Further studies of the binding of these compounds to Aβ may provide insight for developing therapeutic strategies aimed at stabilizing Aβ in a favorable conformation.  相似文献   

13.
Amyloid fibrils are self-assembled fibrous protein aggregates that are associated with a number of presently incurable diseases such as Alzheimer’s and Parkinson’s disease. Millions of people worldwide suffer from amyloid diseases. This review summarizes the unique cross-β structure of amyloid fibrils, morphological variations, the kinetics of amyloid fibril formation, and the cytotoxic effects of these fibrils and oligomers. Alzheimer’s disease is also explored as an example of an amyloid disease to show the various approaches to treat these amyloid diseases. Finally, this review investigates the nanotechnological and biological applications of amyloid fibrils; as well as a summary of the typical biological pathways involved in the disposal of amyloid fibrils and their precursors.  相似文献   

14.
Amyloid-beta (Aβ) protein is related to Alzheimer disease (AD), and various experiments have shown that oligomers as small as dimers are cytotoxic. Recent studies have concluded that interactions of Aβ with neuronal cell membranes lead to disruption of membrane integrity and toxicity and they play a key role in the development of AD. Molecular dynamics (MD) simulations have been used to investigate Aβ in aqueous solution and membranes. We have previously studied monomeric Aβ40 embedded in dipalmitoylphosphatidylcholine (DPPC) membrane using MD simulations. Here, we explore interactions of two Aβ40 peptides in DPPC bilayer and its consequences on dimer distribution in a lipid bilayer and on the secondary structure of the peptides. We explored that N-terminals played an important role in dimeric Aβ peptide aggregations and Aβ-bilayer interactions, while C-terminals bound peptides to bilayer like anchors. We did not observe exiting of peptides in our simulations although we observed insertion of peptides into the core of bilayer in some of our simulations. So it seems that the presence of Aβ on membrane surface increases its aggregation rate, and as diffusion occurs in two dimensions, it can increase the probability of interpeptide interactions. We found that dimeric Aβ, like monomeric one, had the ability to cause structural destabilization of DPPC membrane, which in turn might ultimately lead to cell death in an in vivo system. This information could have important implications for understanding the affinity of Aβ oligomers (here dimer) for membranes and the mechanism of Aβ oligomer toxicity in AD.  相似文献   

15.
The physiological relationship between brain cholesterol content and the action of amyloid β (Aβ) peptide in Alzheimer’s disease (AD) is a highly controversially discussed topic. Evidences for modulations of the Aβ/membrane interaction induced by plasma membrane cholesterol have already been observed. We have recently reported that Aβ(25–35) is capable of inserting in lipid membranes and perturbing their structure. Applying neutron diffraction and selective deuteration, we now demonstrate that cholesterol alters, at the molecular level, the capability of Aβ(25–35) to penetrate into the lipid bilayers; in particular, a molar weight content of 20% of cholesterol hinders the intercalation of monomeric Aβ(25–35) completely. At very low cholesterol content (about 1% molar weight) the location of the C-terminal part of Aβ(25–35) has been unequivocally established in the hydrocarbon region of the membrane, in agreement with our previous results on pure phospholipids membrane. These results link a structural property to a physiological and functional behavior and point to a therapeutical approach to prevent the AD by modulation of membrane properties.  相似文献   

16.
Aggregation of the amyloid β-peptide (Aβ) into insoluble fibrils is a key pathological event in Alzheimer’s disease. Cu(II) and Zn(II) ions were reported to be able to induce Aβ aggregation at nearly physiological concentrations in vitro. In this study, the binding modes of Cu(II) and Zn(II) in this process were explored by molecular modeling. In the pre-associated Aβ, Nτ atom of imidazole ring of His14, O atom of carbonyl of main-chain and two O atoms of water occupied the four ligand positions of the complex. While in the aggregated form of Aβ, the His13(N)–Metals–His14(N) bridges were formed through metal cross-linking action. These results would be helpful to put insight on revealing the formation mechanism of pathogenic Aβ aggregates in brain.  相似文献   

17.
In this immunohistopathological study α1-antichymotrypsin, which is barely demonstrable in the normal brain, was found in amyloid fibrils, endothelial cells and the cytoplasm of astroglial cells in brains from patients with Alzheimer’s disease. Amyloid precursors stained with methenamine silver were arrayed mainly along the membranes, and amyloid fibrils, which stained densely with anti-α1-antichymotrypsin, were in direct contact with the fibrous structures connecting with the membranes of vascular feet or astrocytic processes. From the above findings, α1-antichymotrypsin seems to play a role in the production of amyloid fibrils in Alzheimer’s disease.  相似文献   

18.
The studies of amyloid structures and the process of their formation are important problems of biophysics. One of the aspects of such studies is to determine the amyloidogenic regions of a protein chain that form the core of an amyloid fibril. We have theoretically predicted the amyloidogenic regions of the Aβ(1-40) peptide capable of forming an amyloid structure. These regions are from 16 to 21 and from 32 to 36 amino acid residues. In this work, we have attempted to identify these sites experimentally by the method of tandem mass spectrometry. As a result, we show that regions of the Aβ(1-40) peptide from 16 to 22 and from 28 to 40 amino acid residues are resistant to proteases, i.e. they are included in the core of amyloid fibrils. Our results correlate with the results of the theoretical prediction.  相似文献   

19.
20.
The antiamyloidogenic capacity of water-soluble nitroderivatives of fullerene C60: methyl ester of L-N-[(2-nitroglyceryl) fullerenyl] proline, methyl ester of L-N-[(2,3-dinitroglyceryl) fullerenyl] proline, and 2-nitroxyethyl ester of L-N-([2-(nitroxy) ethyl] fullerenyl) proline has been studied in vitro by high-resolution electron microscopy. It was shown that these fullerene C60 nitroderivatives are able to prevent the formation of amyloid fibrils by the brain Aβ(1–42)-peptide and muscle X-protein and to destroy mature fibrils. Electron microscopy is a promising method for selecting effective antiamyloidogenic drugs. The antiamyloidogenic activity of nanodimensional fullerene C60 nitroderivatives offers strong possibilities for creating a new nanotechnology for the therapy of amyloidoses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号