首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
目的探讨慢性阻塞性肺疾病(COPD)患者继发肺部真菌感染的临床特点。方法回顾性分析2008年1月到2010年12月安徽医科大学第一附属医院收治的COPD继发肺部真菌感染患者病例,并对其耐药情况进行比较。结果本组199例COPD患者检出白色念珠菌137例(68.84%),光滑念珠菌32例(16.08%),热带念珠菌17例(8.54%),克柔念珠菌9例(4.52%),毛霉菌3例(1.51%),清酒假丝酵母菌1例(0.50%);白色念珠菌检出率有下降趋势,热带念珠菌有上升趋势;196例真菌对伏立康唑、氟康唑、两性霉素B、伊曲康唑、氟胞嘧啶的耐药率分别为3.6%、5.1%、1.0%、8.7%和0;2008年至2010年白色念珠菌和光滑念珠菌耐药率变化差异无统计学意义。结论 COPD患者继发肺部真菌感染病原菌仍以白色念珠菌为主,其次为光滑念珠菌和热带念珠菌;白色念珠菌和光滑念珠菌耐药率无明显改变。  相似文献   

3.
BackgroundChronic obstructive pulmonary disease (COPD) is a complex disorder with unexplained heritability. Interactions of genetic and environmental factors are thought to be crucial in COPD. So, we aim to examine interactions of the endothelial nitric oxide synthase (eNOS) and angiotensin converting enzyme (ACE) genes and cigarette smoking in COPD.MethodsThe eNOS G 894T and ACE ID variants were analyzed in 122 COPD patients and 200 controls from Serbia. The effect of the variants on COPD was assessed by logistic regression. Interactions between eNOS, ACE and cigarette smoking in COPD were evaluated using a case-control model. Interaction between the genes was analyzed in silico.ResultsNo effect of the eNOS G 894T and ACE ID variants on COPD was found in our study. Gene-gene interaction between the eN OS T T and A CE D was identified (p=0.033) in COPD. The interaction is realized within the complex network of biochemical pathways. Gene-environment interactions between the eNOS T and cigarette smoking (p=0.013), and the ACE II and cigarette smoking (p=0.009) were detected in COPD in our study.ConclusionsThis is the first research to reveal interactions of the eNOS and ACE genes and cigarette smoking in COPD progressing our understanding of COPD heritability and contributing to the development of appropriate treatments  相似文献   

4.
The genetic component was suggested to contribute to the development of chronic obstructive pulmonary disease (COPD), a major and growing public health burden. The present review aims to characterize the evidence that gene polymorphisms contribute to the aetiology of COPD and related traits, and explore the potential relationship between certain gene polymorphisms and COPD susceptibility, severity, lung function, phenotypes, or drug effects, even though limited results from related studies lacked consistency. Most of these studies were association studies, rather than confirmatory studies. More large‐sized and strictly controlled studies are needed to prove the relationship between gene polymorphisms and the reviewed traits. More importantly, prospective confirmatory studies beyond initial association studies will be necessary to evaluate true relationships between gene polymorphisms and COPD and help individualized treatment for patients with COPD.  相似文献   

5.
Chronic obstructive pulmonary disease (COPD) is a major global health problem and is predicted to become the third most common cause of death by 2020. Apart from the important preventive steps of smoking cessation, there are no other specific treatments for COPD that are as effective in reversing the condition, and therefore there is a need to understand the pathophysiological mechanisms that could lead to new therapeutic strategies. The development of experimental models will help to dissect these mechanisms at the cellular and molecular level. COPD is a disease characterized by progressive airflow obstruction of the peripheral airways, associated with lung inflammation, emphysema and mucus hypersecretion. Different approaches to mimic COPD have been developed but are limited in comparison to models of allergic asthma. COPD models usually do not mimic the major features of human COPD and are commonly based on the induction of COPD-like lesions in the lungs and airways using noxious inhalants such as tobacco smoke, nitrogen dioxide, or sulfur dioxide. Depending on the duration and intensity of exposure, these noxious stimuli induce signs of chronic inflammation and airway remodelling. Emphysema can be achieved by combining such exposure with instillation of tissue-degrading enzymes. Other approaches are based on genetically-targeted mice which develop COPD-like lesions with emphysema, and such mice provide deep insights into pathophysiological mechanisms. Future approaches should aim to mimic irreversible airflow obstruction, associated with cough and sputum production, with the possibility of inducing exacerbations.  相似文献   

6.
Proteinases in chronic obstructive pulmonary disease   总被引:10,自引:0,他引:10  
Chronic obstructive pulmonary disease (COPD) is a major health problem worldwide, and we have little specific therapy to offer these patients. One potential strategy to limit loss of lung function in COPD would be to inhibit matrix-degrading proteinases. Several serine proteinases and matrix metalloproteinases are expressed in association with COPD in humans. Application of gene-targeted macrophage elastase and neutrophil elastase to a mouse model of cigarette-smoke-induced emphysema has uncovered roles for these proteinases in airspace enlargement, and has identified many interactions between these proteolytic systems.  相似文献   

7.
ObjectiveTo observe the differentiation of macrophages in lung tissue and alveolar lavage fluid of mice with severe pulmonary infection and the changes after intervention with ceftriaxone and ulinastatin, and to explore the pathogenesis of severe pulmonary infection under immunosuppressive state and the intervention effect of two drugs.Methods40 male Balb/c mice are randomly divided into normal group, model group, ulinastatin group, and ceftriaxone group with 10 mice in each group. Mice models of acute lung injury with immunodeficiency are established by methylprednisolone and endotoxin, and then treated with ulinastatin and ceftriaxone. Respiratory frequencies of mice in each group are measured at 3 h and 6 h after drug use through trachea, and then the mice are anaesthetized with uratan and killed 6 h after drug use. The number of alveolar macrophages and neutrophils in alveolar lavage fluid is collected and detected, and the pathological changes are observed. The positive expression of CD163 in lung tissue is detected by IHC (immunohistochemistry), and real-time quantitative PCR (Polymerase Chain Reaction) is used to detect the expression of Ml and M2 markers in bronchoalveolar lavage fluid (BALF).ResultCompared with the normal group, the mice in the model group breathed shallowly and quickly, occasionally nodded breathing, respiratory distress, and respiratory rate increased. Compared with the model group, the mice in the ulinastatin group and ceftriaxone group breathed slowly, occasionally have shortness of breath, smooth breathing, and slow breathing rate, and the mice in ulinastatin group breathe more smoothly. The number of macrophages and neutrophils in BALF of model group is higher than that of normal group. The number of macrophages and neutrophils in ulinastatin group and ceftriaxone group is lower than that of model group and the difference is statistically significant, and the number of macrophages and neutrophils in ulinastatin group is relatively less than that in model group.ConclusionIn the early stage of severe pulmonary infection under immunosuppressive state, the organism is in the CARS (Compensatory Anti-inflammatory Response Syndrome) stage; M1 macrophages had immune paralysis and M2 macrophages are abnormally activated. Compared with ceftriaxone, ulinastatin can alleviate lung injury more effectively and protect the lung of mice with acute lung injury. The protective mechanism of ulinastatin on lung of mice infected with immunocompromised endotoxin may be through inhibiting M1 macrophages and regulating non-specific immune function.  相似文献   

8.

Background

To identify patients with chronic obstructive pulmonary disease (COPD) who are susceptible to frequent exacerbations is important. Although periodontitis aggravated by poor oral hygiene might increase the risk of lower respiratory tract infection, the relationship between periodontitis and COPD exacerbations remains unknown. This prospective cohort study investigates the relationship between periodontitis-related antibody and exacerbation frequency over a one-year period.

Methods

We assessed an IgG antibody titer against Porphyromonas gingivalis, which is a major pathogen of periodontitis, and then prospectively followed up 93 individuals over one year to detect exacerbations.

Results

The numbers of exacerbations and the rate of individuals with frequent exacerbations (at least two per year) were significantly lower in patients with higher IgG titer than those with normal IgG titer (0.8 vs. 1.2 per year, p  = 0.045 and 14.3 vs. 38.6%, p  = 0.009, respectively). Multivariate logistic regression analysis showed that being normal-IgG titer for periodontitis-related antibody significantly increased the risk of frequent exacerbations (relative risk, 5.27, 95% confidence interval, 1.30–25.7; p  = 0.019) after adjusting for other possible confounders, such as a history of exacerbations in the past year, disease severity, COPD medication and smoking status.

Conclusions

Normal-IgG titer for periodontitis-related antibody can be an independent predictor of frequent exacerbations. Measuring periodontitis-related antibody titers might be useful to identify patients with susceptibility to frequent exacerbations so that an aggressive prevention strategy can be designed.  相似文献   

9.
慢性阻塞性肺疾病(COPD)是一种慢性炎症性呼吸道疾病,其特征是持续气流受限和肺部炎症反应异常。气道内微生物是COPD恶化的主要原因,并且使气道中的炎症反应持续存在而促成COPD进展,这导致肺功能的进一步损害和巨大的医疗保健成本。近年来随着高通量测序技术的发展和运用,人类肺微生物组的研究逐渐成为热点。大量研究表明,COPD患者肺内存在明显不同的微生物群落,而且与COPD的疾病严重程度及恶化状态有关。肺微生物组学的研究有助于人们更全面地理解COPD患者肺内的微生态系统及其在该病恶化和进展中的作用。本文就肺微生物组在COPD中的研究进展作一综述,并探讨未来的研究前景。  相似文献   

10.
Chronic obstructive pulmonary disease (COPD) is a significant cause of global morbidity and mortality. Previous studies have shown that COPD aggregates in families, suggesting a genetic predisposition to airflow obstruction. Many candidate genes have been assessed, but the data are often conflicting. We review the genetic factors that predispose smokers to COPD and highlight the future role of genomic scans in identifying novel susceptibility genes.  相似文献   

11.
Asthma and chronic obstructive pulmonary disease (COPD) are both obstructive airway diseases that involve chronic inflammation of the respiratory tract, but the type of inflammation is markedly different between these diseases, with different patterns of inflammatory cells and mediators being involved. As described in this Review, these inflammatory profiles are largely determined by the involvement of different immune cells, which orchestrate the recruitment and activation of inflammatory cells that drive the distinct patterns of structural changes in these diseases. However, it is now becoming clear that the distinction between these diseases becomes blurred in patients with severe asthma, in asthmatic subjects who smoke and during acute exacerbations. This has important implications for the development of new therapies.  相似文献   

12.
目的探讨慢性阻塞性肺疾病(Chronic obstructive pulmonary diseases,COPD)患者继发真菌性医院肺炎的病原菌分布及耐药情况。方法回顾性分析2011年1月至2012年12月间31例COPD患者继发肺部真菌感染的情况。结果 31例COPD继发肺部真菌感染的患者送检标本中共检到34株真菌,以曲霉菌属居首位,占29.41%,其次为白色假丝酵母菌,占26.41%。7种常用抗真菌药物对真菌显示有不同的抗菌活性,尤以伊曲康唑、氟康唑、5-氟胞嘧啶为佳。结论 COPD患者继发肺部真菌感染多为曲霉菌属和白色假丝酵母菌。临床疑为COPD患者继发肺部真菌感染病例须及时采集标本培养,以早期发现病原性真菌和选择有效药物治疗。  相似文献   

13.
14.
Chronic obstructive pulmonary disease (COPD) is a complex disease with both environmental and genetic determinants, the most important of which is cigarette smoking. There is marked heterogeneity in the development of COPD among persons with similar cigarette smoking histories, which is likely partially explained by genetic variation. Genomic approaches such as genomewide association studies and gene expression studies have been used to discover genes and molecular pathways involved in COPD pathogenesis; however, these “first generation” omics studies have limitations. Integrative genomic studies are emerging which can combine genomic datasets to further examine the molecular underpinnings of COPD. Future research in COPD genetics will likely use network-based approaches to integrate multiple genomic data types in order to model the complex molecular interactions involved in COPD pathogenesis. This article reviews the genomic research to date and offers a vision for the future of integrative genomic research in COPD.  相似文献   

15.
Plasma lipoprotein fractions have been assessed in 29 patients with chronic obstructive pulmonary disease (COPD), and compared with non-COPD subjects. Triglycerides were significantly lower in COPD females only, the other parameters being almost identical. Thus, the atherosclerosis index of plasma lipoproteins in COPD did not differ almost at all from that of non-COPD subjects, demonstrating that the low prevalence of angina and/or myocardial infarction in COPD patients is not only a consequence of reduced coronary atherosclerosis.  相似文献   

16.
17.
18.
The mechanisms involved in the genesis of chronic obstructive pulmonary disease (COPD) are poorly defined. This area is complicated and difficult to model because COPD consists of four separate anatomic lesions (emphysema, small airway remodeling, pulmonary hypertension, and chronic bronchitis) and a functional lesion, acute exacerbation; moreover, the disease in humans develops over decades. This review discusses the various animal models that have been used to attempt to recreate human COPD and the advantages and disadvantages of each. None of the models reproduces the exact changes seen in humans, but cigarette smoke-induced disease appears to come the closest, and genetically modified animals also, in some instances, shed light on processes that appear to play a role.  相似文献   

19.
Chronic obstructive pulmonary disease (COPD) is a significant cause of global morbidity and mortality. Previous studies have shown that COPD aggregates in families, suggesting a genetic predisposition to airflow obstruction. Many candidate genes have been assessed, but the data are often conflicting. We review the genetic factors that predispose smokers to COPD and highlight the future role of genomic scans in identifying novel susceptibility genes.  相似文献   

20.
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with progressive airflow obstruction. Tobacco smoking is the main risk factor worldwide. In contrast to asthma, anti-inflammatory therapies are rather ineffective in improving chronic symptoms and reducing inflammation, lung function decline, and airway remodeling. Specific drugs that are directed against the remodeling and chronic inflammation, thereby preventing lung tissue damage and progressive lung function decline, must be developed. Experimental models and expression studies suggest that anti-vascular endothelial growth factor (VEGF) receptor strategies may be of use in patients with emphysema, whereas anti-HER1-directed strategies may be more useful in patients with pulmonary mucus hypersecretion, as seen in chronic bronchitis and asthma. Growth factors and cytokines including VEGF, fibroblast growth factors, transforming growth factor-β, tumor necrosis factor-α, CXCL1, CXCL8, and CCL2, and signal transduction proteins such as mitogen-activated protein kinase p38 and nuclear factor-⦊B, seem to be important pathogenetic molecules in COPD. Specific antagonists for these proteins may be effective for different inflammatory diseases. However, their efficacy for COPD therapy has not yet been demonstrated. Finally, other drugs such as retinoic acids may provide restoration of lung tissue structure. Such approaches, however, must await the first results of growth factor or cytokine antagonist therapy in chronic lung diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号