首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the recovery process of a maximal stretch-shortening cycle (SSC) fatigue workout on the biomechanical performance of drop jump (DJ) and rebound jump (RBJ) on a force sledge apparatus. Thirteen elite level rugby players performed sledge DJs and RBJs before and 15, 45, 120, and 300 seconds after a maximum SSC fatigue workout. Flight time, ground contact time (CT), peak force, reactive strength index (RSI), and leg-spring stiffness were the dependent variables. The DJ results showed that after 15 seconds recovery, there was a significant reduction in flight time (FT) (p < 0.01), RSI (p < 0.001), peak force (p < 0.01), and leg stiffness (p < 0.001). Similarly, the results for the RBJ indicated that the fatigue workout significantly reduced FT (p < 0.001), peak force (p < 0.01), RSI (p < 0.01), and significantly increased CT (p < 0.05) at the 15-second interval. The results also indicated a potentiation effect at the 300-second interval because of significant increases in RSI, peak force, and leg stiffness (p < 0.05) for the RBJ and significant increases in RSI (p < 0.05), peak force, and leg stiffness (p < 0.01) and a significant decrease in ground CT (p < 0.05) for the DJ. A maximal SSC fatigue workout had both an inhibiting and potentiating effect on DJ and RBJ performance depending on the recovery interval. The efficiency of the SSC function was reduced immediately after the cessation of the fatigue workout. A potentiation effect was evident for both jumps 300 seconds postfatigue.  相似文献   

2.
AimThe aim of the present study was to evaluate reactive hops under systematically modified acceleration conditions. It was hypothesized that a high preactivity of the leg extensors and phase-specific adjustments of the leg muscle activation would compensate the alterations caused by the various acceleration levels in order to maintain a high leg stiffness, thus enabling the jumper to perform truly reactive jumps with short ground contact times despite the unaccustomed acceleration conditions.MethodsGround reaction forces (GRF), kinematic and electromyographic data of 20 healthy subjects were recorded during reactive hopping in a special sledge jump system for seven different acceleration levels: three acceleration levels with lower than normal gravity (0.7g, 0.8g, 0.9g), one with gravitational acceleration (1g) and three with higher acceleration (1.1g, 1.2g, 1.3g).ResultsThe increase of the acceleration from 0.7g to 1.3g had no significant effect on the preactivity of the leg extensors, the leg stiffness and the rate of force development. However, it resulted in increased peak GRF (+15%), longer ground contact time (+10%) and increased angular excursion at the ankle and knee joints (+3°).DiscussionThroughout a wide acceleration range, the subjects were able to maintain a high leg stiffness and perform reactive hops by keeping the preactivity constantly high and adjusting the muscle activity in the later phases. In consequence, it can be concluded that the neuromuscular system can cope with different acceleration levels, at least in the acceleration range used in this study.  相似文献   

3.
It has been suggested that during repeated long-term stretch-shortening cycle (SSC) exercise the decreased neuromuscular function may result partly from alterations in stiffness regulation. Therefore, interaction between the short latency stretch-reflex component (M1) and muscle stiffness and their influences on muscle performance were investigated before and after long lasting SSC exercise. The test protocol included various jumps on a sledge ergometer. The interpretation of the sensitivity of the reflex was based on the measurements of the patellar reflexes and the M1 reflex components. The peak muscle stiffness was measured indirectly and calculated as a coefficient of the changes in the Achilles tendon force and the muscle length. The fatigue protocol induced a marked impairment of the neuromuscular function in maximal SSC jumps. This was demonstrated by a 14.1%–17.7% (n.s. –P < 0.001) reduction in the mean eccentric forces and a 17.3%–31.8% (n.s. –P < 0.05) reduction in the corresponding M1 area under the electromyograms. Both of these methods of assessing the short latency reflex response showed a clear deterioration in the sensitivity of the reflex after fatigue (P < 0.05–0.001). This was also the case for the eccentric peak stiffness of the soleus muscle which declined immediately after fatigue by 5.4% to 7.1% (n.s. –P < 0.05) depending on the jump condition. The results observed would suggest that the modulation of neural input to the muscle was at least partly of reflex origin from the contracting muscle, and furthermore, that the reduced muscle stiffness which accompanied the decreased reflex sensitivity could have been partly responsible for the weakened muscle performance due to impaired utilization of elastic energy. Accepted: 28 April 1998  相似文献   

4.
Mechanical efficiency (ME) of jumping exercises was compared between power-trained (n = 11) and endurance-trained athletes (n = 10) using both a biomechanical and a physiological approach. In drop jumps and in stretch-shortening cycle exercise on a special sledge (sledge jumps), the subjects performed 60 muscle actions from a dropping height of optimum minus 40 cm (O – 40), as well as from dropping heights of optimum (O) and optimum plus 40 cm (O + 40). Thus, they were tested in six different tests which lasted for a total of 3 min for each. The mean ME values in the drop jumps from the lowest dropping height upwards were as follows: 23.8 (SD 5.3)%, 35.5 (SD 10.8)% and 39.2 (SD 6.6)% for the power group, and 30.8 (SD 6.5)%, 37.5 (SD 8.7)% and 41.4 (SD 7.0)% for the endurance group. In the sledge jumps the ME values were 37.0 (SD 5.6)%,48.4 (SD 4.0)% and 54.9 (SD 8.5)% for the power group, and 40.2 (SD 5.9)%, 46.9 (SD 5.7)% and 58.5 (SD 5.5)% for the endurance group. As can be seen, the ME values increased with increasing stretch load. However, the groups did not differ from each other except in the drop jump condition of O – 40 (P < 0.05). The higher power (P < 0.001) among the power athletes in every measured condition was associated with a faster rate of electromyogram development during the pre-activity, and smoother muscle activity patterns in the ground contact. On the other hand, the endurance athletes had a lower blood lactate concentration after every test, and in addition a lower heart rate and ventilation during the sledge jumps than their power counterparts. Therefore, it would seem that the similar mean ME values between the subject groups could be explained by improved function of the neuromuscular system among the power group and improved metabolism among the endurance group.  相似文献   

5.
Resveratrol is a major constituent of traditional Asian medicinal herbs and red wine and is suggested to be a potential antiatherosclerotic drug due to its proposed hypolipidemic, anti-inflammatory and antioxidative properties. The aim of this study was to evaluate whether resveratrol protects against atherosclerosis development in APOE*3-Leiden.CETP (E3L.CETP) mice and adds to the antiatherogenic effect of mild statin treatment, currently the most widely used antiatherogenic therapy. E3L.CETP mice were fed a cholesterol-rich diet without (control) or with resveratrol (0.01% w/w), atorvastatin (0.0027% w/w) or both for 14 weeks. During the study plasma lipid, inflammatory and oxidative stress parameters were determined. Resveratrol reduced atherosclerotic lesion area (?52%) in the aortic root, comparable to atorvastatin (?40%) and the combination of both drugs (?47%). The collagen/macrophage ratio in the atherosclerotic lesion, a marker of plaque stability, was increased by resveratrol (+108%), atorvastatin (+124%) and the combination (+154%). Resveratrol decreased plasma cholesterol levels (?19%) comparable to atorvastatin (?19%) and the combination (?22%), which was completely confined to (very)low-density lipoprotein cholesterol levels in all groups. Post hoc analyses showed that the antiatherogenic effect of atorvastatin could be explained by cholesterol lowering, while the antiatherosclerotic effect of resveratrol could be attributed to factors additional to cholesterol lowering. Markers of inflammation and oxidative stress were not different, but resveratrol improved macrophage function. We conclude that resveratrol potently reduces atherosclerosis development and induces a more stable lesion phenotype in E3L.CETP mice. However, under the experimental conditions tested, resveratrol does not add to the antiatherogenic effect of atorvastatin.  相似文献   

6.
Background and aimsPentraxin-3 (PTX3) reportedly has protective roles in atherosclerosis and myocardial infarction, and is a useful biomarker of vascular inflammation. However, the detailed functions of PTX3 in inflammation are yet to be elucidated. This study aimed to investigate the function of PTX3 in macrophages.MethodsPMA-treated THP-1 cell line (THP-1 macrophage) and monocyte-derived human primary macrophages were treated with recombinant PTX3. Cytokine and chemokine levels in the THP-1 culture medium were measured as well as monocyte chemoattractant protein (MCP-1) concentrations in the Raw 264.7 cell culture medium. PTX3-silenced apoptotic macrophages (THP-1 cell line) were generated to investigate the roles of PTX3 in phagocytosis.ResultsIn the presence of PTX3, macrophage interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α) and MCP-1 levels were reduced significantly (?39%, P=0.007; ?21%, P=0.008; and ?67%, P=0.0003, respectively), whilst activated transforming growth factor-β (TGF?β) was detected in the THP-1 macrophages (P=0.0004). Additionally, PTX3 induced Akt phosphorylation and reduced nuclear factor-kappa B (NF-κB) activation by 35% (P=0.002), which was induced by TNF-α in THP-1 macrophages. Furthermore, silencing of PTX3 in apoptotic cells resulted in increased macrophage binding, elevated expression rate of HLA-DR (+30%, P=0.015) and CD86 (+204%, P=0.004) positive cells, and induction of IL-1β (+36%, P=0.024) production. Conversely, adding recombinant PTX3 to macrophages reduced CD86 and HLA-DR expression in a dose-dependent manner.ConclusionsWe identified PTX3 as a novel regulator of macrophage activity, and this function suggests that PTX3 acts to resolve inflammation.  相似文献   

7.
8.
To examine osmotic regulation during long-term acclimation to a hyperosmotic medium, hemolymph osmolality, [Na+] and total protein, tissue hydration, and free amino acid (FAA) pools in abdominal muscle, gills, central nervous tissue and hemolymph were quantified in the diadromous freshwater (FW) shrimp, Macrobrachium olfersii, during direct exposure to 21‰S seawater over a 20-day period. Hemolymph osmolality and [Na+] reach stable maxima within 24?h while total protein is unchanged. Muscle and nerve tissues rapidly lose water while gills hydrate; all tissues attain maximum hydration (+5%) by 5 days, declining to FW values except for gills. Total FAA are highest in muscle, reach a maximum by 2 days (+64%), declining to FW values. Gill FAA increase by 110% after 24?h, diminishing to FW values. Nerve FAA increase 187% within 24?h, and remain elevated. Hemolymph FAA decrease (?75%) after 24?h, stabilizing well below the FW concentration. During acclimation, muscle glycine (+247%), gill taurine (+253%) and proline (+150%), and nerve proline (+426%), glycine (+415%) and alanine (+139%) increase, while hemolymph leucine (?70%) decreases. Total FAA pools contribute 10–20% to intracellular (22–70?mmol/kg) and 0.5–2.4% to hemolymph (3–7?mOsm/kg) osmolalities during direct acclimation from FW. These data emphasize the modest participation of FAA pools in intracellular osmotic regulation during physiological adaptation by M. olfersii to osmotic challenge, accentuating the role of anisosmotic extracellular regulation, suggesting that, during the invasion of freshwater by the Crustacea, dependence on intracellular adjustment employing FAA as osmotic effectors, has become progressively reduced.  相似文献   

9.
This study examined the torque-velocity and power-velocity relationships of quadriceps muscle function, stretch shortening cycle function, and leg-spring stiffness in sprint and endurance athletes. Isokinetic maximal knee extension torque was obtained from 7 sprinters and 7 endurance athletes using a Con-trex isokinetic dynamometer. Torque and power measures were corrected for lean-thigh cross-sectional area and lean-thigh volume, respectively. Stretch-shortening cycle function and muscle stiffness measurements were obtained while subjects performed single-legged squat, countermovement, and drop-rebound jumps on an inclined sledge and force-plate apparatus. The results indicated that sprinters generated, on average, 0.15 +/- 0.05 N.m.cm(-2) more torque across all velocities compared with endurance athletes. Significant differences were also found in the power-velocity relationships between the 2 groups. The sprinters performed significantly better than the endurance athletes on all jumps, but there were no differences in prestretch augmentation between the groups. The average vertical leg stiffness during drop jumps was significantly higher for sprinters (5.86 N.m(-1)) compared with endurance runners (3.38 N.m(-1)). The findings reinforce the need for power training to be carried out at fast contraction speeds but also show that SSC function remains important in endurance running.  相似文献   

10.
Ozone (O3) concentrations in periurban areas in East Asia are sufficiently high to decrease crop yield. However, little is known about the genotypic differences in O3 sensitivity in winter wheat in relation to year of cultivar release. This paper reports genotypic variations in O3 sensitivity in 20 winter wheat cultivars released over the past 60 years in China highlighting O3‐induced mechanisms. Wheat plants were exposed to elevated O3 (82 ppb O3, 7 h day?1) or charcoal‐filtered air (<5 ppb O3) for 21 days in open top chambers. Responses to O3 were assessed by the levels of antioxidative activities, protein alteration, membrane lipid peroxidation, gas exchange, leaf chlorophyll, dark respiration and growth. We found that O3 significantly reduced foliar ascorbate (?14%) and soluble protein (?22%), but increased peroxidase activity (+46%) and malondialdehyde (+38%). Elevated O3 depressed light saturated net photosynthetic rate (?24%), stomatal conductance (?8%) and total chlorophyll (?11%), while stimulated dark respiration (+28%) and intercellular CO2 concentration (+39%). O3 also reduced overall plant growth, but to a greater extent in root (?32%) than in shoot (?17%) biomass. There was significant genotypic variation in potential sensitivity to O3 that did not correlate to observed O3 tolerance. Sensitivity to O3 in cultivars of winter wheat progressed with year of release and correlated with stomatal conductance and dark respiration in O3‐exposed plants. O3‐induced loss in photosynthetic rate was attributed primarily to impaired activity of mesophyll cells and loss of integrity of cellular membrane as evidenced by increased intercellular CO2 concentration and lipid peroxidation. Our findings demonstrated that higher sensitivity to O3 in the more recently released cultivars was induced by higher stomatal conductance, larger reduction in antioxidative capacity and lower levels of dark respiration leading to higher oxidative damage to proteins and integrity of cellular membranes.  相似文献   

11.
We examined the isoform-specific regulation of monocarboxylate transporter (MCT)1 and MCT4 expression by contractile activity in red and white tibialis anterior muscles. After 1 and 3 wk of chronic muscle stimulation (24 h/day), MCT1 protein expression was increased in the red muscles (+78%, P < 0.05). In the white muscles, MCT1 was increased after 1 wk (+191%) and then was decreased after 3 wk. In the red muscle, MCT1 mRNA accumulation was increased only after 3 wk (+21%; P < 0.05). In the white muscle, MCT1 mRNA was increased after 1 wk (+30%; P < 0.05) and 3 wk (+15%; P < 0.05). MCT4 protein was not altered in either the red or white muscles after 1 or 3 wk. MCT4 mRNA was transiently lowered (approximately 15%) in both muscles in the 1st wk, but MCT4 mRNA levels were back to control levels after 3 wk. In conclusion, chronic contractile activity induces the expression of MCT1 but not MCT4. This increase in MCT1 alone was sufficient to increase lactate uptake from the circulation.  相似文献   

12.
In the literature, it has been reported that the mechanical output per leg is less in two-leg jumps than in one-leg jumps. This so-called bilateral deficit has been attributed to a reduced neural drive to muscles in two-leg jumps. The purpose of the present study was to investigate the possible contribution of nonneural factors to the bilateral deficit in jumping. We collected kinematics, ground reaction forces, and electromyograms of eight human subjects performing two-leg and one-leg (right leg) squat jumps and calculated mechanical output per leg. We also used a model of the human musculoskeletal system to simulate two-leg and one-leg jumps, starting from the initial position observed in the subjects. The model had muscle stimulation as input, which was optimized using jump height as performance criterion. The model did not incorporate a reduced maximal neural drive in the two-leg jump. Both in the subjects and in the model, the work of the right leg was more than 20% less in the two-leg jump than in the one-leg jump. Peak electromyogram levels in the two-leg jump were reduced on average by 5%, but the reduction was only statistically significant in m. rectus femoris. In the model, approximately 75% of the bilateral deficit in work per leg was explained by higher shortening velocities in the two-leg jump, and the remainder was explained by lower active state of muscles. It was concluded that the bilateral deficit in jumping is primarily caused by the force-velocity relationship rather than by a reduction of neural drive.  相似文献   

13.
We compared the changes in monocarboxylate transporter 1 (MCT1) and 4 (MCT4) proteins in heart and skeletal muscles in sedentary control and streptozotocin (STZ)-induced diabetic rats (3 wk) and in trained (3 wk) control and STZ-induced diabetic animals. In nondiabetic animals, training increased MCT1 in the plantaris (+51%; P < 0.01) but not in the soleus (+9%) or the heart (+14%). MCT4 was increased in the plantaris (+48%; P < 0.01) but not in the soleus muscles of trained nondiabetic animals. In sedentary diabetic animals, MCT1 was reduced in the heart (-30%), and in the plantaris (-31%; P < 0.01) and soleus (-26%) muscles. MCT4 content was also reduced in sedentary diabetic animals in the plantaris (-52%; P < 0.01) and soleus (-25%) muscles. In contrast, in trained diabetic animals, MCT1 and MCT4 in heart and/or muscle were similar to those of sedentary, nondiabetic animals (P > 0.05) but were markedly greater than in the sedentary diabetic animals [MCT1: plantaris +63%, soleus +51%, heart +51% (P > 0.05); MCT4: plantaris +107%, soleus +17% (P > 0.05)]. These studies have shown that 1) with STZ-induced diabetes, MCT1 and MCT4 are reduced in skeletal muscle and/or the heart and 2) exercise training alleviated these diabetes-induced reductions.  相似文献   

14.
The purpose of this study was to compare the acute effects of general, specific and combined warm-up (WU) on explosive performance. Healthy male (n = 10) subjects participated in six WU protocols in a crossover randomized study design. Protocols were: passive rest (PR; 15 min of passive rest), running (Run; 5 min of running at 70% of maximum heart rate), stretching (STR; 5 min of static stretching exercise), jumping [Jump; 5 min of jumping exercises – 3x8 countermovement jumps (CMJ) and 3x8 drop jumps from 60 cm (DJ60)], and combined (COM; protocols Run+STR+Jump combined). Immediately before and after each WU, subjects were assessed for explosive concentric-only (i.e. squat jump – SJ), slow stretch-shortening cycle (i.e. CMJ), fast stretch-shortening cycle (i.e. DJ60) and contact time (CT) muscle performance. PR significantly reduced SJ performance (p =0.007). Run increased SJ (p =0.0001) and CMJ (p =0.002). STR increased CMJ (p =0.048). Specific WU (i.e. Jump) increased SJ (p =0.001), CMJ (p =0.028) and DJ60 (p =0.006) performance. COM increased CMJ performance (p =0.006). Jump was superior in SJ performance vs. PR (p =0.001). Jump reduced (p =0.03) CT in DJ60. In conclusion, general, specific and combined WU increase slow stretch-shortening cycle (SSC) muscle performance, but only specific WU increases fast SSC muscle performance. Therefore, to increase fast SSC performance, specific fast SSC muscle actions must be included during the WU.  相似文献   

15.
Estimation of errors in mechanical efficiency   总被引:1,自引:0,他引:1  
Errors in measurements of mechanical work, net energy expenditure and mechanical efficiency (ME) were calculated, when subjects performed isolated eccentric or concentric muscle actions and combinations of these actions [stretch-shortening cycle (SSC) exercises] with a special sledge apparatus. The relative error of mechanical work was 6.1%. When estimating the error of energy metabolism from oxygen consumption the error would be about 4% (McArdle et al. 1981). The maximum error of ME was the sum of these two values (10.1%). Obviously the error of ME was less than 5%, because 30 muscle actions were averaged and, in addition, the errors of mechanical work and energy expenditure were not in the same direction every time. It was concluded that mechanical work can be determined accurately when the force is measured as a function of the moved distance of the sledge. Thus calculation of ME can be performed quite reliably in isolated eccentric and concentric exercises. The greatest problems were, however, in the SSC exercises, where the errors were higher, because of the problems of dividing the net energy expenditure into eccentric and concentric phases. Therefore, further developments must be made to minimize the errors in measurement and calculation during SSC-exercise.  相似文献   

16.
The purpose of this study was to investigate the possible antioxidant effect of an aqueous extract of Ajuga iva (Ai) in streptozotocin (STZ)-induced diabetic rats. Twelve diabetic rats were divided into two groups fed a casein diet supplemented or not with Ai (0.5%), for 4 weeks. In vitro, the Ai extract possessed a very high antioxidant effect (1 mg/ml was similar to those of trolox 300 mmol/l). The results indicated that plasma thiobarbituric acid reactive substances (TBARS) values were reduced by 41% in Ai-treated compared with untreated diabetic rats. TBARS concentrations were lower 1.5-fold in liver, 1.8-fold in heart, 1.9-fold in muscle and 2.1-fold in brain in Ai-treated than untreated group. In erythrocytes, Ai treatment increased significantly the activities of glutathione peroxidase (GSH-Px) (+25%) and glutathione reductase (GSSH-Red) (+22%). Superoxide dismutase activity was increased in muscle (+22%), while GSH-Px activity was significantly higher in liver (+28%), heart (+40%) and kidney (+45%) in Ai-treated compared with untreated group. Liver and muscle GSSH-Red activity was, respectively, 1.6- and 1.5-fold higher in Ai-treated than untreated diabetic group. Catalase activity was significantly increased in heart (+36%) and brain (+32%) in Ai-treated than untreated group. Ai treatment decreased plasma nitric oxide (?33%), carbonyls (?44%) and carotenoids (?68%) concentrations. In conclusion, this study indicates that Ajuga iva aqueous extract improves the antioxidant status by reducing lipid peroxidation and enhancing the antioxidant enzymes activities in plasma, erythrocytes and tissues of diabetic rats.  相似文献   

17.
Training with limited carbohydrate availability can stimulate adaptations in muscle cells to facilitate energy production via fat oxidation. Here we investigated the effect of consistent training in the fasted state, vs. training in the fed state, on muscle metabolism and substrate selection during fasted exercise. Twenty young male volunteers participated in a 6-wk endurance training program (1-1.5 h cycling at ~70% Vo(?max), 4 days/wk) while receiving isocaloric carbohydrate-rich diets. Half of the subjects trained in the fasted state (F; n = 10), while the others ingested ample carbohydrates before (~160 g) and during (1 g·kg body wt?1·h?1) the training sessions (CHO; n = 10). The training similarly increased Vo(?max) (+9%) and performance in a 60-min simulated time trial (+8%) in both groups (P < 0.01). Metabolic measurements were made during a 2-h constant-load exercise bout in the fasted state at ~65% pretraining Vo(?max). In F, exercise-induced intramyocellular lipid (IMCL) breakdown was enhanced in type I fibers (P < 0.05) and tended to be increased in type IIa fibers (P = 0.07). Training did not affect IMCL breakdown in CHO. In addition, F (+21%) increased the exercise intensity corresponding to the maximal rate of fat oxidation more than did CHO (+6%) (P < 0.05). Furthermore, maximal citrate synthase (+47%) and β-hydroxyacyl coenzyme A dehydrogenase (+34%) activity was significantly upregulated in F (P < 0.05) but not in CHO. Also, only F prevented the development exercise-induced drop in blood glucose concentration (P < 0.05). In conclusion, F is more effective than CHO to increase muscular oxidative capacity and at the same time enhances exercise-induced net IMCL degradation. In addition, F but not CHO prevented drop of blood glucose concentration during fasting exercise.  相似文献   

18.
The capture and use of water are critically important in drylands, which collectively constitute Earth's largest biome. Drylands will likely experience lower and more unreliable rainfall as climatic conditions change over the next century. Dryland soils support a rich community of microphytic organisms (biocrusts), which are critically important because they regulate the delivery and retention of water. Yet despite their hydrological significance, a global synthesis of their effects on hydrology is lacking. We synthesized 2,997 observations from 109 publications to explore how biocrusts affected five hydrological processes (times to ponding and runoff, early [sorptivity] and final [infiltration] stages of water flow into soil, and the rate or volume of runoff) and two hydrological outcomes (moisture storage, sediment production). We found that increasing biocrust cover reduced the time for water to pond on the surface (?40%) and commence runoff (?33%), and reduced infiltration (?34%) and sediment production (?68%). Greater biocrust cover had no significant effect on sorptivity or runoff rate/amount, but increased moisture storage (+14%). Infiltration declined most (?56%) at fine scales, and moisture storage was greatest (+36%) at large scales. Effects of biocrust type (cyanobacteria, lichen, moss, mixed), soil texture (sand, loam, clay), and climatic zone (arid, semiarid, dry subhumid) were nuanced. Our synthesis provides novel insights into the magnitude, processes, and contexts of biocrust effects in drylands. This information is critical to improve our capacity to manage dwindling dryland water supplies as Earth becomes hotter and drier.  相似文献   

19.
Postactivation potentiation (PAP) has been defined as the increase in twitch torque after a conditioning contraction. The present study aimed to investigate the effectiveness of hops as conditioning contractions to induce PAP and increase performance in subsequent maximal drop jumps. In addition, we wanted to test if and how PAP can contribute to increases in drop jump rebound height. Twelve participants performed 10 maximal two-legged hops as conditioning contractions. Twitch peak torques of triceps surae muscles were recorded before and after the conditioning hops. Then, subjects performed drop jumps with and without 10 conditioning hops before each drop jump. Recordings included ground reaction forces, ankle and knee angles and electromyographic activity in five leg muscles. In addition, efferent motoneuronal output during ground contact was estimated with V-wave stimulation. The analyses showed that after the conditioning hops, twitch peak torques of triceps surae muscles were 32% higher compared to baseline values (P < 0.01). Drop jumps performed after conditioning hops were significantly higher (12%, P < 0.05), but V-waves and EMG activity remained unchanged. The amount of PAP and the change in drop jump rebound height were positively correlated (r2 = 0.26, P < 0.05). These results provide evidence for PAP in triceps surae muscles induced by a bout of hops and indicate that PAP can contribute to the observed performance enhancements in subsequent drop jumps. The lack of change in EMG activity and V-wave amplitude suggests that the underlying mechanisms are more likely intramuscular than neural in origin.  相似文献   

20.
Eight well-trained males carried out squat jump and countermovement jump with large (SJL and CMJL) and with small (SJS and CMJS) range of motion to study the influence of trunk position on joint recruitment pattern and jumping height. The main criteria in SJS and CMJS were to maintain trunk in near vertical position during execution. Joint angles, activation time, time at maximum joint velocity for ankle joint, knee joint and hip joint, vertical propulsion time and jumping height were determined using film analysis. The joint activation followed proximal to distal pattern in CMJL, SJL and CMJS, but the pattern was reversed in SJS. The ratio of active state and vertical propulsion time was similar for all joints (63.1 and 72.8%) in CMJL, SJL and CMJS except in SJS where the ratio was significantly less for hip (46.9%) and knee (51.9%). The difference between CMJL and SJL in jumping height was 6.9 ± 2.8 cm which is significantly less than that between CMJS and SJS (14.5 ± 5.3 cm). We concluded that knee joint and hip joint muscles could not contribute to the positive work during the push-off phase when the range of motion is small, the trunk is vertical and the activation level of the muscles is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号