首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Atherothrombosis can induce acute myocardial infarction and stroke by progressive stenosis of a blood vessel lumen to full occlusion. Since thrombus formation and embolization may be shear-dependent, we quantify the magnitude of shear rates in idealized severely stenotic coronary arteries (≥75% by diameter) using computational fluid dynamics to characterize the shear environment that may exist during atherothrombosis. Maximum shear rates in severe short stenoses were found to exceed 250,000 s?1 (9500 dynes/cm2) and can reach a peak value of 425,000 s?1 for a 98% stenosis. These high shear rates exceed typical shear used for in vitro blood flow experiments by an order of magnitude, indicating the need to examine thrombosis at very high shear rates. Pulsatility and stenosis eccentricity were found to have minor effects on the maximum wall shear rates in severe stenoses. In contrast, increases in the stenosis length reduced the maximum shear to 107,000 s?1 (98% stenosis), while surface roughness could increase focal wall shear rates to a value reaching 610,000 s?1 (90% stenosis). The “shear histories” of circulating platelets in these stenoses are far below reported activation thresholds. Platelets may be required to form bonds in 5 μs and resist shear forces reaching 8000 pN per platelet. Arterial thrombosis occurs in the face of pathological high shear stress, creating rapid and strong bonds without prior activation of circulating platelets.  相似文献   

2.
The aim of this study was to determine if athletes with a history of hamstring strain injury display lower levels of surface EMG (sEMG) activity and median power frequency in the previously injured hamstring muscle during maximal voluntary contractions. Recreational athletes were recruited, 13 with a history of unilateral hamstring strain injury and 15 without prior injury. All athletes undertook isokinetic dynamometry testing of the knee flexors and sEMG assessment of the biceps femoris long head (BF) and medial hamstrings (MHs) during concentric and eccentric contractions at ±180 and ±60° s?1. The knee flexors on the previously injured limb were weaker at all contraction speeds compared to the uninjured limb (+180° s?1 p = 0.0036; +60° s?1 p = 0.0013; ?60° s?1 p = 0.0007; ?180° s?1 p = 0.0007) whilst sEMG activity was only lower in the BF during eccentric contractions (?60° s?1 p = 0.0025; ?180° s?1 p = 0.0003). There were no between limb differences in MH sEMG activity or median power frequency from either BF or MH in the injured group. The uninjured group showed no between limb differences in any of the tested variables. Secondary analysis comparing the between limb difference in the injured and the uninjured groups, confirmed that previously injured hamstrings were mostly weaker (+180° s?1 p = 0.2208; +60° s?1 p = 0.0379; ?60° ?1 p = 0.0312; ?180° s?1 p = 0.0110) and that deficits in sEMG were confined to the BF during eccentric contractions (?60° s?1 p = 0.0542; ?180° s?1 p = 0.0473). Previously injured hamstrings were weaker and BF sEMG activity was lower than the contralateral uninjured hamstring. This has implications for hamstring strain injury prevention and rehabilitation which should consider altered neural function following hamstring strain injury.  相似文献   

3.
The concentration of lead in liver and kidneys of Wistar rats, fed with lead since fetal period in relation to their age and to a control group, was determined. A group of rats was exposed to lead acetate (n = 30) in drinking water and the other group was exposed to normal water (n = 20). Samples were collected from rats aging between 1 and 11 months and were analyzed by Energy Dispersive X-ray Fluorescence (EDXRF) without any chemical preparation. The EDXRF results were assessed by the PIXE (Proton Induced X-ray Emission) technique. The formaldehyde used to preserve the samples was also analyzed by ETAAS (Electro-Thermal Atomic Absorption Spectrometry) in order to verify if there was any loss of lead from the samples to the formaldehyde. We found that the loss was not significant (<2%).Concerning the mean values of the lead concentration measured in the contaminated soft tissues, in liver they range from 6 to 22 μg g?1, and in kidneys from 44 to 79 μg g?1. The control rats show, in general, values below the EDXRF detection limit (2 μg g?1). The ratio kidney/liver ranges from 2 to 10 and is strongly positively correlated with the age of the animals. A Spearman correlation matrix to investigate the correlation between elemental concentrations and the dependence of these concentrations with age showed that there is a strong positive correlation with age for lead in the liver but not in the kidney. The correlation matrix showed also that the concentration of lead in these two soft tissues is not correlated. The lead accumulation in liver is made by different plateaus that strongly decrease with age. It was verified the existence of two levels of accumulation in kidney, not very highlighted, which might be indicative of a maximum accumulation level for lead in kidney.  相似文献   

4.
The impact of flow velocity on initial ciliate colonization dynamics on surfaces were studied in the third order Ilm stream (Thuringia, Germany) at a slow flowing site (0.09 m s?1) and two faster flowing sites (0.31 m s?1) and in flow channels at 0.05, 0.4, and 0.8 m s?1. At the slow flowing stream site, surfaces were rapidly colonized by ciliates with up to 60 cells cm?2 after 24 h. In flow channels, the majority of suspended ciliates and inorganic matter accumulated at the surface within 4.5 h at 0.05 m s?1. At 0.4 m s?1 the increase in ciliate abundance in the biofilm was highest between 72 and 168 h at about 3 cells cm?2 h?1. Faster flow velocities were tolerated by vagile flattened ciliates that live in close contact to the surface. Vagile flattened and round filter feeders preferred biofilms at slow flow velocities. Addition of inorganic particles (0, 0.6, and 7.3 mg cm?2) did not affect ciliate abundance in flow channel biofilms, but small ciliate species dominated and number of species was lowest (16 species cm?2) in biofilms at high sediment content. Although different morphotypes dominated the communities at contrasting flow velocities, all functional groups contributed to initial biofilm communities implementing all trophic links within the microbial loop.  相似文献   

5.
Biomechanical properties of nerves were investigated using the quasi-linear viscoelastic model. An improved parameter estimation technique based on fast convolution was developed and tested in sciatic nerves of normal and diabetic rats. In situ dynamic compression response of sciatic nerves was obtained by a modified custom-designed compression system. Six normal and five diabetic neuropathic Wistar rats were used. The model derived from the high strain rate (0.1 s?1) data could predict the responses of lower strain rates (0.05 and 0.01 s?1) satisfactorily. The computation time was cut down 49.0% by using the newly developed technique without increasing the root-mean-square error. The percentage of stress relaxation of the diabetic and normal rats, calculated directly from the experimental data, was not significantly different (51.03±1.96% vs. 55.97±5.89%, respectively; p=0.247). After model fitting, compared with the QLV parameters of normal nerves, the smaller parameter C for diabetic nerves (0.27±0.06 vs. 0.20±0.02, p < 0.05) indicated that diabetic nerves had a smaller amplitude of viscous response (stress relaxation). The larger parameter τ2 of diabetic nerves (199±153 s vs. 519±337 s, p<0.05) implied that diabetic nerves needed a longer relaxation period to reach equilibrium.  相似文献   

6.
The study had three purposes: to verify a hypothesized speed decrease during the 15 km cross-country sit skiing (CCSS) race; documenting this possible fatigue effect (speed decrease), to evaluate changes among the four laps in kinematics parameters (cycle speed, cycle duration, cycle length, duty cycle (percentage ratio between pushing and total cycle duration), pole inclination, trunk inclination and shoulder–hand distance); to compare the kinematics parameters in cross-country sit skiers of different level. Video recordings were carried out during the 2006 Turin Winter Paralympic Games with two conventional digital video-cameras positioned on a flat and an uphill (8.3°) track, respectively. Better performing skiers (G1) had significantly higher speeds than worse performers (G2) both in the flat (6.54 ± 0.13 vs. 5.89 ± 0.50 m s?1 and 5.55 ± 0.14 vs. 4.62 ± 0.22 m s?1 in the first and last lap, respectively) and in the uphill track (3.67 ± 0.45 vs. 3.05 ± 0.59 m s?1 and 3.20 ± 0.36 vs. 2.26 ± 0.36 m s?1 in the first and last lap, respectively). The G1 athletes were able to maintain the high-speed better than the G2 over the entire race. Significant differences in cycle length and duty cycle between groups would be justified by the higher physical fitness of G1 skiers.  相似文献   

7.
The objective of this study was to investigate nitrification rates in algal–bacterial biofilms of waste stabilization ponds (WSP) under different conditions of light, oxygen and pH. Biofilms were grown on wooden plates of 6.0 cm by 8.0 cm by 0.4 cm in a PVC tray continuously fed with synthetic wastewater with initial NH4-N and Chemical Oxygen Demand (COD) concentrations of 40 mg l?1 and 100 mg l?1, respectively, under light intensity of 85–95 μE m?2 s?1. Batch activity tests were carried out by exposure of the plates to light conditions as above (to simulate day time), dim light of 1.8–2.2 μE m?2 s?1 (to simulate reduced light as in deeper locations in WSP) and dark conditions (to simulate night time). Dissolved oxygen (DO) concentration and pH were controlled. At some experiments, both parameters were kept constant, and at others they were left to vary as in WSP. Results show biofilm nitrification rates of 945–1817 mg-N m?2 d?1 and 1124–1615 mg-N m?2 d?1 for light and dark experiments. When the minimum DO was 4.1 mg l?1, the biofilm nitrification rates under light and dark conditions did not differ significantly at 95% confidence. When the minimum DO in the dim light experiment was 3.2 mg l?1, the nitrification rates under light and dim light conditions were 945 mg-N m?2 d?1 and 563 mg-N m?2 d?1 and these significantly differed. Further decrease of DO to 1.1 mg l?1 under dark conditions resulted in more decrease of the nitrification rates to 156 mg-N m?2 d?1. It therefore seems that under these experimental conditions, biofilm nitrification rates are significantly reduced at a certain point when bulk water DO is between 3.2 mg l?1 and 4.1 mg l?1. As long as bulk water DO under dark is high, light is not important in influencing the process of nitrification.  相似文献   

8.
The synthesis and characterization of gold nanoparticles coated with Gd-chelate (Au@GdL), where L is a conjugate of DTPA and cysteine, is described. These particles are obtained by the replacement of citrate from the gold nanoparticle surfaces with gadolinium chelate (GdL). The average size of Au@GdL is 14 nm with a loading of GdL reaching up to 2.9 × 103 per particles, and they demonstrate very high R1 relaxivity (~105 mM?1 s?1) as well as X-ray attenuation. The R1 relaxivity per [Gd] is 17.9 mM?1 s?1. The present system also exhibits macrophage-specific property, as demonstrated by histological and TEM images as well as CT and MR, rendering itself as a new class of T1 multimodal CT/MR contrast agent.  相似文献   

9.
Running exercises are frequently related to muscular injuries, which may be a result of muscular imbalance. The present study aimed to verify the effects of heavy-intensity continuous running exercise on the functional and conventional hamstrings:quadriceps ratios, and also in the knee flexors and extensors EMG activity in active non-athletic individuals. Sixteen active males performed maximal isokinetic concentric and eccentric knee flexions and extensions at 60° s?1 and 180° s?1. In another session, the same procedure was conducted after a continuous running exercise at 95% onset of blood lactate accumulation. Torque and electromyographic ratios were calculated from peak torque and integrated electromyographic activity (knee flexor and extensors). Creatine kinase was measured before and 24 h after running exercise. Eccentric torque (knee flexion and extension) decreased significantly after running only at 180° s?1 (p < 0.05). No differences were found for the conventional torque ratios (p > 0.05), however, the functional torque ratios at 180° s?1 decreased significantly after running (p < 0.05). No effects on the electromyographic activity and electromyographic ratios were found (p > 0.05). Creatine kinase increased slightly 24 h after running (p < 0.05). Heavy-intensity continuous running exercise decreased knee flexor and extensor eccentric torque, and functional torque ratios under fast velocities (180° s?1), probably as result of peripheral fatigue.  相似文献   

10.
A highly chitinolytic strain Penicillium ochrochloron MTCC 517 was procured from MTCC, Chandigarh, India. Culture medium supplemented with 1% chitin was found to be suitable for maximum production of chitinase. Purification of extracellular chitinase was done from the culture medium by organic solvent precipitation and DEAE-cellulose column chromatography. The chitinase was purified 6.92-fold with 29.9% yield. Molecular mass of purified chitinase was found to be 64 kDa by SDS-PAGE. The chitinase showed optimum temperature 40 °C and pH 7.0. The enzyme activity was completely inhibited by Hg2+, Zn2+, K+ and NH4+. The enzyme kinetic study of purified chitinase revealed the following characteristics, such as apparent Km 1.3 mg ml?1, Vmax 5.523 × 10?5 moles l?1 min?1 and Kcat 2.37 s?1 and catalytic efficiency 1.82 s?1 M?1. The enzyme hydrolyzed colloidal chitin, glycol chitin, chitosan, glycol chitosan, N,N′-diacetylchitobiose, p-nitrophenyl N-acetyl-β-d-glucosaminide and 4-methylumbelliferyl N-acetyl-β-d-glucosaminide. The chitinase of P. ochrochloron MTCC 517 is an exoenzyme, which gives N-acetylglucosamine as the main hydrolyzate after hydrolysis of colloidal chitin. Protoplasts with high regeneration capacity were obtained from Aspergillus niger using chitinase from P. ochrochloron MTCC 517. Since it also showed antifungal activity, P. ochrochloron MTCC 517 seems to be a promising biocontrol agent.  相似文献   

11.
Light is one of the most important environmental signals regulating physiological processes of many microorganisms. However, very few studies have been reported on the qualitative or quantitative effects of light on control of postharvest spoilage using antagonistic bacteria. In this study, we investigated the effects of white, red, green, and blue light at photon flux densities of 40, 240, and 360 μmol m?2 s?1 on Bacillus amyloliquefaciens JBC36 (JBC36), which has been reported as a promising candidate for biocontrol of green and blue mold on mandarin fruit. With the exception of blue light at 240 and 360 μmol m?2 s?1, light generally stimulated growth of JBC36 compared to the controls grown in the dark. Red light increased swarming motility irrespective of intensity and significantly enhanced biofilm formation at 240 μmol m?2 s?1. Production of antifungal metabolites and antifungal activity on Penicillium digitatum was also affected by light quality. Interestingly, antifungal activity was significantly increased when JBC36 and P. digitatum was co-incubated under red and green light at an intensity of 240 μmol m?2 s?1. We also demonstrated that the quality of light resulted in changes in colonization of JBC36 on mandarin fruit and control of green mold. In particular, red light increased the population level on mandarin fruit and biocontrol efficacy against green mold. These results represent the first report on the effect of light quality on an antagonistic bacterium for the control of postharvest spoilage. We believe that an improved understanding of the JBC36 response to light quality may help in the development of strategies to increase biocontrol efficacy of postharvest spoilage.  相似文献   

12.
PurposeTo measure phrenic nerve conduction velocity in the neck in humans.ScopeWe studied 15 healthy subjects (9 men, 32.4 ± 6.7). We performed bipolar electrical phrenic stimulation in the neck, from a distal and a proximal stimulation site, and recorded diaphragm electromyographic responses on the surface of the chest. The ratio of the between-site distance to the latency difference provided phrenic velocities. Ulnar motor velocity was assessed similarly. In addition, five homogeneous patients with Charcot-Marie-Tooth disease type 1A (CMT1A) were studied for validation purposes. We obtained diaphragmatic responses from the two stimulation sites in all cases. The distal latencies (anterior axillary line recording) were 6.51 ± 0.63 ms (right) and 6.13 ± 0.64 ms (left). The minimal between site distance was 39 mm. Phrenic motor velocity was 55.2 ± 6.3 m s?1 (right) and 56.3 ± 7.2 m s?1 (left). In CMT1A, phrenic velocities were 17.1 ± 8.1 m s?1 (from 7 to 32 m s?1) and were similar to ulnar and median velocities.ConclusionsPhrenic nerve velocities can be estimated in humans and compare with upper limb motor conduction velocities. This should refine the investigation of phrenic function in peripheral neuropathies.  相似文献   

13.
The phospholipid (PL) fatty acyl chain (FA) composition (mol%) was determined in the kidney, liver, lung and brain of 8 avian species ranging in body mass from 150 g (Japanese quail, Coturnix coturnix japonica) to 19 kg (turkey, Meleagris gallopavo). In all organs except the brain, docosahexaenoic acid (C22:6 n3, DHA) was found to show a negative allometric scaling (allometric exponent: B = ? 0.18; ? 0.20 and ? 0.24, for kidney, liver and lung, respectively). With minor inter-organ differences, smaller birds had more n3 FAs and longer FA chains in the renal, hepatic and pulmonary PLs. Comparing our results with literature data on avian skeletal muscle, liver mitochondria and kidney microsomes and divergent mammalian tissues, the present findings in the kidney, liver and lung PLs seem to be a part of a general relationship termed “membranes as metabolic pacemakers”. Marked negative allometric scaling was found furthermore for the tissue malondialdehyde concentrations in all organs except the brain (B = ? 0.17; ? 0.13 and ? 0.05, respectively). In the liver and kidney a strong correlation was found between the tissue MDA and DHA levels, expressing the role of DHA in shaping the allometric properties of membrane lipids.  相似文献   

14.
We investigated the effects of curcumin, the principal active compound of turmeric, on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using the voltage-clamp technique. Curcumin reduced the Kv current in a dose-dependent manner with an apparent Kd value of 1.07 ± 0.03 μM. Although curcumin did not alter the kinetics of Kv current activation, it predominantly accelerated the decay rate of channel inactivation. The association and dissociation rate constants of curcumin were 1.35 ± 0.05 μM?1 s?1 and 1.47 ± 0.17 s?1, respectively. Curcumin did not alter the steady-state activation or inactivation curves. Application of train pulses (1 or 2 Hz) increased curcumin-induced blockade of the Kv current, and the recovery time constant also increased in the presence of curcumin suggesting, that the inhibitory action of Kv currents by curcumin was use-dependent. From these results, we concluded that curcumin inhibited vascular Kv current in a state-, time-, and use-dependent manner.  相似文献   

15.
Meriem Alami  Dusan Lazar  Beverley R. Green 《BBA》2012,1817(9):1557-1564
Aureococcus anophagefferens is a picoplanktonic microalga that is very well adapted to growth at low nutrient and low light levels, causing devastating blooms (“brown tides”) in estuarine waters. To study the factors involved in long-term acclimation to different light intensities, cells were acclimated for a number of generations to growth under low light (20 μmol photons m? 2 s? 1), medium light (60 or 90 μmol photons m? 2 s? 1) and high light (200 μmol photons m? 2 s? 1), and were analyzed for their contents of xanthophyll cycle carotenoids (the D pool), fucoxanthin and its derivatives (the F pool), Chls c2 and c3, and fucoxanthin Chl a/c polypeptides (FCPs). Higher growth light intensities resulted in increased steady state levels of both diadinoxanthin and diatoxanthin. However, it also resulted in the conversion of a significant fraction of fucoxanthin to 19′-butanoyloxyfucoxanthin without a change in the total F pool. The increase in 19′-butanoyloxyfucoxanthin was paralleled by a decrease in the effective antenna size, determined from the slope of the change in F0 as a function of increasing light intensity. Transfer of acclimated cultures to a higher light intensity showed that the conversion of fucoxanthin to its derivative was a relatively slow process (time-frame of hours). We suggest the replacement of fucoxanthin with the bulkier 19′-butanoyloxyfucoxanthin results in a decrease in the light-harvesting efficiency of the FCP antenna and is part of the long-term acclimative response to growth at higher light intensities.  相似文献   

16.
The objective of this study is to identify the dynamic material properties of human passive muscle tissues for the strain rates relevant to automobile crashes. A novel methodology involving genetic algorithm (GA) and finite element method is implemented to estimate the material parameters by inverse mapping the impact test data. Isolated unconfined impact tests for average strain rates ranging from 136 s−1 to 262 s−1 are performed on muscle tissues. Passive muscle tissues are modelled as isotropic, linear and viscoelastic material using three-element Zener model available in PAMCRASHTM explicit finite element software. In the GA based identification process, fitness values are calculated by comparing the estimated finite element forces with the measured experimental forces. Linear viscoelastic material parameters (bulk modulus, short term shear modulus and long term shear modulus) are thus identified at strain rates 136 s−1, 183 s−1 and 262 s−1 for modelling muscles. Extracted optimal parameters from this study are comparable with reported parameters in literature. Bulk modulus and short term shear modulus are found to be more influential in predicting the stress-strain response than long term shear modulus for the considered strain rates. Variations within the set of parameters identified at different strain rates indicate the need for new or improved material model, which is capable of capturing the strain rate dependency of passive muscle response with single set of material parameters for wide range of strain rates.  相似文献   

17.
We report for the first time kinetic and thermodynamic properties of soluble acid invertase (SAI) of sugarcane (Saccharum officinarum L.) salt sensitive local cultivar CP 77-400 (CP-77). The SAI was purified to apparent homogeneity on FPLC system. The crude enzyme was about 13 fold purified and recovery of SAI was 35%. The invertase was monomeric in nature and its native molecular mass on gel filtration and subunit mass on SDS-PAGE was 28 kDa. SAI was highly acidic having an optimum pH lower than 2. The acidic limb was missing. Proton transfer (donation and receiving) during catalysis was controlled by the basic limb having a pKa of 2.4. Carboxyl groups were involved in proton transfer during catalysis. The kinetic constants for sucrose hydrolysis by SAI were determined to be: km = 55 mg ml?1, kcat = 21 s?1, kcat/km = 0.38, while the thermodynamic parameters were: ΔH* = 52.6 kJ mol?1, ΔG* = 71.2 kJ mol?1, ΔS* = ?57 J mol?1 K?1, ΔG*E–S = 10.8 kJ mol?1 and ΔG*E–T = 2.6 kJ mol?1. The kinetics and thermodynamics of irreversible thermal denaturation at various temperatures 53–63 °C were also determined. The half -life of SAI at 53 and 63 °C was 112 and 10 min, respectively. At 55 °C, surprisingly the half -life increased to twice that at 53 °C. ΔG*, ΔH* and ΔS* of irreversible thermal stability of SAI at 55 °C were 107.7 kJ mol?1, 276.04 kJ mol?1 and 513 J mol?1K?1, respectively.  相似文献   

18.
The conversion of glycerol to 1,3-propanediol (1,3-PD) using Klebsiella pneumoniae CGMCC 1.6366 under aerobic condition was scaled up from scale 5 to 50,000 l in series. Several parameters including power input P/Vl, agitation rate n, impeller tip speed nD, superficial gas velocity us, and Res were investigated as the criteria for scaling up. Impeller tip speed was chosen as the main criterion. It was also noticed less aeration was favored in that less electron will be shunted to electron transfer chain. The fermentation in 500 l bioreactor produced 66.8 g 1,3-PD with the yield of 0.55 mol mol?1 at agitation rate and aeration of 130 rpm and 0.14 vvm air flow. Using these empirically obtained control concepts we successfully scaled up in 500–50,000 l pilot-scale reactors. The final 1,3-PD concentrations in 50,000 l bioreactor amounted to 63.3 g l?1 with the yield of 0.5 mol mol?1.  相似文献   

19.
The West Nile Virus (WNV) has been a worldwide epidemic since the early 1990s. Currently there are no therapeutic treatments for WNV infections. One particular avenue of treatment is inhibition of the NS2B-NS3 protease, an enzyme that is crucial for WNV replication. In our effort to increase the number of NS2B-NS3 protease inhibitors, we report a novel FRET-based high throughput assay for the discovery of WNV NS2B-NS3 protease inhibitors. For this assay, a FRET-based peptide substrate was synthesized and kinetically characterized with the NS2B-NS3 protease. The new substrate exhibits a Km of 3.35 ± 0.31 μM, a kcat of 0.0717 ± 0.0016 s?1 and a kcat/Km of 21,400 ± 2000 M?1 s?1.  相似文献   

20.
Thermoimaging – a highly sensitive and non-invasive method of temperature measurement – was applied to explore the role of changing photosynthetic efficiency in light-induced heating of tobacco (Nicotiana tabacum cv. Samsun) leaves. In the absence of evaporative cooling through the stomata, which was achieved by covering leaves with Vaseline, illumination with 50–1400 μM photons m?2 s?1 intensity of photosynthetically active radiation resulted in ≈1–5 °C leaf temperature increase in about 2 min. The heating effect showed a non-linear correlation with the extent of non-photochemical quenching (NPQ) resulting in higher leaf temperatures at higher NPQ values. When leaves were adapted to excessive irradiance (1300 μM photons m?2 s?1 for 6 h), which resulted in reduction of photosynthetic efficiency and amplification of NPQ the light-induced heating effect was enhanced. The experimental results have been explained on the basis of a simple theoretical model characterizing the balance of energy fluxes in leaves in relation to the efficiency of photosystem II photochemistry and non-photochemical quenching. The role of alternative energy dissipation pathways outside of PSII in the phenomenon of light-induced leaf heating is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号