首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Miyagi A  Ando T  Lyubchenko YL 《Biochemistry》2011,50(37):7901-7908
A fundamental challenge of gene regulation is the accessibility of DNA within nucleosomes. Recent studies performed by various techniques, including single-molecule approaches, led to the realization that nucleosomes are quite dynamic rather than static systems, as they were once considered. Direct data are needed to characterize the dynamics of nucleosomes. Specifically, if nucleosomes are dynamic, the following questions need to be answered. What is the range of nucleosome dynamics? Is a non-ATP-dependent unwrapping of nucleosomes possible? What are the factors facilitating the large-scale opening and unwrapping of nucleosomes? In previous studies using time-lapse atomic force microscopy (AFM) imaging, we were able, for the first time, to observe spontaneous, ATP-independent unwrapping of nucleosomes. However, low temporal resolution did not allow visualization of various pathways of nucleosome dynamics. In the studies described here, we applied high-speed time-lapse AFM (HS-AFM) capable of visualizing molecular dynamics on the millisecond time scale to study the nucleosome dynamics. The mononucleosomes were assembled on a 353 bp DNA substrate containing nucleosome-specific 601 sequence. With HS-AFM, we were able to observe the dynamics of nucleosome on a subsecond time scale and visualize various pathways of nucleosome dynamics, such as sliding and unwrapping to various extents, including complete dissociation. These studies highlight an important role of electrostatic interactions in chromatin dynamics. Overall, our findings shed new light on nucleosome dynamics and provide a novel hypothesis for the mechanisms controlling the spontaneous dynamics of chromatin.  相似文献   

2.
A fundamental challenge associated with chromosomal gene regulation is accessibility of DNA within nucleosomes. Recent studies performed by various techniques, including single-molecule approaches, led to the realization that nucleosomes are dynamic structures rather than static systems, as was once believed. Direct data are required in order to understand the dynamics of nucleosomes more clearly and to answer fundamental questions, including: What is the range of nucleosome dynamics? Does a non-ATP-dependent unwrapping process of nucleosomes exist? What are the factors facilitating the large-scale opening and unwrapping of nucleosomes? This review summarizes the results of nucleosome dynamics obtained with time-lapse AFM, including a high-speed version (HS-AFM) capable of visualizing molecular dynamics on the millisecond time scale. With HS-AFM, the dynamics of nucleosomes at a sub-second time scale was observed, allowing one to visualize various pathways of nucleosome dynamics, such as sliding and unwrapping, including complete dissociation. Overall, these findings reveal new insights into the dynamics of nucleosomes and the novel mechanisms controlling spontaneous chromatin dynamics.  相似文献   

3.
4.
Using a combination of small-angle X-ray scattering (SAXS) and fluorescence resonance energy transfer (FRET) measurements we have determined the role of the H3 and H4 histone tails, independently, in stabilizing the nucleosome DNA terminal ends from unwrapping from the nucleosome core. We have performed solution scattering experiments on recombinant wild-type, H3 and H4 tail-removed mutants and fit all scattering data with predictions from PDB models and compared these experiments to complementary DNA-end FRET experiments. Based on these combined SAXS and FRET studies, we find that while all nucleosomes exhibited DNA unwrapping, the extent of this unwrapping is increased for nucleosomes with the H3 tails removed but, surprisingly, decreased in nucleosomes with the H4 tails removed. Studies of salt concentration effects show a minimum amount of DNA unwrapping for all complexes around 50-100mM of monovalent ions. These data exhibit opposite roles for the positively-charged nucleosome tails, with the ability to decrease access (in the case of the H3 histone) or increase access (in the case of the H4 histone) to the DNA surrounding the nucleosome. In the range of salt concentrations studied (0-200mM KCl), the data point to the H4 tail-removed mutant at physiological (50-100mM) monovalent salt concentration as the mononucleosome with the least amount of DNA unwrapping.  相似文献   

5.
Using FRET in bulk and on single molecules, we assessed the structural role of histone acetylation in nucleosomes reconstituted on the 170 bp long Widom 601 sequence. We followed salt-induced nucleosome disassembly, using donor–acceptor pairs on the ends or in the internal part of the nucleosomal DNA, and on H2B histone for measuring H2A/H2B dimer exchange. This allowed us to distinguish the influence of acetylation on salt-induced DNA unwrapping at the entry–exit site from its effect on nucleosome core dissociation. The effect of lysine acetylation is not simply cumulative, but showed distinct histone-specificity. Both H3- and H4-acetylation enhance DNA unwrapping above physiological ionic strength; however, while H3-acetylation renders the nucleosome core more sensitive to salt-induced dissociation and to dimer exchange, H4-acetylation counteracts these effects. Thus, our data suggest, that H3- and H4-acetylation have partially opposing roles in regulating nucleosome architecture and that distinct aspects of nucleosome dynamics might be independently controlled by individual histones.  相似文献   

6.
7.
We have examined the dissociation of nucleosomes into histones and free, 4.5S DNA over a range of sodium chloride concentrations between 0.25 and 1 M. We have also studied this dissociation as a function of nucleosome concentration at two salt concentrations, 0.8 M and 0.9 M. In addition, we have measured the kinetics of transfer of histone cores from nucleosomes onto recipient bacteriophage T7 DNA in 0.6, 0.7 and 0.8 M NaCl solutions. Although the mechanism of nucleosome transfer is unknown the data presented here are consistent with either a reversible dissociation of the nucleosome or DNA strand displacement by another DNA.  相似文献   

8.
9.
10.
The association of DNA with histones in chromatin impedes DNA repair enzymes from accessing DNA lesions. Nucleosomes exist in a dynamic equilibrium in which portions of the DNA molecule spontaneously unwrap, transiently exposing buried DNA sites. Thus, nucleosome dynamics in certain regions of chromatin may provide the exposure time and space needed for efficient repair of buried DNA lesions. We have used FRET and restriction enzyme accessibility to study nucleosome dynamics following DNA damage by UV radiation. We find that FRET efficiency is reduced in a dose-dependent manner, showing that the presence of UV photoproducts enhances spontaneous unwrapping of DNA from histones. Furthermore, this UV-induced shift in unwrapping dynamics is associated with increased restriction enzyme accessibility of histone-bound DNA after UV treatment. Surprisingly, the increased unwrapping dynamics is even observed in nucleosome core particles containing a single UV lesion at a specific site. These results highlight the potential for increased “intrinsic exposure” of nucleosome-associated DNA lesions in chromatin to repair proteins.  相似文献   

11.
CENP-A is a histone variant that replaces conventional H3 in nucleosomes of functional centromeres. We report here, from reconstitutions of CENP-A- and H3-containing nucleosomes on linear DNA fragments and the comparison of their electrophoretic mobility, that CENP-A induces some positioning of its own and some unwrapping at the entry-exit relative to canonical nucleosomes on both 5 S DNA and the alpha-satellite sequence on which it is normally loaded. This steady-state unwrapping was quantified to 7(+/-2) bp by nucleosome reconstitutions on a series of DNA minicircles, followed by their relaxation with topoisomerase I. The unwrapping was found to ease nucleosome invasion by exonuclease III, to hinder the binding of a linker histone, and to promote the release of an H2A-H2B dimer by nucleosome assembly protein 1 (NAP-1). The (CENP-A-H4)2 tetramer was also more readily destabilized with heparin than the (H3-H4)2 tetramer, suggesting that CENP-A has evolved to confer its nucleosome a specific ability to disassemble. This dual relative instability is proposed to facilitate the progressive clearance of CENP-A nucleosomes that assemble promiscuously in euchromatin, especially as is seen following CENP-A transient over-expression.  相似文献   

12.
We addressed the question of how nuclear histones and DNA interact and form a nucleosome structure by applying atomic force microscopy to an in vitro reconstituted chromatin system. The molecular images obtained by atomic force microscopy demonstrated that oligonucleosomes reconstituted with purified core histones and DNA yielded a 'beads on a string' structure with each nucleosome trapping 158 +/- 27 bp DNA. When dinucleosomes were assembled on a DNA fragment containing two tandem repeats of the positioning sequence of the Xenopus 5S RNA gene, two nucleosomes were located around each positioning sequence. The spacing of the nucleosomes fluctuated in the absence of salt and the nucleosomes were stabilized around the range of the positioning signals in the presence of 50 mM NaCl. An addition of histone H1 to the system resulted in a tight compaction of the dinucleosomal structure.  相似文献   

13.
The solubilization of nucleosomes and histone H1 with increasing concentrations of NaCl has been investigated in rat liver nuclei that had been digested with micrococcal nuclease under conditions that did not substantially alter morphological properties with respect to differences in the extent of chromatin condensation. The pattern of nucleosome and H1 solubilization was gradual and noncoordinate and at least three different types of nucleosome packing interactions could be distinguished from the pattern. A class of nucleosomes containing 13-- 17% of the DNA and comprising the chromatin structures most available for micrococcal nuclease attack was eluted by 0.2 M NaCl. This fraction was solubilized with an acid-soluble protein of apparent molecular weight of 20,000 daltons and no histone H1. It differed from the nucleosomes released at higher NaCl concentrations in content of nonhistone chromosomal proteins. 40--60% of the nucleosomes were released by 0.3 M NaCl with 30% of the total nuclear histone H1 bound. The remaining nucleosomes and H1 were solublized by 0.4 M or 0.6 M NaCl. H1 was not nucleosome bound at these ionic strengths, and these fractions contained, respectively, 1.5 and 1.8 times more H1 per nucleosome than the population released by 0.3 M NaCl. These fractions contained the DNA least available for micrococcal nuclease attach. The strikingly different macromolecular composition, availability for nuclease digestion, and strength of the packing interactions of the nucleosomes released by 0.2 M NaCl suggest that this population is involved in a special function.  相似文献   

14.
Cytosine methylation at the 5-carbon position is an essential DNA epigenetic mark in many eukaryotic organisms. Although countless structural and functional studies of cytosine methylation have been reported, our understanding of how it influences the nucleosome assembly, structure, and dynamics remains obscure. Here, we investigate the effects of cytosine methylation at CpG sites on nucleosome dynamics and stability. By applying long molecular dynamics simulations on several microsecond time scale, we generate extensive atomistic conformational ensembles of full nucleosomes. Our results reveal that methylation induces pronounced changes in geometry for both linker and nucleosomal DNA, leading to a more curved, under-twisted DNA, narrowing the adjacent minor grooves, and shifting the population equilibrium of sugar-phosphate backbone geometry. These DNA conformational changes are associated with a considerable enhancement of interactions between methylated DNA and the histone octamer, doubling the number of contacts at some key arginines. H2A and H3 tails play important roles in these interactions, especially for DNA methylated nucleosomes. This, in turn, prevents a spontaneous DNA unwrapping of 3–4 helical turns for the methylated nucleosome with truncated histone tails, otherwise observed in the unmethylated system on several microseconds time scale.  相似文献   

15.
真核生物染色质的基本结构组成单元是核小体,基因组DNA被压缩在染色质中,核小体的存在通常会抑制转录、复制、修复和重组等发生在DNA模板上的生物学过程。组蛋白变体H2A.Z可以调控染色质结构进而影响基因的转录过程,但其详细的调控机制仍未研究清楚。为了比较含有组蛋白变体H2A.Z的核小体和常规核小体在盐离子作用下的稳定性差异,本文采用Förster共振能量转移的方法检测氯化钠、氯化钾、氯化锰、氯化钙、氯化镁等离子对核小体的解聚影响。实验对Widom 601 DNA序列进行双荧光Cy3和Cy5标记,通过荧光信号值的变化来反映核小体的解聚变化。Förster共振能量转移检测结果显示:在氯化钠、氯化钾、氯化锰、氯化钙和氯化镁作用下,含有组蛋白变体H2A.Z的核小体解聚速度相比于常规核小体要慢,且氯化钙、氯化锰和氯化镁的影响更明显。电泳分析结果表明,在75℃条件下含有组蛋白变体H2A.Z的核小体的解聚速率明显低于常规核小体。采用荧光热漂移检测(fluorescence thermal shift analysis , FTS)进一步分析含有组蛋白变体H2A.Z核小体的稳定性,发现两类核小体的荧光信号均呈现2个明显的增长期,含有组蛋白变体H2A.Z核小体的第1个荧光信号增速期所对应的温度明显高于常规核小体,表明核小体中H2A.Z/H2B二聚体的解聚变性温度要高于常规的H2A/H2B二聚体,含有组蛋白变体H2A.Z核小体的热稳定性高。研究结果均表明,含有组蛋白变体H2A.Z的核小体的结构比常规核小体的结构稳定。  相似文献   

16.
Nucleosome dimers containing, on average, a single molecule of histone H5 have been isolated from chicken erythrocyte nuclei and the associated DNA fragments cloned and sequenced. The average sequence organization of at least one of the two nucleosomes in the dimers is highly asymmetric and suggests that the torsional, as well as the axial, flexibility of DNA is a determinant of nucleosome positioning. On average the nucleosome dimer is a polar structure containing linker DNA of variable lengths. The sequences associated with H5 containing nucleosomes and core particles are sufficiently different to indicate that removal of histone H5 (or H1) from chromatin may result in the migration of the histone octamer and a consequent exposure of sites for regulatory proteins.  相似文献   

17.
The nucleosome complex of DNA wrapped around a histone protein octamer organizes the genome of eukaryotes and regulates the access of protein factors to the DNA. We performed molecular dynamics simulations of the nucleosome in explicit water to study the dynamics of its histone-DNA interactions. A high-resolution histone-DNA interaction map was derived that revealed a five-nucleotide periodicity, in which the two DNA strands of the double helix made alternating contacts. On the 100-ns timescale, the histone tails mostly maintained their initial positions relative to the DNA, and the spontaneous unwrapping of DNA was limited to 1–2 basepairs. In steered molecular dynamics simulations, external forces were applied to the linker DNA to investigate the unwrapping pathway of the nucleosomal DNA. In comparison with a nucleosome without the unstructured N-terminal histone tails, the following findings were obtained: 1), Two main barriers during unwrapping were identified at DNA position ±70 and ±45 basepairs relative to the central DNA basepair at the dyad axis. 2), DNA interactions of the histone H3 N-terminus and the histone H2A C-terminus opposed the initiation of unwrapping. 3), The N-terminal tails of H2A, H2B, and H4 counteracted the unwrapping process at later stages and were essential determinants of nucleosome dynamics. Our detailed analysis of DNA-histone interactions revealed molecular mechanisms for modulating access to nucleosomal DNA via conformational rearrangements of its structure.  相似文献   

18.
Using small-angle neutron scattering (SANS), we have measured the salt-dependent static structure factor of di- and trinucleosomes from chicken erythrocytes and from COS-7 cells. We also determined the sedimentation coefficients of these dinucleosomes and dinucleosomes reconstituted on a 416-bp DNA containing two nucleosome positioning sequences of the 5S rDNA of Lytechinus variegatus at low and high salt concentrations. The internucleosomal distance d was calculated by simulation as well as Fourier back-transformation of the SANS curves and by hydrodynamic simulation of sedimentation coefficients. Nucleosome dimers from chicken erythrocyte chromatin show a decrease in d from approximately 220 A at 5 mM NaCl to 150 A at 100 mM NaCl. For dinucleosomes from COS-7 chromatin, d decreases from 180 A at 5 mM to 140 A at 100 mM NaCl concentration. Our measurements on trinucleosomes are compatible with a compaction through two different mechanisms, depending on the salt concentration. Between 0 and 20 mM NaCl, the internucleosomal distance between adjacent nucleosomes remains constant, whereas the angle of the DNA strands entering and leaving the central nucleosome decreases. Above 20 mM NaCl, the adjacent nucleosomes approach each other, similar to the compaction of dinucleosomes. The internucleosomal distance of 140-150 A at 100 mM NaCl is in agreement with distances measured by scanning force microscopy and electron microscopy on long chromatin filaments.  相似文献   

19.
20.
Zhang SB  Huang J  Zhao H  Zhang Y  Hou CH  Cheng XD  Jiang C  Li MQ  Hu J  Qian RL 《Cell research》2003,13(5):351-360
Using atomic force microscopy (AFM), the dynamic process of the in vitro nucleosome reconstitution followed by slow dilution from high salt to low salt was visualized. Data showed that the histone octamers were dissociatedfrom DNA at 1M NaC1. When the salt concentration was slowly reduced to 650 mM and 300 mM, the core histones bound to the naked DNA gradually. Once the salt concentration was reduced to 50 mM the classic “beads-on-a-string“ structure was clearly visualized. Furthermore, using the technique of the in vitro reconstitution of nucleosome,the mono- and di- nucleosomes were assembled in vitro with both HS2core (-10681 to -10970 bp) and NCR2 (-372to -194 bp) DNA sequences in the 5‘flanking sequence of human b-globin gene. Data revealed that HMG 1/2 and HMG 14/17 proteins binding to both DNA sequences are changeable following the assembly and disassembly of nucleosomes. We suggest that the changeable binding patterns of HMG 14/17 and HMG1/2 proteins with these regulatory elements may be critical in the process of nucleosome assembly, recruitment of chromatin-modifying activities, and the regulation of human b-globin gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号