共查询到20条相似文献,搜索用时 0 毫秒
1.
Ganesh P. Subedi Roy W. Johnson Heather A. Moniz Kelley W. Moremen Adam Barb 《Journal of visualized experiments : JoVE》2015,(106)
The art of producing recombinant proteins with complex post-translational modifications represents a major challenge for studies of structure and function. The rapid establishment and high recovery from transiently-transfected mammalian cell lines addresses this barrier and is an effective means of expressing proteins that are naturally channeled through the ER and Golgi-mediated secretory pathway. Here is one protocol for protein expression using the human HEK293F and HEK293S cell lines transfected with a mammalian expression vector designed for high protein yields. The applicability of this system is demonstrated using three representative glycoproteins that expressed with yields between 95-120 mg of purified protein recovered per liter of culture. These proteins are the human FcγRIIIa and the rat α2-6 sialyltransferase, ST6GalI, both expressed with an N-terminal GFP fusion, as well as the unmodified human immunoglobulin G1 Fc. This robust system utilizes a serum-free medium that is adaptable for expression of isotopically enriched proteins and carbohydrates for structural studies using mass spectrometry and nuclear magnetic resonance spectroscopy. Furthermore, the composition of the N-glycan can be tuned by adding a small molecule to prevent certain glycan modifications in a manner that does not reduce yield. 相似文献
2.
目的:用磷酸钙细胞转染法稳定高效地转染293T细胞.方法:利用磷酸钙转染法将MSCV-GFP质粒导入293T细胞,在混合DNA-CaCl2溶液和2×HBS缓冲液以形成沉淀物时,对混悬方式和时间这两个至关重要的因素进行了调整.并将该法与常用磷酸钙细胞转染法进行了比较.结果:在调整了混悬方式和时间后,得到了85%以上的转染率.在对比实验中,常用磷酸钙细胞转染法得到85%以上转染率所占比率为50%,而利用该文方法比率则为100%.结论:利用此磷酸钙细胞转染法可稳定高效地转染293T细胞. 相似文献
3.
4.
目的:获得有活性的Sonic Hedgehog(SHH)蛋白N端结构域蛋白纯品,该结构域是SHH蛋白与受体结合结构域,可用作抗原,用于研制抗SHH的中和抗体。方法:应用PCR技术从商业化人Shh基因中分别扩增该基因5'端591和600 bp的片段,并插入真核表达载体pL293,分别在HEK293T细胞中进行瞬时分泌表达,通过His标签纯化后获得SHH-591和SHH-600蛋白纯品,SDS-PAGE和Western印迹对表达产物进行分析,并通过ELISA进行结合活性鉴定。结果:构建了重组表达载体pL293-Shh-N591和pL293-Shh-N600,酶切鉴定和测序证实含有目的基因片段,真核瞬时表达产物均在相对分子质量约20×103处可见与预期相符的条带,该条带可被His标签抗体所识别;纯化获得了SHH-591-His和SHH-600-His蛋白纯品;ELISA结合实验结果显示SHH-591-His和SHH-600-His均能与抗His标签抗体结合,而SHH-591-His与SHH中和抗体的结合能力更强。结论:获得了真核表达的SHH-N蛋白SHH-591-His,可用于下一步中和抗体药物的筛选和后续研究。 相似文献
5.
Expression of Drosophila trehalose-phosphate synthase in HEK-293 cells increases hypoxia tolerance 总被引:5,自引:0,他引:5
Increasing hypoxia tolerance in mammalian cells is potentially of major importance, but it has not been feasible thus far. The disaccharide trehalose, which accumulates dramatically during heat shock, enhances thermotolerance and reduces aggregation of denatured proteins. Previous studies from our laboratory showed that over-expression of Drosophila trehalose-phosphate synthase (dtps1) increases the trehalose level and anoxia tolerance in flies. To determine whether trehalose can protect against anoxic injury in mammalian cells, we transfected the dtps1 gene into human HEK-293 cells using the recombinant plasmid pcDNA3.1(-)-dtps1 and obtained more than 20 stable cell strains. Glucose starvation in culture showed that HEK-293 cells transfected with pcDNA3.1(-)-dtps1 (HEK-dtps1) do not metabolize intracellular trehalose, and, interestingly, these cells accumulated intracellular trehalose during hypoxic exposure. In contrast to HEK-293 cells transfected with pcDNA3.1(-) (HEK-v), cells with trehalose were more resistant to low oxygen stress (1% O2). To elucidate how trehalose protects cells from anoxic injury, we assayed protein solubility and the amount of ubiquitinated proteins. There was three times more insoluble protein in HEK-v than in HEK-dtps1 after 3 days of exposure to low O2. The amount of Na+-K+ ATPase present in the insoluble proteins dramatically increased in HEK-v cells after 2 and 3 days of exposure, whereas there was no significant change in HEK-dtps1 cells. Ubiquitinated proteins increased dramatically in HEK-v cells after 2 and 3 days of exposure but not in HEK-dtps1 cells over the same period. Our results indicate that increased trehalose in mammalian cells following transfection by the Drosophila tps1 gene protects cells from hypoxic injury. The mechanism of this protection is likely related to a decrease in protein denaturation, through protein-trehalose interactions, resulting in enhanced cellular recovery from hypoxic stress. 相似文献
6.
Voltage-gated ion channels are crucial for both neuronal and cardiac excitability. Decades of research have begun to unravel the intriguing machinery behind voltage sensitivity. Although the details regarding the arrangement and movement in the voltage-sensor domain are still debated, consensus is slowly emerging. There are three competing conceptual models: the helical-screw, the transporter, and the paddle model. In this review we explore the structure of the activated voltage-sensor domain based on the recent X-ray structure of a chimera between Kv1.2 and Kv2.1. We also present a model for the closed state. From this we conclude that upon depolarization the voltage sensor S4 moves approximately 13 A outwards and rotates approximately 180 degrees, thus consistent with the helical-screw model. S4 also moves relative to S3b which is not consistent with the paddle model. One interesting feature of the voltage sensor is that it partially faces the lipid bilayer and therefore can interact both with the membrane itself and with physiological and pharmacological molecules reaching the channel from the membrane. This type of channel modulation is discussed together with other mechanisms for how voltage-sensitivity is modified. Small effects on voltage-sensitivity can have profound effects on excitability. Therefore, medical drugs designed to alter the voltage dependence offer an interesting way to regulate excitability. 相似文献
7.
目的:研究Kv1.3钾离子通道在SKOV3卵巢癌细胞中的表达及其在细胞增殖和细胞周期中的作用。方法:应用RT—PCR和免疫细胞化学鉴别Kv1.3钾离子通道在SKOV3卵巢癌细胞中的表达。应用MTT和流式细胞技术观察KV1.3钾离子通道对SKOV3卵巢癌细胞增殖及细胞周期的影响。结果:4-氨基吡啶是Kv1.3钾离子通道特异性阻滞剂。不同浓度的4-氨基吡啶可以明显抑制SKOV3细胞的增殖,并且细胞周期也受到影响。G0/G1细胞比例增加,S期和G2/M期细胞比例下降。结论:Kv1.3钾离子通道在SKOV3卵巢癌细胞中表达,并且在细胞增殖及细胞周期变换中扮演着重要的角色。 相似文献
8.
Austin L Brown Brandon E. Johnson Miriam B. Goodman 《Journal of visualized experiments : JoVE》2008,(20)
Since its development by Sakmann and Neher 1, 2, the patch clamp has become established as an extremely useful technique for electrophysiological measurement of single or multiple ion channels in cells. This technique can be applied to ion channels in both their native environment and expressed in heterologous cells, such as oocytes harvested from the African clawed frog, Xenopus laevis. Here, we describe the well-established technique of patch clamp recording from Xenopus oocytes. This technique is used to measure the properties of expressed ion channels either in populations (macropatch) or individually (single-channel recording). We focus on techniques to maximize the quality of oocyte preparation and seal generation. With all factors optimized, this technique gives a probability of successful seal generation over 90 percent. The process may be optimized differently by every researcher based on the factors he or she finds most important, and we present the approach that have lead to the greatest success in our hands.Download video file.(95M, mp4) 相似文献
9.
Aulestia FJ Redondo PC Rodríguez-García A Rosado JA Salido GM Alonso MT García-Sancho J 《The Biochemical journal》2011,435(1):227-235
Agonist-sensitive intracellular Ca2+ stores may be heterogeneous and exhibit distinct functional features. We have studied the properties of intracellular Ca2+ stores using targeted aequorins for selective measurements in different subcellular compartments. Both, HEK-293T [HEK (human embryonic kidney)-293 cells expressing the large T-antigen of SV40 (simian virus 40)] and HeLa cells accumulated Ca2+ into the ER (endoplasmic reticulum) to near millimolar concentrations and the IP3-generating agonists, carbachol and ATP, mobilized this Ca2+ pool. We find in HEK-293T, but not in HeLa cells, a distinct agonist-releasable Ca2+ pool insensitive to the SERCA (sarco/endoplasmic reticulum Ca2+ ATPase) inhibitor TBH [2,5-di-(t-butyl)-benzohydroquinone]. TG (thapsigargin) and CPA (cyclopiazonic acid) completely emptied this pool, whereas lysosomal disruption or manoeuvres collapsing endomembrane pH gradients did not. Our results indicate that SERCA3d is important for filling the TBH-resistant store as: (i) SERCA3d is more abundant in HEK-293T than in HeLa cells; (ii) the SERCA 3 ATPase activity of HEK-293T cells is not fully blocked by TBH; and (iii) the expression of SERCA3d in HeLa cells generated a TBH-resistant agonist-mobilizable compartment in the ER. Therefore the distribution of SERCA isoforms may originate the heterogeneity of the ER Ca2+ stores and this may be the basis for store specialization in diverse functions. This adds to recent evidence indicating that SERCA3 isoforms may subserve important physiological and pathophysiological mechanisms. 相似文献
10.
胰腺β细胞的离子通道和胰岛素分泌 总被引:1,自引:0,他引:1
1 .胰腺β细胞膜上几种重要的离子通道和动作电位β细胞内的离子通道特性和胰岛素分泌的机制研究是深入了解糖尿病的基础。 2 0世纪 70年代初 ,胰岛 (islet)电生理研究表明 ,葡萄糖刺激伴随着β细胞膜电势的变化 ,并推测其与胰岛素分泌相关[1] 。 2 0世纪 70年代末 ,Neher等[2 ] 发明了膜片钳记录技术 ,大大促进了包括β细胞在内的单细胞电生理的研究。1 .1 K 通道 2 0世纪 80年代前期 ,各种不同膜片钳构型的研究都表明 ,葡萄糖刺激下β细胞的膜电势变化源于膜上一种K 通道活性的改变 ,因其可直接被ATP关闭而被命名为… 相似文献
11.
J. C. Bustos-Valenzuela E. Halcsik Ê. J. Bassi M. A. Demasi J. M. Granjeiro M. C. Sogayar 《Molecular biotechnology》2010,46(2):118-126
Bone morphogenetic protein-7 (BMP-7) is a secreted multifunctional growth factor of the TGF-β superfamily, which is predominantly known for its osteoinductive properties and emerging potential for treatment of kidney diseases. The mature 34–38 kDa disulfide-linked homodimer protein plays a key role in the differentiation of mesenchymal cells into bone and cartilage. In this study, the full-length sequence of hBMP-7 was amplified and, then, cloned, expressed, and purified from the conditioned medium of 293T cells stably transfected with a lentiviral vector. The mature protein dimer form was properly secreted and recognized by anti-BMP-7 antibodies, and the protein was shown to be glycosilated by treatment with exoglycosidase, followed by western blotting. Moreover, the activity of the purified protein was demonstrated both in vitro, by alkaline phosphatase activity in C2C12 cells, and in vivo by induction of ectopic bone formation in Balb/c Nude mice after 21 days, respectively. This recombinant protein platform may be very useful for expression of different human cytokines and other proteins for medical applications. 相似文献
12.
Elena Kaznacheyeva Vitalie D. Lupu Ilya Bezprozvanny 《The Journal of general physiology》1998,111(6):847-856
The inositol (1,4,5)-trisphosphate receptor (InsP3R) mediates Ca2+ release from intracellular stores in response to generation of second messenger InsP3. InsP3R was biochemically purified and cloned, and functional properties of native InsP3-gated Ca2+ channels were extensively studied. However, further studies of InsP3R are obstructed by the lack of a convenient functional assay of expressed InsP3R activity. To establish a functional assay of recombinant InsP3R activity, transient heterologous expression of neuronal rat InsP3R cDNA (InsP3R-I, SI− SII+ splice variant) in HEK-293 cells was combined with the planar lipid bilayer reconstitution experiments. Recombinant InsP3R retained specific InsP3 binding properties (K
d = 60 nM InsP3) and were specifically recognized by anti–InsP3R-I rabbit polyclonal antibody. Density of expressed InsP3R-I was at least 20-fold above endogenous InsP3R background and only 2–3-fold lower than InsP3R density in rat cerebellar microsomes. When incorporated into planar lipid bilayers, the recombinant InsP3R formed a functional InsP3-gated Ca2+ channel with 80 pS conductance using 50 mM Ba2+ as a current carrier. Mean open time of recombinant InsP3-gated channels was 3.0 ms; closed dwell time distribution was double exponential and characterized by short (18 ms) and long (130 ms) time constants. Overall, gating and conductance properties of recombinant neuronal rat InsP3R-I were very similar to properties of native rat cerebellar InsP3R recorded in identical experimental conditions. Recombinant InsP3R also retained bell-shaped dependence on cytosolic Ca2+ concentration and allosteric modulation by ATP, similar to native cerebellar InsP3R. The following conclusions are drawn from these results. (a) Rat neuronal InsP3R-I cDNA encodes a protein that is either sufficient to produce InsP3-gated channel with functional properties identical to the properties of native rat cerebellar InsP3R, or it is able to form a functional InsP3-gated channel by forming a complex with proteins endogenously expressed in HEK-293 cells. (b) Successful functional expression of InsP3R in a heterologous expression system provides an opportunity for future detailed structure–function characterization of this vital protein. 相似文献
13.
Glycosylation of ion channel proteins dramatically impacts channel function. Here we characterize the asparagine (N)-linked
glycosylation of voltage-gated K+ channel α subunits in rat brain and transfected cells. We find that in brain Kv1.1, Kv1.2 and Kv1.4, which have a single
consensus glycosylation site in the first extracellular interhelical domain, are N-glycosylated with sialic acid-rich oligosaccharide
chains. Kv2.1, which has a consensus site in the second extracellular interhelical domain, is not N-glycosylated. This pattern
of glycosylation is consistent between brain and transfected cells, providing compelling support for recent models relating
oligosaccharide addition to the location of sites on polytopic membrane proteins. The extent of processing of N-linked chains
on Kv1.1 and Kv1.2 but not Kv1.4 channels expressed in transfected cells differs from that seen for native brain channels,
reflecting the different efficiencies of transport of K+ channel polypeptides from the endoplasmic reticulum to the Golgi apparatus. These data show that addition of sialic acid-rich
N-linked oligosaccharide chains differs among highly related K+ channel α subunits, and given the established role of sialic acid in modulating channel function, provide evidence for differential
glycosylation contributing to diversity of K+ channel function in mammalian brain.
Received: 17 December 1998/Accepted: 20 January 1999 相似文献
14.
The efficient transfection of cloned genes into mammalian cells system plays a critical role in the production of large quantities of recombinant proteins (r-proteins). In order to establish a simple and scaleable transient protein production system, we have used a cationic lipid-based transfection reagent-FreeStyle MAX to study transient transfection in serum-free suspension human embryonic kidney (HEK) 293 and Chinese hamster ovary (CHO) cells. We used quantification of green fluorescent protein (GFP) to monitor transfection efficiency and expression of a cloned human IgG antibody to monitor r-protein production. Parameters including transfection reagent concentration, DNA concentration, the time of complex formation, and the cell density at the time of transfection were analyzed and optimized. About 70% GFP-positive cells and 50-80 mg/l of secreted IgG antibody were obtained in both HEK-293 and CHO cells under optimal conditions. Scale-up of the transfection system to 1 l resulted in similar transfection efficiency and protein production. In addition, we evaluated production of therapeutic proteins such as human erythropoietin and human blood coagulation factor IX in both HEK-293 and CHO cells. Our results showed that the higher quantity of protein production was obtained by using optimal transient transfection conditions in serum-free adapted suspension mammalian cells. 相似文献
15.
构建重组真核表达质粒PHLCX Nflag3/小窝蛋白-1,并在293T细胞中表达.用PCR的方法扩增cDNA文库中的人小窝蛋白-1基因,连接在真核表达栽体PHLCX Nflag3的短肽标签flag的下游,用限制性酶切和泖l序的方法鉴定;将重组质粒以脂质体法转染293T细胞,Western blotting法检测蛋白质的表达.结果显示,双酶切出现两个片段,分别与空栽体和人小窝蛋白-1的cDNA分子质量大小相符,测序结果符合人小窝蛋白-1的cDNA序列;Western blotting显示构建的新栽体能够在293T细胞中表达小窝蛋白-1/flag融合蛋白,表明已成功构建了能在293T细胞中高效表达小窝蛋白-1/flag融合蛋白的真核表达栽体PLHCX Nflag3/小窝蛋白-1. 相似文献
16.
The present study was designed to characterize pharmacological, biophysical and electrophysiological properties of the recombinant
human cardiac I
Ks (KCNQ1/KCNE1) channels at physiological temperature. Human cardiac KCNQ1 and KCNE1 genes were cotransfected into HEK 293 cells, and a cell clone stably expressing both genes was selected. Membrane currents
were recorded using a perforated patch-clamp technique. The typical I
Ks was slowly activated upon depolarization voltages in HEK 293 cells stably expressing human cardiac KCNQ1 and KCNE1 genes, and the current was inhibited by I
Ks blockers HMR 1556 and chromanol 293B, with 50% inhibitory concentrations (IC50s) of 83.8 nM and 9.2 μM, respectively. I
Ks showed a significant temperature-dependent increase in its magnitude upon elevating bath temperature to 36°C from room temperature
(21°C). The current was upregulated by the β-adrenoceptor agonist isoproterenol, and the effect was reversed by H89. In addition,
I
Ks was inhibited by Ba2+ in a concentration-dependent manner (IC50 = 1.4 mM). Action potential clamp revealed a “bell-shaped” time course of I
Ks during the action potential, and maximal peak current was seen at the plateau of the action potential. A significant use-
and frequency-dependent increase of I
Ks was observed during a train of action potential clamp. These results indicate that the recombinant human cardiac I
Ks stably expressed in HEK 293 cells is similar to native I
Ks in drug sensitivity and regulated by Ba2+ and β-adrenoceptor via the cyclic adenosine monophosphate/protein kinase A pathway. Importantly, the current exhibits significant
temperature dependence, a bell-shaped time course during action potential and prominent use- or frequency-dependent accumulation
during a train of action potentials. 相似文献
17.
目的:为探讨SPARC(secreted protein acidic and rich in cysteine)在人恶性肿瘤发生、发展中的作用及其分子机制,进一步明确SPARC发挥作用的方式及其与肿瘤发生类型的关系。方法:我们首先提取了人乳腺癌细胞系MCF-7的总RNA,在对总RNA进行纯度与定量检测后,利用RT-PCR的方法,以该总RNA为模板,将其反转录为cDNA;再设计引物,以该cDNA为模板,利用PCR扩增出包含Sparc编码区的DNA片段,将该产物纯化后通过T-A克隆连接入pMD20-T载体,利用菌落PCR及DNA测序进行鉴定。以pMD20-T-Sparc为模板,我们设计了特异的针对Sparc全长编码区的引物,并在引物5'端分别加入BamHI、HindIII酶切位点,通过PCR将Sparc编码区扩增出来,经纯化及双酶切后与真核表达载体pcDNA3.1myc-his(-)相连,再经菌落PCR和DNA测序进行鉴定。通过瞬时转染的方法,利用脂质体将所构建的重组SPARC真核表达载体转染HEK293细胞,48h后裂解所培养的细胞,使用western blot检测有无SPARC的表达。结果:测序证实所克隆的Sparc编码区cDNA正确地插入pcDNA3.1myc-his(-)中,western blot检测证实其在HEK293细胞中得到表达,而空载体转染的细胞则无表达,说明所构建的pcDNA3.1myc-his(-)-Sparc能够成功表达。结论:我们成功克隆了人Sparc cDNA,构建了其真核表达载体,并在HEK293细胞中得到有效表达,从而为进一步研究人SPARC的功能及其与肿瘤的关系奠定了基础。 相似文献
18.
A ketogenic diet is an alternative treatment of epilepsy in infants. The diet, rich in fat and low in carbohydrates, elevates the level of polyunsaturated fatty acids (PUFAs) in plasma. These substances have therefore been suggested to contribute to the anticonvulsive effect of the diet. PUFAs modulate the properties of a range of ion channels, including K and Na channels, and it has been hypothesized that these changes may be part of a mechanistic explanation of the ketogenic diet. Using computational modelling, we here study how experimentally observed PUFA-induced changes of ion channel activity affect neuronal excitability in CA1, in particular responses to synaptic input of high synchronicity. The PUFA effects were studied in two pathological models of cellular hyperexcitability associated with epileptogenesis. We found that experimentally derived PUFA modulation of the A-type K (KA) channel, but not the delayed-rectifier K channel, restored healthy excitability by selectively reducing the response to inputs of high synchronicity. We also found that PUFA modulation of the transient Na channel was effective in this respect if the channel''s steady-state inactivation was selectively affected. Furthermore, PUFA-induced hyperpolarization of the resting membrane potential was an effective approach to prevent hyperexcitability. When the combined effect of PUFA on the KA channel, the Na channel, and the resting membrane potential, was simulated, a lower concentration of PUFA was needed to restore healthy excitability. We therefore propose that one explanation of the beneficial effect of PUFAs lies in its simultaneous action on a range of ion-channel targets. Furthermore, this work suggests that a pharmacological cocktail acting on the voltage dependence of the Na-channel inactivation, the voltage dependences of KA channels, and the resting potential can be an effective treatment of epilepsy. 相似文献
19.
Functional analyses of gene function by knockdown and expression approaches strongly enhance the genetic study of development.
In vivo application of the introduction of inhibitors of gene expression, mRNA, and expression constructs in the target region make
it possible to perform region- and stage-specific regulation of gene function in a simple manner. As a basic tool for the
conditional regulation of gene expression in target tissue, we present methods for the efficient introduction of antisense
morpholino oligonucleotide (MO), mRNA, and expression plasmid constructs into early and later stage zebrafish embryo and larva.
Lipofection of a neuron-specific expression construct plasmid encoding green fluorescent protein (GFP) into optic vesicle
resulted in clear GFP expression in the retinotectal pathway in hatched larva. Co-lipofection of MO and GFP mRNA to the presumptive
head region resulted in brain-specific knockdown of the gene in mid-stage embryos. 相似文献
20.
Norbert Babai Nataly Kanevsky Nathan Dascal George J. Rozanski Dhirendra P. Singh Nigar Fatma Wallace B. Thoreson 《PloS one》2010,5(1)
L-type calcium currents (ICa) are influenced by changes in extracellular chloride, but sites of anion effects have not been identified. Our experiments showed that CaV1.2 currents expressed in HEK293 cells are strongly inhibited by replacing extracellular chloride with gluconate or perchlorate. Variance-mean analysis of ICa and cell-attached patch single channel recordings indicate that gluconate-induced inhibition is due to intracellular anion effects on Ca2+ channel open probability, not conductance. Inhibition of CaV1.2 currents produced by replacing chloride with gluconate was reduced from ∼75%–80% to ∼50% by omitting β subunits but unaffected by omitting α2δ subunits. Similarly, gluconate inhibition was reduced to ∼50% by deleting an α1 subunit N-terminal region of 15 residues critical for β subunit interactions regulating open probability. Omitting β subunits with this mutant α1 subunit did not further diminish inhibition. Gluconate inhibition was unchanged with expression of different β subunits. Truncating the C terminus at AA1665 reduced gluconate inhibition from ∼75%–80% to ∼50% whereas truncating it at AA1700 had no effect. Neutralizing arginines at AA1696 and 1697 by replacement with glutamines reduced gluconate inhibition to ∼60% indicating these residues are particularly important for anion effects. Expressing CaV1.2 channels that lacked both N and C termini reduced gluconate inhibition to ∼25% consistent with additive interactions between the two tail regions. Our results suggest that modest changes in intracellular anion concentration can produce significant effects on CaV1.2 currents mediated by changes in channel open probability involving β subunit interactions with the N terminus and a short C terminal region. 相似文献