首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reduction in mechanical loading associated with space travel results in dramatic decreases in the bone mineral density (BMD) and mechanical strength of skeletal tissue resulting in increased fracture risk during spaceflight missions. Previous rodent studies have highlighted distinct bone healing differences in animals in gravitational environments versus those during spaceflight. While these data have demonstrated that microgravity has deleterious effects on fracture healing, the direct translation of these results to human skeletal repair remains problematic due to substantial differences between rodent and human bone. Thus, the objective of this study was to investigate the effects of partial gravitational unloading on long-bone fracture healing in a previously-developed large animal Haversian bone model. In vivo measurements demonstrated significantly higher orthopedic plate strains (i.e. load burden) in the Partial Unloading (PU) Group as compared to the Full Loading (FL) Group following the 28-day healing period due to inhibited healing in the reduced loading environment. DEXA BMD in the metatarsus of the PU Group decreased 17.6% (p<0.01) at the time of the ostectomy surgery. Four-point bending stiffness of the PU Group was 4.4 times lower than that of the FL Group (p<0.01), while µCT and histomorphometry demonstrated reduced periosteal callus area (p<0.05), mineralizing surface (p<0.05), mineral apposition rate (p<0.001), bone formation rate (p<0.001), and periosteal/endosteal osteoblast numbers (p<0.001/p<0.01, respectively) as well as increased periosteal osteoclast number (p<0.05). These data provide strong evidence that the mechanical environment dramatically affects the fracture healing cascade, and likely has a negative impact on Haversian system healing during spaceflight.  相似文献   

2.
Osteoporosis is characterized by reduced bone strength, but no FDA-approved medical device measures bone strength. Bone strength is strongly associated with bone stiffness, but no FDA-approved medical device measures bone stiffness either. Mechanical Response Tissue Analysis (MRTA) is a non-significant risk, non-invasive, radiation-free, vibration analysis technique for making immediate, direct functional measurements of the bending stiffness of long bones in humans in vivo. MRTA has been used for research purposes for more than 20 years, but little has been published about its accuracy. To begin to investigate its accuracy, we compared MRTA measurements of bending stiffness in 39 artificial human ulna bones to measurements made by Quasistatic Mechanical Testing (QMT). In the process, we also quantified the reproducibility (i.e., precision and repeatability) of both methods. MRTA precision (1.0±1.0%) and repeatability (3.1±3.1%) were not as high as those of QMT (0.2±0.2% and 1.3+1.7%, respectively; both p<10−4). The relationship between MRTA and QMT measurements of ulna bending stiffness was indistinguishable from the identity line (p=0.44) and paired measurements by the two methods agreed within a 95% confidence interval of ±5%. If such accuracy can be achieved on real human ulnas in situ, and if the ulna is representative of the appendicular skeleton, MRTA may prove clinically useful.  相似文献   

3.
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are relevant to fetal and infant growth and development. Objective: to assess whether long-term exposure to dietary ω-3 PUFA imbalance alters pre- and/or postnatal pups' development and reproductive function later in life. Mice dams were fed with ω-3 PUFA Control (soybean oil, 7%), Deficient (sunflower oil, 7%) or Excess (blend oil; 4.2% cod-liver+2.8% soybean) diet before conception and throughout gestation-lactation and later on, their pups received the same diet from weaning to adulthood. Offspring somatic, neurobiological and reproductive parameters were evaluated. Excess pups were lighter during the preweaning period and shorter in length from postnatal day (PND) 7 to 49, compared to Control pups (P<.05). On PND14, the percentage of pups with eye opening in Excess group was lower than those from Control and Deficient groups (P<.05). In Excess female offspring, puberty onset (vaginal opening and first estrus) occurred significantly later and the percentage of parthenogenetic oocytes on PND63 was higher than Control and Deficient ones (P<.05). Deficient pups were shorter in length (males: on PND14, 21, 35 and 49; females: on PND14, 21 and 42) compared with Control pups (P<.05). Deficient offspring exhibited higher percentage of bending spermatozoa compared to Control and Excess offspring (P<.05). These results show that either an excessively high or insufficient ω-3 PUFA consumption prior to conception until adulthood seems inadvisable because of the potential risks of short-term adverse effects on growth and development of the progeny or long-lasting effects on their reproductive maturation and function.  相似文献   

4.
Although fracture healing is frequently studied in pre-clinical models of long bone fractures using rodents, there is a dearth of objective quantitative techniques to assess successful healing. Biomechanical testing is possibly the most quantitative and relevant to a successful clinical outcome, but it is a destructive technique providing little insight into the cellular mechanisms associated with healing. The advent of X-ray computed tomography (CT) has provided the opportunity to quantitatively and non-destructively assess bone structure and density, but it is unknown how measurements derived using this technology relate to successful healing. To examine possible relationships, we used a pre-clinical model to test for statistically significant correlations between quantitative characteristics of the callus by micro-CT (μCT) and the bending strength, stiffness, and energy-to-failure of the callus as assessed by three-point bending of excised bones. A closed, transverse fracture was generated in the mid-shaft of rat femurs by impact loading. Shortly thereafter, the rats received a one-time, local injection of either the vehicle or one of four doses of lovastatin. Following sacrifice after 4 weeks of healing, fractured femurs were extracted for μCT analysis and then three-point bending. Setting the region of interest to be 3.2 mm above and below the fracture line, we acquired standard and new μCT-derived measurements. The mineralized callus volume and the mineral density of the callus correlated positively with callus strength (rxy=?0.315, p=0.016 and rxy=0.444, p<0.0005, respectively) and stiffness (rxy=?0.271, p=0.040 and rxy=0.325, p=0.013, respectively), but the fraction of the callus that mineralized and the moment of inertia of the callus did not. This fraction did correlate with energy-to-failure (rxy=?0.343, p=0.0085). Of the μCT-derived measurements, quantifying defects within the outer bridging cortices of the callus produced the strongest correlation with both callus strength (rxy=0.557, p<0.0001) and stiffness (rxy=0.468, p=0.0002). By both reducing structural defects and increasing mineralization, lovastatin appears to increase the callus strength.  相似文献   

5.
The senescence accelerated mouse, strain P6 (SAMP6) has been described as a model of senile osteoporosis. Recent results from whole-bone bending tests indicate that, despite having increased moments of inertia, SAMP6 long bones are weak and brittle compared to SAMR1 controls. In the current study we determined material properties of cortical bone from SAMP6 and SAMR1 femora and tibiae by two methods-nanoindentation and whole-bone bending tests combined with simple beam theory. We hypothesized that: (1) SAMP6 mice have reduced cortical bone material properties compared to SAMR1 controls; and (2) modulus estimated from whole-bone bending tests correlates well with modulus determined by nanoindentation. Results from nanoindentation indicated that modulus and hardness are approximately 10% higher in SAMP6 mice compared to SAMR1 controls (p<0.001), a finding consistent with slightly higher mineralization in SAMP6 bones. Despite their superior elastic and hardness properties, the bending failure properties of SAMP6 bones were markedly inferior--ultimate stress and toughness were reduced by 40% and 60%, respectively (p<0.001). Comparisons between the two testing methods for determining modulus showed poor agreement. Modulus estimated from whole-bone bending tests was not correlated with modulus determined by nanoindentation (p=0.054; r2=0.03) and the absolute values differed by a factor of five between the two methods (bending [wet], 6GPa; nanoindentation [dry], 31GPa). Moreover, relative differences between groups were inconsistent between the two methods. We conclude: (1) cortical bone from the SAMP6 mouse has increased modulus and hardness but poor material strength and toughness, which underscores the relevance of the SAMP6 mouse for studies of skeletal fragility, and (2) values of elastic modulus of bone tissue estimated using simple beam theory and bending tests of mouse femora and tibiae are inaccurate and should be interpreted with caution.  相似文献   

6.
BackgroundsWe reported that citrus consumption improves bone quality in orchidectomized male rats. In the present study, effects of feeding citrus bioactive compounds and crude extract on bone quality in orchidectomized rats were evaluated.MethodsSeventy 90-days-old male rats were randomly assigned to five groups for 60 days of feeding study. The treatment groups were SHAM-control, orchidectomy (ORX), ORX+crude extract, ORX+limonin, and ORX+naringin. At termination, animals were euthanized, blood was collected for the plasma antioxidant status. Bone resorption and bone formation markers in the blood and urine were evaluated. Bone quality in the femur and the 5th lumbar and the total calcium concentration in the bones and excreta were evaluated.ResultsOrchidectomy lowered (p<0.05) plasma antioxidant capacity, bone quality, and bone calcium; elevated (p<0.05) TRAP, deoxypyridinoline (DPD), and calcium excretion; and did not change the plasma IGF-I in comparison to the SHAM group. The citrus crude extract or the purified bioactive compounds increased (p<0.05) the plasma antioxidant status, plasma IGF-I, and bone density, preserved (p<0.05) the concentration of calcium in the femur and in the 5th lumbar, and numerically improved bone strength. The crude extract and the bioactive compounds decreased (p<0.05) fecal excretion of calcium, numerically lowered the urinary excretion of calcium, and suppressed (p<0.05) the plasma TRAP activity without affecting (p>0.1) urinary excretion of DPD in comparison to the ORX group.ConclusionsPotential benefit of the citrus crude extract and its bioactive compounds on bone quality appears to preserve bone calcium concentration and increase antioxidant status.  相似文献   

7.
To improve bone strength prediction beyond limitations of assessment founded solely on the bone mineral component, we investigated the effect of hyperlipidemia, present in more than 40% of osteoporotic patients, on multiscale structure of murine bone. Our overarching purpose is to estimate bone strength accurately, to facilitate mitigating fracture morbidity and mortality in patients. Because (i) orientation of collagen type I affects, independently of degree of mineralization, cortical bone?s micro-structural strength; and, (ii) hyperlipidemia affects collagen orientation and μCT volumetric tissue mineral density (vTMD) in murine cortical bone, we have constructed the first multiscale finite element (mFE), mouse-specific femoral model to study the effect of collagen orientation and vTMD on strength in Ldlr−/−, a mouse model of hyperlipidemia, and its control wild type, on either high fat diet or normal diet. Each µCT scan-based mFE model included either element-specific elastic orthotropic properties calculated from collagen orientation and vTMD (collagen-density model) by experimentally validated formulation, or usual element-specific elastic isotropic material properties dependent on vTMD-only (density-only model). We found that collagen orientation, assessed by circularly polarized light and confocal microscopies, and vTMD, differed among groups and that microindentation results strongly correlate with elastic modulus of collagen-density models (r2=0.85, p=105). Collagen-density models yielded (1) larger strains, and therefore lower strength, in simulations of 3-point bending and physiological loading; and (2) higher correlation between mFE-predicted strength and 3-point bending experimental strength, than density-only models. This novel method supports ongoing translational research to achieve the as yet elusive goal of accurate bone strength prediction.  相似文献   

8.
The development of nutritional strategies to improve microbial homeostasis and gut health of piglets post-weaning is required to mitigate the high prevalence of post-weaning diarrhea and subsequent growth checks typically observed during the weaning transition. Therefore the objective of this study was to determine the effect of supplementing piglet creep and nursery feed with a yeast-derived mannan-rich fraction (MRF) on piglet growth performance, cecal microbial profiles, and jejunal morphology and gene expression. Ten litters of piglets (n=106) were selected on postnatal day (PND) 7 and assigned to diets with or without MRF (800 mg/kg) until weaning (n=5 litters/treatment; initial weight 3.0±0.1 kg). On PND 21, 4 piglets per litter (n=40) were selected and weaned into the nursery where they remained on their respective diets until PND 42. A two-phase feeding program was used to meet nutrient requirements, and pigs were switched from phase 1 to phase 2 on PND 28. Feed intake and piglet weights were recorded on PND 7, 14, 21, 28, 35 and 42. On PND 28 and 42, ten piglets per treatment were euthanized to collect intestinal tissue and digesta. Piglets supplemented with MRF had 21.5% greater (P<0.05) average daily feed intake between PND 14-21. However, MRF supplementation did not affect piglet growth performance compared to control. On PND 28, jejunal villus height was 16.8% greater (P<0.05) in piglets consuming MRF supplemented diets. Overall microbial community structure in cecal digesta on PND 28 tended to differ in pigs supplemented with MRF (P=0.076; analysis of similarities (ANOSIM)) with increased (P<0.05) relative abundance of Paraprevotellaceae genera YRC22 and CF231, and reduced (P<0.05) relative abundance of Sutterella and Prevotella. Campylobacter also tended to reduce (P<0.10) in MRF supplemented piglets. On PND 28 differential gene expression in jejunal tissue signified an overall effect of supplementing MRF to piglets. Downstream analysis of gene expression data revealed piglets supplemented with MRF had enriched biological pathways involved in intestinal development, function and immunity, supporting the observed improvement in jejunal villus architecture on PND 28. On PND 42 there was no effect of MRF supplementation on jejunal morphology or overall cecal microbial community structure. In conclusion, supplementing Actigen™, a MRF, to piglets altered cecal microbial community structure and improved jejunal morphology early post-weaning on PND 28, which is supported by enrichment of intestinal development pathways.  相似文献   

9.

Aims

Morphine is extensively metabolized to neurotoxic morphine-3-glucuronide (M3G) and opioid agonist morphine-6-glucuronide (M6G). Due to these different roles, interindividual variability and co-administration of drugs that interfere with metabolism may affect analgesia. The aim of the study was to investigate the repercussions of administration of an inducer (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) and an inhibitor (ranitidine) of glucuronidation in morphine metabolism and consequent analgesia, using the Guinea pig as a suitable model.

Main methods

Thirty male Dunkin–Hartley guinea pigs were divided in six groups: control, morphine, ranitidine, ranitidine + morphine, TCDD and TCDD + morphine. After previous exposure to TCDD and ranitidine, morphine effect was assessed by an increasing temperature hotplate (35–52.5 °C), during 60 min after morphine administration. Then, blood was collected and plasma morphine and metabolites were quantified.

Key findings

Animals treated with TCDD presented faster analgesic effect and 75% reached the cut-off temperature of 52.5 °C, comparing with only 25% in morphine group. Animals treated with ranitidine presented a significantly lower analgesic effect, compared with morphine group (p < 0.05). Moreover, significant differences between groups were found in M3G levels and M3G/morphine ratio (p < 0.001 and p < 0.0001), with TCDD animals presenting the highest values for M3G, M6G, M3G/morphine and M6G/morphine, and the lowest value for morphine. The opposite was observed in the animals treated with ranitidine.

Significance

Our results indicate that modulation of morphine metabolism may result in variations in metabolite concentrations, leading to different analgesic responses to morphine, in an animal model that may be used to improve morphine effect in clinical practice.  相似文献   

10.
Mechanical loading increases and maintains bone mass and strength. Daily stress stimulus and osteogenic index theories have been suggested to describe the osteogenic potential of exercise, using exponential or logarithmic relationships, respectively, between loading numbers and magnitude. Inspired by these theories, the aim of this study was to develop and test a daily impact score (DIS) using long-term continuous acceleration measurements of exercise.Acceleration data were collected during a previous exercise trial, in which the subjects (healthy women, 35–40 years, N=34 in the high-impact exercise group and N=30 in the control group) wore a body movement monitor on their waist during the 12-month study. DIS was calculated from the 12-month average daily acceleration distributions in two ways: DISExp adopted from the daily stress stimulus and DISLog simplified from the osteogenic index. Areal bone mineral density (aBMD) at the proximal femur and cortical bone geometry at the mid-femur were measured at baseline and 12 months.DIS calculated in either of the ways was significantly higher in the exercise group than in the control group. DISExp and DISLog were strongly correlated (R=0.982). Both DISExp and DISLog were significantly associated with 12-month aBMD changes at the hip (R up to 0.550, p<0.01) and geometry changes at the mid-femur (R up to 0.472, p<0.05) in the exercise group.DIS calculated either from exponential or logarithmic relationship can be used in acceleration-based measurements of daily exercise. DIS was positively related with changes in hip aBMD and mid-femur bone geometry after 12 months of exercise.  相似文献   

11.
Adseverin (Ads) is a Ca2+-dependent actin-capping and severing protein that is highly expressed in gastric, prostate and bladder cancer cells. Currently it is unknown whether Ads contributes to the subcortical actin remodeling associated with the formation of cell extensions and matrix invasion in cancer. We compared cell extension formation and matrix degradation in Ads wildtype and Ads-null MCF7 breast cancer cells generated by CRISPR/Cas9. Compared with wildtype, Ads-null cells plated on fibronectin or collagen exhibited a more circular morphology with shorter cell extensions (37% reduction on fibronectin; p < 0.001). Reconstitution of Ads in Ads-null cells restored the formation of cell extensions (p < 0.05). While cell migration on two-dimensional matrices was unchanged by Ads deletion, the formation of cell extensions across Transwell membranes was reduced (~40% reduction, p < 0.05). When plated on fibrillar collagen, compared with wildtype, Ads-null cells showed reduced expression of MT1-MMP, collagen degradation (p < 0.05) and phagocytosis of collagen-coated beads (25% reduction; p = 0.001). We conclude that Ads is involved in the formation of cell extensions and collagen degradation in MCF7 cells, which may in turn affect matrix invasion and metastasis.  相似文献   

12.
Vitrification of germinal vesicle (GV) stage oocytes has been shown to be closely associated with decreased rates of meiosis maturation and increased rates of aneuploidy. However, little is known about the effects of melatonin on these events in mice vitrified GV oocytes. In this study, the effects of melatonin on meiosis maturation potential and the incidence rate of aneuploidy in mouse vitrified oocytes were analyzed by supplementing in vitro maturation (IVM) solution with melatonin at different concentrations. This study, for the first time, showed that the mitochondrial heat production was markedly increased in vitrified oocytes (P < 0.05), which compromised the first polar body extrusion (PBE) of vitrified oocytes (73.3% vs. 85.1%, P < 0.05). However, 10−11 mol/L melatonin could significantly decrease mitochondrial heat production and ROS level (9.1 vs. 12.0 pixels, P < 0.05), meanwhile increase ATP level (1.1 vs. 0.88 pmol, P < 0.05) and mtDNA copies (107438 vs. 67869, P < 0.05), which rescued the abnormal chromosome alignment (32% vs. 69%, P < 0.05) and reduced the incidence of aneuploidy (15.6% vs. 38.5%, P < 0.05) in vitrified oocytes. The meiosis maturation ability of vitrified oocytes with melatonin supplementation was similar to that of fresh ones (83.4% vs. 85.1%, P > 0.05). Collectively, our data revealed that melatonin has a protective action against vitrification-induced injuries of oocytes meiosis maturation.  相似文献   

13.
The persistent xenobiotic agent 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces neurotoxic effects that alters neurodevelopment and behavior both during development and adulthood. There are many ongoing efforts to determine the molecular mechanisms of TCDD-mediated neurotoxicity, the signaling pathways involved and its molecular targets in neurons. In this work, we have used SHSY5Y human neuroblastoma cells to characterize the TCDD-induced toxicity. TCDD produces a loss of viability linked to an increased caspase-3 activity, PARP-1 fragmentation, DNA laddering, nuclear fragmentation and hypodiploid (apoptotic) DNA content, in a similar way than staurosporine, a prototypical molecule of apoptosis induction. In addition, TCDD produces a decrease of mitochondrial membrane potential and an increase of intracellular calcium concentration (P?<?0.05). Finally, based on the high lipophilic properties of the dioxin, we test the TCDD effect on the membrane integrity using sarcoplasmic reticulum vesicles as a model. TCDD produces calcium efflux through the membrane and an anisotropy decrease (P?<?0.05) that reflects an increase in membrane fluidity. Altogether these results support the hypothesis that TCDD toxicity in SHSY5Y neuroblastoma cells provokes the disruption of calcium homeostasis, probably affecting membrane structural integrity, leading to an apoptotic process.  相似文献   

14.
15.
Female mice were exposed maternally to piperonyl butoxide (PBO) through diet to provide dietary levels of 0% (control), 0.01%, 0.03%, and 0.09% during gestation and lactation periods, and selected reproductive and neurobehavioral parameters were measured in the F1 generation. There was no adverse effect of PBO on litter size, litter weight, or sex ratio at birth. The average body weights of male offspring decreased significantly in dose‐related manners on postnatal days (PNDs) 0, 4, 7, and 14 (p = 0.0019, 0.0096, 0.033, and 0.038, respectively) during the lactation period. In female offspring, the average body weights decreased in dose‐related manners on PNDs 0, 4, 7, and 14 (p = 0.0027, 0.0104, 0.0193, and 0.0062, respectively). The survival of dams slightly decreased (p = 0.0209) in the high‐dose group during the lactation period. With respect to behavioral developmental parameters, surface righting on PND 7 of male and female offspring was delayed significantly in a dose‐related manner (p < 0.001 in each). Swimming direction on PND 7 of male offspring was delayed significantly in a dose‐related manner (p < 0.01), and for female offspring it was delayed significantly in the high‐dose group (p < 0.05). Swimming head angle on PND 7 of male offspring was delayed significantly in a dose‐related manner (p < 0.05). Spontaneous behavior examination in males indicated that rearing increased in the high‐dose group in the F1 generation. The dose levels of PBO in the present study produced some adverse effects in neurobehavioral parameters in mice  相似文献   

16.
In this study we investigated the effect of a single-compound exposure or two compound co-exposure to tetrachlorodibenzo-p-dioxin (TCDD) plus perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) on the mRNA expression of cytochromes P450 (CYP) 1A4, 4V2 and 3A37, ethoxyresorufin-O-deethylase (EROD) activity and cell viability in chicken (Gallus gallus domesticus) embryo primary hepatocyte cultures. Cell viability after 24 h of incubation was significantly decreased in cells exposed to PFOS at concentrations between 30 µM and 60 µM with or without co-exposure to TCDD (0.3 nM at maximum). PFOA did not decrease cell viability even at maximum concentrations of 60 µM. TCDD induced CYP1A4 mRNA and EROD activity substantially as reported previously. PFOS also increased CYP1A4 mRNA in a concentration-dependent manner. Co-exposure of cells to PFOS plus TCDD did not change CYP1A4 mRNA levels compared to cells treated with TCDD alone. PFOS alone did not induce CYP4V2 mRNA, however 40–50 µM PFOS plus TCDD (0.3 nM) induced CYP4V2 mRNA compared to TCDD alone (P < 0.05). This trend was similar to that observed with co-exposure to TCDD plus PFOA, suggesting that PFOA alone did not induce CYP4V2 mRNA, whereas co-exposure to TCDD plus PFOA induced the expression levels. PFOS alone decreased CYP3A37 mRNA by a maximum of 45%, however after co-exposure to TCDD, recovery of mRNA expression to levels measured in DMSO-treated cells was observed. Our data suggest a complex gene response to mixtures of dioxin-like and perfluorinated compounds.  相似文献   

17.
To investigate the influence of experimental diets on morphological and mechanical characteristics of immature bone, this study thoroughly examined the nutrition–bone connection. A non-destructive evaluation method involving high-resolution in-vivo micro-computed tomography and finite element (FE) analysis was used to investigate the relationship between obesity and osteopenia—two disorders of body composition. Correlation of nutritional deficiency with bone characteristics was also investigated. Some recent studies have shown that both obesity and osteopenia share several common genetic and environmental factors. However, there have been few studies correlating these pathologies in-vivo from a structural and biomechanical point of view. In the present study, detailed changes in morphological and mechanical characteristics of trabecular bone architecture were detected and tracked by longitudinal studies of morphometric parameters and simulated compression testing. Rats were randomized into three groups: overeaten diet (OD) for formation of obesity, normal diet (ND), and restricted diet (RD) in which rats received 65% of the normal diet. In the OD and ND groups, all structural parameters changed significantly (p<0.05). The degree of alteration in the structural parameters of the ND group was similar to that of the RD group (p<0.05). In simulated compression tests using FE models, the effective modulus of the OD group significantly decreased, depending on measuring time (p<0.05), whereas that of the ND and RD groups significantly increased (p>0.05). The key finding of the present study is that fat mass is morphologically and mechanically inversely correlated with bone mass when the mechanical loading effects of greater body weight on bone mass are applied.  相似文献   

18.
《Reproductive biology》2020,20(1):48-62
The present study evaluated the effects of the blockade of meiosis in bovine oocytes by the cyclin-dependent kinase inhibitors roscovitine (ROS) and butyrolactone-I (BL-I) on nuclear maturation and extracellular signal-regulated kinase 1/2 (ERK1/2), cyclin B1 and p34cdc2 protein expression and localization. We also evaluated ultrastructural changes in oocytes. Immature oocytes were obtained from slaughtered bovines and divided into: (1) control (oocytes for in vitro maturation only in tissue culture medium-199 for 24 h), (2) oocytes that were treated with 12.5μMROS for 6 h, (3) oocytes that were treated with 50μMBL-I for 6 h and (4) oocytes that were treated with 6.25 μMROS+25 μMBL-I for 6 h. Incubation with inhibitors was followed by the reversal of blockade for 18 h. Oocytes then underwent immunohistochemical analysis to visualize chromatin and assess ERK1/2, cyclin B1 and p34cdc2 localization/expression, followed by preparation of the cells for ultrastructure analysis by electron microscopy. The groups at 6 h of maturation and before IVM exhibited the lowest number of oocytes in metaphase I. ROS group had the highest number of degenerating oocytes (p < 0.05). After maturation, majority of oocytes were in metaphaseII with no differences among groups (p> 0.05). ERK1/2, cyclin B1 and p34cdc2 expression differed throughout inhibition and oocyte maturation (p < 0.05). No difference was observed in the localization of these proteins in the ooplasm. No ultrastructural changes in oocytes were observed between treatments, with the exception of treatment with drugs that augmented lipid metabolism (p < 0.05). Results indicate that the effects of CDK1 inhibitors are reversible in bovine oocytes, indicated by nuclear, cytoplasmic, and molecular maturation parameters.  相似文献   

19.

Background/aim

In a previous study we showed that mandibular alveolar (trabecular) bone appears to be less sensitive to estrogen deficiency than the proximal tibia spongiosa. We hypothesized that the mechanical loading of the alveolar process during mastication may protect the alveolar bone from the detrimental effects observed in other skeletal sites. To test this hypothesis we compared the effect of ovariectomy on the mandibular alveolar bone and the proximal tibia spongiosa of rats fed either a normal (hard) or a soft diet.

Methods

Forty six-month-old female Sprague–Dawley rats underwent trans-abdominal ovariectomy (OVX) or sham operation (SHAM). Half of the animals received their food in the usual form of pellets (hard consistency), while the other half received a soft, porridge-like, isocaloric diet of identical composition (soft consistency). Micro-computed tomographic histomorphometry was used to evaluate the trabecular micro-architecture. A two-factor analysis of variance was used to test for effects and interaction of ovariectomy and/or soft diet.

Results

OVX had a significantly negative effect on the proximal tibia spongiosa (all parameters under study except trabecular thickness; p<0.001) and on the mandibular alveolar bone (trabecular number and spacing; p<0.05). Soft diet led to a further decrease of mandibular BV/TV (p<0.01), trabecular thickness (p<0.05) and number (p<0.05), as well as increase of separation (p<0.001). A significant interaction was observed between OVX and soft diet concerning the mandibular BV/TV, as well as trabecular thickness and spacing (p<0.05).

Conclusion

Normal (hard) diet limited significantly the negative effects of estrogen deficiency on mandibular alveolar bone micro-architecture four months after ovariectomy.  相似文献   

20.
《Bone and mineral》1994,24(2):81-94
In this study, we investigated the relation between calcium kinetic indices of bone remodeling (resorption rate, r; and formation rate, m, respectively) and two serum markers of type I collagen turnover: the pyridinoline cross-linked carboxyterminal telopeptide domains of type I collagen (S-ICTP a marker of bone matrix degradation) and the carboxyterminal propeptide of human type I procollagen (S-PICP, a marker of bone matrix formation). We studied three groups: (i) healthy controls (n = 19), (ii) a mixed group of high and low-turnover bone diseases without mineralization defects (myxedema, thyrotoxicosis and primary hyperparathyroidism n = 38), and (iii) osteoporosis (n = 52). In healthy controls, a significant regression of S-PICP on m was obtained (R = 0.53, SEE/Y = 0.44, P < 0.02). Significant regressions were also demonstrable in high- and low-turnover bone disease (R = 0.50, P < 0.001), SEE/Y = 61%) and osteoporosis (R = 0.49, P < 0.001, SEE/Y = 50%). In controls the regression coefficient for the regression of S-ICTP on r was 0.19 (NS), in high and low turnover bone disease 0.66, (SEE/Y = 59%, P < 0.001) and in the osteoporotic group 0.40 (SEE/Y = 61%, P < 0.01). We conclude that S-PICP and S-ICTP reflect whole skeletal bone formation and resorption rates in a variety of metabolic bone diseases including osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号