首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we investigated the gene of a transforming growth factor (TGF)-β type I receptor-like molecule in Haemonchus contortus, a highly pathogenic and economically important parasitic nematode of small ruminants. Designated Hc-tgfbr1, this gene is transcribed in all developmental stages of H. contortus, and the encoded protein has glycine-serine rich and kinase domains characteristic of a TGF-β family type I receptor. Expression of a GFP reporter driven by the putative Hc-tgfbr1 promoter localised to two intestinal rings, the anterior-most intestinal ring (int ring I) and the posterior-most intestinal ring (int ring IX) in Caenorhabditis elegans in vivo. Heterologous genetic complementation using a plasmid construct containing Hc-tgfbr1 genomic DNA failed to rescue the function of Ce-daf-1 (a known TGF-β type I receptor gene) in a daf-1-deficient mutant strain of C. elegans. In addition, a TGF-β type I receptor inhibitor, galunisertib, and double-stranded RNA interference (RNAi) were employed to assess the function of Hc-tgfbr1 in the transition from exsheathed L3 (xL3) to the L4 of H. contortus in vitro, revealing that both galunisertib and Hc-tgfbr1-specific double-stranded RNA could retard L4 development. Taken together, these results provide evidence that Hc-tgfbr1 is involved in developmental processes in H. contortus in the transition from the free-living to the parasitic stage.  相似文献   

2.
3.
Infective L3s (iL3s) of parasitic nematodes share common behavioural, morphological and developmental characteristics with the developmentally arrested (dauer) larvae of the free-living nematode Caenorhabditis elegans. It is proposed that similar molecular mechanisms regulate entry into or exit from the dauer stage in C. elegans, and the transition from free-living to parasitic forms of parasitic nematodes. In C. elegans, one of the key factors regulating the dauer transition is the insulin-like receptor (designated Ce-DAF-2) encoded by the gene Ce-daf-2. However, nothing is known about DAF-2 homologues in most parasitic nematodes. Here, using a PCR-based approach, we identified and characterised a gene (Hc-daf-2) and its inferred product (Hc-DAF-2) in Haemonchus contortus (a socioeconomically important parasitic nematode of ruminants). The sequence of Hc-DAF-2 displays significant sequence homology to insulin receptors (IR) in both vertebrates and invertebrates, and contains conserved structural domains. A sequence encoding an important proteolytic motif (RKRR) identified in the predicted peptide sequence of Hc-DAF-2 is consistent with that of the human IR, suggesting that it is involved in the formation of the IR complex. The Hc-daf-2 gene was transcribed in all life stages of H. contortus, with a significant up-regulation in the iL3 compared with other stages. To compare patterns of expression between Hc-daf-2 and Ce-daf-2, reporter constructs fusing the Ce-daf-2 or Hc-daf-2 promoter to sequence encoding GFP were microinjected into the N2 strain of C. elegans, and transgenic lines were established and examined. Both genes showed similar patterns of expression in amphidial (head) neurons, which relate to sensation and signal transduction. Further study by heterologous genetic complementation in a daf-2-deficient strain of C. elegans (CB1370) showed partial rescue of function by Hc-daf-2. Taken together, these findings provide a first insight into the roles of Hc-daf-2/Hc-DAF-2 in the biology and development of H. contortus, particularly in the transition to parasitism.  相似文献   

4.
5.
6.
7.
8.
9.
Sensory organs are often composed of neuronal sensory endings accommodated in a lumen formed by ensheathing epithelia or glia. Here we show that lumen formation in the C. elegans amphid sensory organ requires the gene daf-6. daf-6 encodes a Patched-related protein that localizes to the luminal surfaces of the amphid channel and other C. elegans tubes. While daf-6 mutants display only amphid lumen defects, animals defective for both daf-6 and the Dispatched gene che-14 exhibit defects in all tubular structures that express daf-6. Furthermore, DAF-6 protein is mislocalized, and lumen morphogenesis is abnormal, in mutants with defective sensory neuron endings. We propose that amphid lumen morphogenesis is coordinated by neuron-derived cues and a DAF-6/CHE-14 system that regulates vesicle dynamics during tubulogenesis.  相似文献   

10.
11.
Abstract In Caenorhabditis elegans, the decision to develop into a reproductive adult or arrest as a dauer larva is influenced by multiple pathways including insulin-like and transforming growth factor beta (TGFbeta)-like signalling pathways. It has been proposed that lipophilic hormones act downstream of these pathways to regulate dauer formation. One likely target for such a hormone is DAF-12, an orphan nuclear hormone receptor that mediates these developmental decisions and also influences adult lifespan. In order to find lipophilic hormones we have generated lipophilic extracts from mass cultures of C. elegans and shown that they rescue the dauer constitutive phenotype of class 1 daf-2 insulin signalling mutants and the TGFbeta signalling mutant daf-7. These extracts are also able to rescue the lethal dauer phenotype of daf-9 mutants, which lack a P450 steroid hydroxylase thought to be involved in the synthesis of the DAF-12 ligand; extracts, however, have no effect on a DAF-12 ligand binding domain mutant that is predicted to be ligand insensitive. The production of this hormone appears to be DAF-9 dependent as extracts from a daf-9;daf-12 double mutant do not exhibit this activity. Preliminary fractionation of the lipophilic extracts shows that the activity is hydrophobic with some polar properties, consistent with a small lipophilic hormone. We propose that the dauer rescuing activity is a hormone synthesized by DAF-9 that acts through DAF-12.  相似文献   

12.
Heat shock protein 90 (Hsp-90) is a highly conserved essential protein in eukaryotes. Here we describe the molecular characterisation of hsp-90 from three nematodes, the free-living Caenorhabditis elegans (Ce) and the parasitic worms Brugia pahangi (Bp) and Haemonchus contortus (Hc). These molecules were functionally characterised by rescue of a Ce-daf-21 (hsp-90) null mutant. Our results show a gradient of rescue: the C. elegans endogenous gene provided full rescue of the daf-21 mutant, while Hc-hsp-90 provided partial rescue. In contrast, no rescue could be obtained using a variety of Bp-hsp-90 constructs, despite the fact that Bp-hsp-90 was transcribed and translated in the mutant worms. daf-21 RNA interference (RNAi) experiments were carried out to determine whether knock-down of the endogenous daf-21 mRNA in N2 worms could be complemented by expression of either parasite gene. However neither parasite gene could rescue the daf-21 (RNAi) phenotypes. These results indicate that factors other than the level of sequence identity are important for determining whether parasite genes can functionally complement in C. elegans.  相似文献   

13.
14.
KIN-8 in C. elegans is highly homologous to human ROR-1 and 2 receptor tyrosine kinases of unknown functions. These kinases belong to a new subfamily related to the Trk subfamily. A kin-8 promoter::gfp fusion gene was expressed in ASI and many other neurons as well as in pharyngeal and head muscles. A kin-8 deletion mutant was isolated and showed constitutive dauer larva formation (Daf-c) phenotype: about half of the F(1) progeny became dauer larvae when they were cultivated on an old lawn of E. coli as food. Among the cells expressing kin-8::gfp, only ASI sensory neurons are known to express DAF-7 TGF-(beta), a key molecule preventing dauer larva formation. In the kin-8 deletion mutant, expression of daf-7::gfp in ASI was greatly reduced, dye-filling in ASI was specifically lost and ASI sensory processes did not completely extend into the amphid pore. The Daf-c phenotype was suppressed by daf-7 cDNA expression or a daf-3 null mutation. ASI-directed expression of kin-8 cDNA under the daf-7 promoter or expression by a heat shock promoter rescued the dye-filling defect, but not the Daf-c phenotype, of the kin-8 mutant. These results show that the kin-8 mutation causes the Daf-c phenotype through reduction of the daf-7 gene expression and that KIN-8 function is cell-autonomous for the dye-filling in ASI. KIN-8 is required for the process development of ASI, and also involved in promotion of daf-7 expression through a physiological or developmental function.  相似文献   

15.
In C. elegans development, unfavorable growth conditions lead a larva to an arrested and enduring form called a dauer. To elucidate components upstream of DAF-7/TGF-beta in this control pathway, we isolated a mutant that was defective in daf-7 promoter::gfp reporter expression and showed an arrested (dauer-constitutive) phenotype. It has a new mutation in the daf-11 gene encoding a transmembrane guanylyl cyclase. We show that daf-11 gene and a related gene daf-21 act upstream of daf-7, and cilium-related genes che-2 and che-3 are placed between daf-11 and daf-7, in the genetic pathway controlling dauer formation. Expression of daf-11 cDNA by cell specific promoters suggests that daf-11 acts cell autonomously in ASI chemosensory neurons for daf-7 expression.  相似文献   

16.
The daf-4 gene encodes a type II bone morphogenetic protein receptor in Caenorhabditis elegans that regulates dauer larva formation, body size and male tail patterning. The putative type I receptor partner for DAF-4 in regulating dauer larva formation is DAF-1. Genetic tests of the mechanism of activation of these receptors show that DAF-1 can signal in the absence of DAF-4 kinase activity. A daf-1 mutation enhances dauer formation in a daf-4 null background, whereas overexpression of daf-1 partially rescues a daf-4 mutant. DAF-1 alone cannot fully compensate for the loss of DAF-4 activity, indicating that nondauer development normally results from the activities of both receptors. DAF-1 signaling in the absence of a type II kinase is unique in the type I receptor family. The activity may be an evolutionary remnant, owing to daf-1's origin near the type I/type II divergence, or it may be an innovation that evolved in nematodes. daf-1 and daf-4 promoters both mediated expression of green fluorescent protein in the nervous system, indicating that a DAF-1/DAF-4 receptor complex may activate a neuronal signaling pathway. Signaling from a strong DAF-1/DAF-4 receptor complex or a weaker DAF-1 receptor alone may provide larvae with more precise control of the dauer/nondauer decision in a range of environmental conditions.  相似文献   

17.
18.
Caenorhabditis elegans dauer formation is controlled by multiple environmental factors. The chemosensory neuron ASI regulates dauer formation by secretion of DAF-7/TGF-beta, but the molecular targets of the DAF-7 ligand are incompletely defined and the cellular targets are unknown. We genetically characterized and cloned a putative transducer of DAF-7 signaling called daf-14 and found that it encodes a Smad protein. DAF-14 Smad has a highly unusual structure completely lacking the N-terminal domain found in all other Smad proteins known to date. daf-14 genetically interacts with daf-8, which encodes another Smad, and the interaction suggests partial functional redundancy between these two Smad proteins. We also studied the cellular targets of DAF-7 signaling by studying the sites of action of daf-14 and daf-4, the putative receptor for DAF-7. daf-14::gfp is expressed in multiple tissues that are remodeled during dauer formation. However, analysis of mosaics generated by free duplication loss and tissue-specific expression constructs indicate cell-nonautonomous function of daf-4, arguing against direct DAF-7 signaling to tissues throughout the animal. Instead, these experiments suggest the nervous system as a target of DAF-7 signaling and that the nervous system in turn regulates dauer formation by other tissues.  相似文献   

19.
In harsh conditions, Caenorhabditis elegans arrests development to enter a non-aging, resistant diapause state called the dauer larva. Olfactory sensation modulates the TGF-β and insulin signaling pathways to control this developmental decision. Four mutant alleles of daf-25 (abnormal DAuer Formation) were isolated from screens for mutants exhibiting constitutive dauer formation and found to be defective in olfaction. The daf-25 dauer phenotype is suppressed by daf-10/IFT122 mutations (which disrupt ciliogenesis), but not by daf-6/PTCHD3 mutations (which prevent environmental exposure of sensory cilia), implying that DAF-25 functions in the cilia themselves. daf-25 encodes the C. elegans ortholog of mammalian Ankmy2, a MYND domain protein of unknown function. Disruption of DAF-25, which localizes to sensory cilia, produces no apparent cilia structure anomalies, as determined by light and electron microscopy. Hinting at its potential function, the dauer phenotype, epistatic order, and expression profile of daf-25 are similar to daf-11, which encodes a cilium-localized guanylyl cyclase. Indeed, we demonstrate that DAF-25 is required for proper DAF-11 ciliary localization. Furthermore, the functional interaction is evolutionarily conserved, as mouse Ankmy2 interacts with guanylyl cyclase GC1 from ciliary photoreceptors. The interaction may be specific because daf-25 mutants have normally-localized OSM-9/TRPV4, TAX-4/CNGA1, CHE-2/IFT80, CHE-11/IFT140, CHE-13/IFT57, BBS-8, OSM-5/IFT88, and XBX-1/D2LIC in the cilia. Intraflagellar transport (IFT) (required to build cilia) is not defective in daf-25 mutants, although the ciliary localization of DAF-25 itself is influenced in che-11 mutants, which are defective in retrograde IFT. In summary, we have discovered a novel ciliary protein that plays an important role in cGMP signaling by localizing a guanylyl cyclase to the sensory organelle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号