共查询到20条相似文献,搜索用时 16 毫秒
1.
Chesler NC Thompson-Figueroa J Millburne K 《Journal of biomechanical engineering》2004,126(2):309-314
BACKGROUND: Robust techniques for characterizing the biomechanical properties of mouse pulmonary arteries will permit exciting gene-level hypotheses regarding pulmonary vascular disease to be tested in genetically engineered animals. In this paper, we present the first measurements of the biomechanical properties of mouse pulmonary arteries. METHOD OF APPROACH: In an isolated vessel perfusion system, transmural pressure, internal diameter and wall thickness were measured during inflation and deflation of mouse pulmonary arteries over low (5-40 mmHg) and high (10-120 mmHg) pressure ranges representing physiological pressures in the pulmonary and systemic circulations, respectively. RESULTS: During inflation, circumferential stress versus strain showed the nonlinear "J"-shape typical of arteries. Hudetz's incremental elastic modulus ranged from 27 +/- 13 kPa (n = 7) during low-pressure inflation to 2,700 +/- 1,700 kPa (n = 9) during high-pressure inflation. The low and high-pressure testing protocols yielded quantitatively indistinguishable stress-strain and modulus-strain results. Histology performed to assess the state of the tissue after mechanical testing showed intact medial and adventitial architecture with some loss of endothelium, suggesting that smooth muscle cell contractile strength could also be measured with these techniques. CONCLUSIONS: The measurement techniques described demonstrate the feasibility of quantifying mouse pulmonary artery biomechanical properties. Stress-strain behavior and incremental modulus values are presented for normal, healthy arteries over a wide pressure range. These techniques will be useful for investigations into biomechanical abnormalities in pulmonary vascular disease. 相似文献
2.
Maxová H Herget J Vízek M 《Physiological research / Academia Scientiarum Bohemoslovaca》2012,61(1):1-11
Hypoxic pulmonary hypertension (HPH) is a syndrome characterized by the increase of pulmonary vascular tone and the structural remodeling of peripheral pulmonary arteries. Mast cells have an important role in many inflammatory diseases and they are also involved in tissue remodeling. Tissue hypoxia is associated with mast cell activation and the release of proteolytic enzymes, angiogenic and growth factors which mediate tissue destruction and remodeling in a variety of physiological and pathological conditions. Here we focused on the role of mast cells in the pathogenesis of hypoxic pulmonary hypertension from the past to the present. 相似文献
3.
出、入肺血中ET-1、VEGF含量与慢性低氧性肺动脉高压的相关性研究 总被引:1,自引:0,他引:1
目的:观察间断性减压低氧大鼠出、入肺血血浆、肺组织匀浆和体循环动脉匀浆中内皮素-1(ET-1)的含量变化,以及出、入肺血血清中血管内皮生长因子(VEGF)的含量变化及其与低氧性肺动脉高压的关系。方法:建立间断性减压低氧模型,采用插管法分别测定左侧颈总动脉压力(CAP)、右心室平均压分别代表体循环压力和平均肺动脉压力(mPAP),放射免疫测定法测定ET-1含量,双抗体夹心ABC—ELISA法测定VEGF含量。结果:①低氧2周组(H2)、低氧3周组(H3)大鼠平均肺动脉压力、右心肥厚指数(RV/LV+S)均分别显著高于对照组,而各组平均颈动脉压力之间无明显变化(P〉0.05)。②对照组大鼠出肺血中ET含量比入肺血中低(P〈0.05)。H2、H3组大鼠出、入肺血中ET-1含量较对照组均明显增高(P〈0.01),且H2、H3组大鼠出肺血中ET-1含量均高于入肺血中ET-1含量(P〈0.05),刚好与对照组相反。H2、H3组大鼠肺组织匀浆中ET—1含量与对照组肺组织和低氧组体循环动脉组织匀浆比较,均明显增高(P〈0.01),而各组体循环动脉组织匀浆中ET-1含量间无明显差异(P〉0.05):③对照组大鼠出、入肺血中VEGF含量无明显差异(P〉0.05),H2、H3组大鼠出肺血血清中VEGF含量较对照组明显增高(P〈0.01)。结论:在慢性低氧可使肺组织产生ET-1和VEGF增多,这可能是慢性肺动脉高压发生、发展的重要机制之一。肺动脉局部缩血管物质ET-1增高,而体循环动脉局部ET-1不增高。可能是长期慢性低氧可导致肺动脉高压的形成,却不发生高血压的机制之一。 相似文献
4.
Synergistic effects of ANP and sildenafil on cGMP levels and amelioration of acute hypoxic pulmonary hypertension 总被引:2,自引:0,他引:2
Preston IR Hill NS Gambardella LS Warburton RR Klinger JR 《Experimental biology and medicine (Maywood, N.J.)》2004,229(9):920-925
We hypothesized that the phosphodiesterase 5 inhibitor, sildenafil, and the guanosine cyclase stimulator, atrial natriuretic peptide (ANP), would act synergistically to increase cGMP levels and blunt hypoxic pulmonary hypertension in rats, because these compounds act via different mechanisms to increase the intracellular second messenger. Acute hypoxia: Adult Sprague-Dawley rats were gavaged with sildenafil (1 mg/ kg) or vehicle and exposed to acute hypoxia with and without ANP (10(-8)-10(-5) M ). Sildenafil decreased systemic blood pressure (103 +/- 10 vs. 87 +/- 6 mm Hg, P < 0.001) and blunted the hypoxia-induced increase in right ventricular systolic pressure (RVSP; percent increase 73.7% +/- 9.4% in sildenafil-treated rats vs. 117.2% +/- 21.1% in vehicle-treated rats, P = 0.03). Also, ANP and sildenafil had synergistic effects on blunting the hypoxia-induced increase in RVSP (P < 0.001) and on rising plasma cGMP levels (P < 0.05). Chronic hypoxia: Other rats were exposed to prolonged hypoxia (3 weeks, 0.5 atm) after subcutaneous implantation of a sustained-release pellet containing lower (2.5 mg), or higher (25 mg) doses of sildenafil, or placebo. Higher-dose, but not lower-dose sildenafil blunted the chronic hypoxia-induced increase in RVSP (P = 0.006). RVSP and plasma sildenafil levels were inversely correlated in hypoxic rats (r(2) = 0.68, P = 0.044). Lung cGMP levels were increased by both chronic hypoxia and sildenafil, with the greatest increase achieved by the combination. Plasma and right ventricular (RV) cGMP levels were increased by hypoxia, but sildenafil had no effect. RV hypertrophy and pulmonary artery muscularization were also unaffected by sildenafil. In conclusion, sildenafil and ANP have synergistic effects on the blunting of hypoxia-induced pulmonary vasoconstriction. During chronic hypoxia, sildenafil normalizes RVSP, but in the doses used, sildenafil has no effect on RV hypertrophy or pulmonary vascular remodeling. 相似文献
5.
Prevention of hypoxic pulmonary hypertension by chlorpheniramine 总被引:1,自引:0,他引:1
6.
7.
The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats 总被引:66,自引:0,他引:66
Chunyu Z Junbao D Dingfang B Hui Y Xiuying T Chaoshu T 《Biochemical and biophysical research communications》2003,302(4):810-816
Hypoxic pulmonary hypertension (HPH) is an important pathophysiological process. The mechanism of HPH is still not fully understood. Recent studies showed that hydrogen sulfide (H(2)S) could relax vascular smooth muscles and inhibit the proliferation of cultured vascular smooth muscle cells. Our study showed that both the gene expression of cystathionine gamma-lyase (CSE), one of the H(2)S generating enzymes, and the activity of CSE were suppressed in lung tissues during HPH. And the plasma level of H(2)S was decreased during HPH. Exogenous supply of H(2)S could increase the plasma level of H(2)S, enhance CSE activity, and up-regulate CSE gene expression in lung tissue. At the same time, exogenous supply of H(2)S could oppose the elevation of pulmonary arterial pressure and lessen the pulmonary vascular structure remodeling during HPH. The results showed that endogenous H(2)S system was involved and exogenous H(2)S could exert beneficial effect on the pathogenesis of HPH. 相似文献
8.
9.
Fagan KA Oka M Bauer NR Gebb SA Ivy DD Morris KG McMurtry IF 《American journal of physiology. Lung cellular and molecular physiology》2004,287(4):L656-L664
RhoA GTPase mediates a variety of cellular responses, including activation of the contractile apparatus, growth, and gene expression. Acute hypoxia activates RhoA and, in turn, its downstream effector, Rho-kinase, and previous studies in rats have suggested a role for Rho/Rho-kinase signaling in both acute and chronically hypoxic pulmonary vasoconstriction. We therefore hypothesized that activation of Rho/Rho-kinase in the pulmonary circulation of mice contributes to acute hypoxic pulmonary vasoconstriction and chronic hypoxia-induced pulmonary hypertension and vascular remodeling. In isolated, salt solution-perfused mouse lungs, acute administration of the Rho-kinase inhibitor Y-27632 (1 x 10(-5) M) attenuated hypoxic vasoconstriction as well as that due to angiotensin II and KCl. Chronic treatment with Y-27632 (30 mg x kg(-1) x day(-1)) via subcutaneous osmotic pump decreased right ventricular systolic pressure, right ventricular hypertrophy, and neomuscularization of the distal pulmonary vasculature in mice exposed to hypobaric hypoxia for 14 days. Analysis of a small number of proximal pulmonary arteries suggested that Y-27632 treatment reduced the level of phospho-CPI-17, a Rho-kinase target, in hypoxic lungs. We also found that endothelial nitric oxide synthase protein in hypoxic lungs was augmented by Y-27632, suggesting that enhanced nitric oxide production might have played a role in the Y-27632-induced attenuation of chronically hypoxic pulmonary hypertension. In conclusion, Rho/Rho-kinase activation is important in the effects of both acute and chronic hypoxia on the pulmonary circulation of mice, possibly by contributing to both vasoconstriction and vascular remodeling. 相似文献
10.
Huo Y Cheng Y Zhao X Lu X Kassab GS 《American journal of physiology. Heart and circulatory physiology》2012,302(10):H2058-H2063
The passive mechanical properties of blood vessel mainly stem from the interaction of collagen and elastin fibers, but vessel constriction is attributed to smooth muscle cell (SMC) contraction. Although the passive properties of coronary arteries have been well characterized, the active biaxial stress-strain relationship is not known. Here, we carry out biaxial (inflation and axial extension) mechanical tests in right coronary arteries that provide the active coronary stress-strain relationship in circumferential and axial directions. Based on the measurements, a biaxial active strain energy function is proposed to quantify the constitutive stress-strain relationship in the physiological range of loading. The strain energy is expressed as a Gauss error function in the physiological pressure range. In K(+)-induced vasoconstriction, the mean ± SE values of outer diameters at transmural pressure of 80 mmHg were 3.41 ± 0.17 and 3.28 ± 0.24 mm at axial stretch ratios of 1.3 and 1.5, respectively, which were significantly smaller than those in Ca(2+)-free-induced vasodilated state (i.e., 4.01 ± 0.16 and 3.75 ± 0.20 mm, respectively). The mean ± SE values of the inner and outer diameters in no-load state and the opening angles in zero-stress state were 1.69 ± 0.04 mm and 2.25 ± 0.08 mm and 126 ± 22°, respectively. The active stresses have a maximal value at the passive pressure of 80-100 mmHg and at the active pressure of 140-160 mmHg. Moreover, a mechanical analysis shows a significant reduction of mean stress and strain (averaged through the vessel wall). These findings have important implications for understanding SMC mechanics. 相似文献
11.
Girgis RE Li D Zhan X Garcia JG Tuder RM Hassoun PM Johns RA 《American journal of physiology. Heart and circulatory physiology》2003,285(3):H938-H945
The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been shown to improve multiple normal endothelial cell functions and inhibit vascular wall cell proliferation. We hypothesized that one such agent, simvastatin, would attenuate chronic hypoxic pulmonary hypertension. Male adult Sprague-Dawley rats were exposed (14 days) to normoxia (N), normoxia plus once-a-day administered simvastatin (20 mg/kg ip) (NS), hypoxia (10% inspired O2 fraction) (H), or hypoxia plus simvastatin (HS). Mean pulmonary artery pressure, measured in anesthetized, ventilated rats with an open-chest method, was reduced from 25 +/- 2 mmHg in H to 18 +/- 1 in HS (P < 0.001) but did not reach normoxic values (12 +/- 1 mmHg). Similarly, right ventricular/left ventricular plus interventricular septal weight was reduced from 0.53 +/- 0.02 in the H group to 0.36 +/- 0.02 in the HS group (P < 0.001). The increased hematocrit in H (0.65 +/- 0.02) was prevented by simvastatin treatment (0.51 +/- 0.01, P < 0.001). Hematocrit was similar in N versus NS. Alveolar vessel muscularization and medial thickening of vessels 50-200 microM in diameter induced by hypoxia were also significantly attenuated in the HS animals. Lung endothelial nitric oxide synthase (eNOS) protein expression in the HS group was less than H (P < 0.01) but was similar in N versus NS. We conclude that simvastatin treatment potently attenuates chronic hypoxic pulmonary hypertension and polycythemia in rats and inhibits vascular remodeling. Enhancement of lung eNOS expression does not appear to be involved in mediating this effect. 相似文献
12.
Blockade of acute hypoxic pulmonary hypertension by endotoxin 总被引:5,自引:0,他引:5
13.
Gary M. Malvin 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1985,155(2):241-249
Summary In order to understand the blood flow patterns and their regulation in the gills and pulmonary artery ofAmbystoma tigrinum, the vascular resistance and vasoactivity of the two major branchial perfusion pathways and a vascular plexus in the pulmonary artery were investigated using an isolated-tissue perfusion method. Acetylcholine and epinephrine were both pressor agents in all three vascular segments. Angiotensin II also constricted the branchial respiratory vasculature. Norephinephrine was primarily a vasodilator in the branchial respiratory vasculature, however, it had no effect on the shunt vessels of the gill or the pulmonary arterial plexus. Both gill circulations were insensitive to alterations in CO2 and pH. Anoxia produced a slight vasodilation of the branchial respiratory vessels but had no effect on the shunt vasculature. Mild hypoxia had no effect on either branchial circulations. The results suggest that: (1) blood flow through the respiratory section of the gill may vary between 8 and 47% of total gill flow, (2) the major perfusion pathway to the lung is probably from the efferent artery of the third gill through the ductus arteriosus and then into the pulmonary artery, (3) O2, CO2 and pH exert no local control of branchial perfusion, (4) both cholinergic and adrenergic regulation of branchial and proximal pulmonary arterial vascular resistance is possible, (5) a rise in circulating norepinephrine should increase blood flow to the respiratory section of the gill.Abbreviations
AII
angiotensin II
-
ACh
acetylcholine
-
EPi
epinephrine
-
NE
norepinephrine 相似文献
14.
Acute and chronic hypoxic pulmonary hypertension in guinea pigs 总被引:1,自引:0,他引:1
Thompson B. T.; Hassoun P. M.; Kradin R. L.; Hales C. A. 《Journal of applied physiology》1989,66(2):920-928
To determine whether the strength of acute hypoxic vasoconstriction predicts the magnitude of chronic hypoxic pulmonary hypertension, we performed serial studies on guinea pigs. Unanesthetized, chronically catheterized guinea pigs increased mean pulmonary arterial pressure (PAP) from 11 +/- 0.5 to 13 +/- 0.7 Torr in acute hypoxia (10% O2 for 65 min). The response was maximal at 5 min, remained stable for 1 h, and was reversible on return to room air. Cardiac index did not change with acute hypoxia or recovery. Guinea pigs exposed to chronic hypoxia increased PAP, measured in room air 1 h after removal from the hypoxic chamber, to 18 +/- 1 Torr by 5 days with little further increase in PAP to 20 +/- 1 Torr after 21 days. Cardiac index fell from 273 +/- 12 to 206 +/- 7 ml.kg-1.min-1 (P less than 0.05) after 21 days of hypoxia. Medial thickness of pulmonary arteries adjacent to terminal bronchioles and alveolar ducts increased significantly by 10 days. The magnitude of the pulmonary vasoconstriction to acute hypoxia persisted and was unabated during the development and apparent stabilization of chronic hypoxic pulmonary hypertension, suggesting that if vasoconstriction is the stimulus for remodeling, then the importance of the stimulus lessens with duration of hypoxia. In individual animals followed serially, we found no correlation between the magnitude of the acute vasoconstrictor response before chronic hypoxia and the severity of chronic pulmonary hypertension that subsequently developed either because the initial response was small and variable or because vasoconstriction may not be the sole stimulus for vascular remodeling in the guinea pig. 相似文献
15.
16.
Lahm T Patel KM Crisostomo PR Markel TA Wang M Herring C Meldrum DR 《American journal of physiology. Endocrinology and metabolism》2007,293(3):E865-E871
Sex differences exist in a variety of cardiovascular disorders. Sex hormones have been shown to mediate pulmonary artery (PA) vasodilation. However, the effects of fluctuations in physiological sex hormone levels due to sex and menstrual cycle on PA vasoreactivity have not been clearly established yet. We hypothesized that sex and menstrual cycle affect PA vasoconstriction under both normoxic and hypoxic conditions. Isometric force displacement was measured in isolated PA rings from proestrus females (PF), estrus and diestrus females (E/DF), and male (M) Sprague-Dawley rats. The vasoconstrictor response under normoxic conditions (organ bath bubbled with 95% O(2)-5% CO(2)) was measured after stimulation with 80 mmol/l KCl and 1 mumol/l phenylephrine. Hypoxia was generated by changing the gas to 95% N(2)-5% CO(2). PA rings from PF demonstrated an attenuated vasoconstrictor response to KCl compared with rings from E/DF (75.58 +/- 3.2% vs. 92.43 +/- 4.24%, P < 0.01). Rings from M also exhibited attenuated KCl-induced vasoconstriction compared with E/DF (79.34 +/- 3.2% vs. 92.43 +/- 4.24%, P < 0.05). PA rings from PF exhibited an attenuated vasoconstrictor response to phenylephrine compared with E/DF (59.61 +/- 2.98% vs. 70.03 +/- 4.61%, P < 0.05). While the maximum PA vasodilation during hypoxia did not differ between PF, E/DF, and M, phase II of hypoxic pulmonary vasoconstriction was markedly diminished in the PA from PF (64.10 +/- 7.10% vs. 83.91 +/- 5.97% in M, P < 0.05). We conclude that sex and menstrual cycle affect PA vasoconstriction in isolated PA rings. Even physiological increases in circulating estrogen levels attenuate PA vasoconstriction under both normoxic and hypoxic conditions. 相似文献
17.
18.
19.
20.
外源性apelin对大鼠慢性低氧性肺动脉高压的防治作用 总被引:1,自引:0,他引:1
目的:探讨外源性给予小分子活性肽apelin对大鼠慢性低氧性肺动脉高压和肺血管重构的作用及其机制。方法:采用常压低氧法建立SD大鼠低氧性肺动脉高压模型。实验分4组(n=10)对照组(NC)、低氧组(HH)、低氧+apelin低剂量组(5nmol/(kg.d)(LA)和低氧+apelin高剂量组(10nmol/(kg.d)(HA),HA组和LA组通过皮下埋植微量渗透泵持续给药。低氧4周后,测定平均肺动脉压(mPAP)、右心室与左心室加室间隔的重量比[RV/(LV+S)]、肺细小动脉管壁面积/管总面积(WA/TA)、管腔面积/管总面积(CA/TA)、中膜厚度(PAMT)以及肺组织超氧化物歧化酶(SOD)活性与丙二醛(MDA)含量。结果:①mPAP和RV/(LV+S):HH组较NC组高,HA组较HH组低;LA组mPAP较HH低,而RV/(LV+S)两组间无显著性差异。②WA/TA和PAMT:HH组较NC组高,HA组、LA组均较HH低。③CA/TA:HH组较NC组低,HA组、LA组均较HH高。④肺组织SOD含量:HH组较NC低,HA组、LA组均较HH高。⑤MDA含量:HH组较NC高,HA组、LA组均较HH低。结论:Apelin对低氧性肺动脉高压和肺血管重构的形成具有防治作用,这种作用可能与直接舒张肺血管作用及改善氧化应激有关。 相似文献