首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This study tested the hypotheses that in patients with a successful anterior cruciate ligament (ACL) reconstruction, the internal–external rotation, varus–valgus, and knee flexion position of reconstructed knees would be different from uninjured contralateral knees during walking. Twenty-six subjects with unilateral ACL reconstructions (avg 31 years, 1.7 m, 68 kg, 15 female, 24 months past reconstruction) and no other history of serious lower limb injury walked at a self-selected speed in the gait laboratory, with the uninjured contralateral knee as a matched control. Kinematic measurements of tibiofemoral motion were made using a previously-described point-cluster technique. Repeated-measures ANOVA (α=0.017) was used to compare ACL-reconstructed knees to their contralateral knees at four distinct points during the stance phase of walking. An offset towards external tibial rotation in ACL-reconstructed knees was maintained over all time points (95%CI 2.3±1.3°). Twenty-two out of twenty-six individuals experienced an average external tibial rotation offset throughout stance phase. Varus–valgus rotation and knee flexion were not significantly different between reconstructed and contralateral knees. These findings show that differences in tibial rotation during walking exist in ACL reconstructed knees compared to healthy contralateral knees, providing a potential explanation why these patients are at higher risk of knee osteoarthritis in the long-term.  相似文献   

2.
This study quantified how a dual cognitive task impacts lower limb biomechanics during anticipated and unanticipated single-leg cuts with body borne load. Twenty-four males performed anticipated and unanticipated cuts with and without a dual cognitive task with three load conditions: no load (∼6 kg), medium load (15% of BW), and heavy load (30% of BW). Lower limb biomechanics were submitted to a repeated measures linear mixed model to test the main and interaction effects of load, anticipation, and dual task. With body borne load, participants increased peak stance (PS) hip flexion (p = .004) and hip internal rotation (p = .001) angle, and PS hip flexion (p = .001) and internal rotation (p = .018), and knee flexion (p = .016) and abduction (p = .001) moments. With the dual task, participants decreased PS knee flexion angle (p < .001) and hip flexion moment (p = .027), and increased PS knee external rotation angle (p = .034). During the unanticipated cut, participants increased PS hip (p = .040) and knee flexion angle (p < .001), and decreased PS hip adduction (p = .001), and knee abduction (p = .005) and external rotation (p = .026) moments. Adding body borne load produces lower limb biomechanical adaptations thought to increase risk of musculoskeletal injury, but neither anticipation nor dual task exaggerated those biomechanical adaptations. With a dual task, participants adopted biomechanics known to increase injury risk; whereas, participants used lower limb biomechanics thought to decrease injury risk during unanticipated cuts.  相似文献   

3.
Whilst anterior cruciate ligament injury commonly occurs during change of direction (CoD) tasks, there is little research on how athletes execute CoD after anterior cruciate ligament reconstruction (ACLR). The aims of this study were to determine between-limb and between-test differences in performance (time) and joint kinematics and kinetics during planned and unplanned CoD. One hundred and fifty-six male subjects carried out 90° maximal effort, planned and unplanned CoD tests in a 3D motion capture laboratory 9 months after ACLR. Statistical parametric mapping (2 × 2 ANOVA; limb × test) was used to identify differences in CoD time and biomechanical measures between limbs and between tests. There was no interaction effect but a main effect for limb and task. There was no between-limb difference in the time to complete both CoD tests. Between-limb differences were found for internal knee valgus moment, knee internal rotation and flexion angle, knee extension and external rotation moment and ankle external rotation moment with lower values on the ACLR side (effect size 0.72–0.5). Between test differences were found with less contralateral pelvis rotation, distance from centre of mass to the ankle in frontal plane, posterior ground reaction force and greater hip abduction during the unplanned CoD (effect size 0.75–0.5). Findings demonstrated that kinematic and kinetic differences between limbs are evident during both CoD tests 9 months after surgery, despite no statistical differences in performance time. Biomechanical differences between tests were found in variables, which have previously been associated with ACL injury mechanism during unplanned CoD.  相似文献   

4.
The relationships between extrinsic forces acting at the knee and knee kinematics were examined with the purpose of identifying specific phases of the walking cycle that could cause abnormal kinematics in the anterior cruciate ligament (ACL) deficient knee. Intersegmental forces and moments in directions that would produce anterior-posterior (AP) translation, internal-external (IE) rotation and flexion-extension (FE) at the knee were compared with the respective translation and rotations of the tibia relative to the femur during four selected phases (heel strike, weight acceptance, terminal extension and swing) of the walking cycle. The kinematic changes associated with loss of the ACL occurred primarily during the terminal portion of swing phase of the walking cycle where, for the ACL deficient knee, the tibia had reduced external rotation and anterior translation as the knee extended prior to heel strike. The kinematic changes during swing phase were associated with a rotational offset relative to the contralateral knee in the average position of the tibia towards internal rotation. The offset was maintained through the entire gait cycle. The abnormal offsets in the rotational position were correlated with the magnitude of the flexion moment (balanced by a net quadriceps moment) during weight acceptance. These results suggest that adaptations to the patterns of muscle firing during walking can compensate for kinematic changes associated with the loss of the ACL. The altered rotational position would cause changes in tibiofemoral contact during walking that could cause the type of degenerative changes reported in the meniscus and the articular cartilage following ACL injury.  相似文献   

5.
The effects of walking speed and age on the peak external moments generated about the joints of the trailing limb during stance just prior to stepping over an obstacle and on the kinematics of the trailing limb when crossing the obstacle were investigated in 10 healthy young adults (YA) and 10 healthy older adults (OA). The peak hip and knee adduction moments in OA were 21-43% greater than those in YA (p相似文献   

6.
Knee osteoarthritis (OA) is believed to result from high levels of contact stresses on the articular cartilage and meniscus after meniscal damage. This study investigated the effect of meniscal tears and partial meniscectomies on the peak compressive and shear stresses in the human knee joint. An elaborate three-dimensional finite element model of knee joint including bones, articular cartilages, menisci and main ligaments was developed from computed tomography and magnetic resonance imaging images. This model was used to model four types of meniscal tears and their resultant partial meniscectomies and analysed under an axial 1150 N load at 0° flexion. Three different conditions were compared: a healthy knee joint, a knee joint with medial meniscal tears and a knee joint following partial meniscectomies. The numerical results showed that each meniscal tear and its resultant partial meniscectomy led to an increase in the peak compressive and shear stresses on the articular cartilages and meniscus in the medial knee compartment, especially for partial meniscectomy. Among the four types of meniscal tears, the oblique tear resulted in the highest values of the peak compressive and shear stresses. For the four partial meniscectomies, longitudinal meniscectomy led to the largest increase in these two stresses. The lateral compartment was minimally affected by all the simulations. The results of this study demonstrate meniscal tear and its resultant partial meniscectomy has a positive impact on the maintenance of high levels of contact stresses, which may improve the progression of knee OA, especially for partial meniscectomy. Surgeons should adopt a prudent strategy to preserve the greatest amount of meniscus possible.  相似文献   

7.
The menisci play an important role in load distribution, load bearing, joint stability, lubrication, and proprioception. Partial meniscectomy has been shown to result in changes in the kinematics and kinetics at the knee during gait that can lead to progressive meniscal degeneration. This study examined changes in the strains within the menisci associated with kinematic and kinetic changes during the gait cycle. The gait changes considered were a 5 deg shift toward external rotation of the tibia with respect to the femur and an increased medial-lateral load ratio representing an increased adduction moment. A finite element model of the knee was developed and tested using a cadaveric specimen. The cadaver was placed in positions representing heel-strike and midstance of the normal gait, and magnetic resonance images were taken. Comparisons of the model predictions to boundaries digitized from images acquired in the loaded states were within the errors produced by a 1 pixel shift of either meniscus. The finite element model predicted that an increased adduction moment caused increased strains of both the anterior and posterior horns of the medial meniscus. The lateral meniscus exhibited much lower strains and had minimal changes under the various loading conditions. The external tibial rotational change resulted in a 20% decrease in the strains in the posterior medial horn and increased strains in the anterior medial horn. The results of this study suggest that the shift toward external tibial rotation seen clinically after partial medial meniscectomy is not likely to cause subsequent degenerative medial meniscal damage, but the consequence of this kinematic shift on the pathogenesis of osteoarthritis following meniscectomy requires further consideration.  相似文献   

8.
The striking variation in limb proportions within the genus Homo during the Pleistocene has important implications for understanding biomechanics in the later evolution of human bipedalism, because longer limbs and limb segments may increase bending moments about bones and joints. This research tested the hypothesis that long lower limbs and tibiae bring about increases in A-P bending forces on the lower limb during the stance phase of human walking. High-speed 3-D video data, force plates, and motion analysis software were used to analyze the walking gait of 27 modern human subjects. Limb length, as well as absolute and relative tibia length, were tested for associations with a number of kinetic and kinematic variables. Results show that individuals with longer limbs do incur greater bending moments along the lower limb during the first half of stance phase. During the second half of stance, individuals moderate bending moments through a complex of compensatory mechanisms, including keeping the knee in a more extended position. Neither absolute nor relative tibia length had any effect on the kinetic or kinematic variables tested. If these patterns apply to fossil Homo, groups with relatively long limbs (e.g. H. ergaster or early H. sapiens) may have experienced elevated bending forces along the lower limb during walking compared to those with relatively shorter limbs (e.g. the Neandertals). These increased forces could have led to greater reinforcement of joints and diaphyses. These results must be considered when formulating explanations for variation in limb morphology among Pleistocene hominins.  相似文献   

9.
Stiff-knee gait is a movement abnormality in which knee flexion during swing phase is significantly diminished. This study investigates the relationships between knee flexion velocity at toe-off, joint moments during swing phase and double support, and improvements in stiff-knee gait following rectus femoris transfer surgery in subjects with cerebral palsy. Forty subjects who underwent a rectus femoris transfer were categorized as "stiff" or "not-stiff" preoperatively based on kinematic measures of knee motion during walking. Subjects classified as stiff were further categorized as having "good" or "poor" outcomes based on whether their swing-phase knee flexion improved substantially after surgery. We hypothesized that subjects with stiff-knee gait would exhibit abnormal joint moments in swing phase and/or diminished knee flexion velocity at toe-off, and that subjects with diminished knee flexion velocity at toe-off would exhibit abnormal joint moments during double support. We further hypothesized that subjects classified as having a good outcome would exhibit postoperative improvements in these factors. Subjects classified as stiff tended to exhibit abnormally low knee flexion velocities at toe-off (p<0.001) and excessive knee extension moments during double support (p=0.001). Subjects in the good outcome group on average showed substantial improvement in these factors postoperatively. All eight subjects in this group walked with normal knee flexion velocity at toe-off postoperatively and only two walked with excessive knee extension moments in double support. By contrast, all 10 of the poor outcome subjects walked with low knee flexion velocity at toe-off postoperatively and seven walked with excessive knee extension moments in double support. Our analyses suggest that improvements in stiff-knee gait are associated with sufficient increases in knee flexion velocity at toe-off and corresponding decreases in excessive knee extension moments during double support. Therefore, while stiff-knee gait manifests during the swing phase of the gait cycle, it may be caused by abnormal muscle activity during stance.  相似文献   

10.
Detailed knowledge about loading of the knee joint is essential for preclinical testing of implants, validation of musculoskeletal models and biomechanical understanding of the knee joint. The contact forces and moments acting on the tibial component were therefore measured in 5 subjects in vivo by an instrumented knee implant during various activities of daily living.Average peak resultant forces, in percent of body weight, were highest during stair descending (346% BW), followed by stair ascending (316% BW), level walking (261% BW), one legged stance (259% BW), knee bending (253% BW), standing up (246% BW), sitting down (225% BW) and two legged stance (107% BW). Peak shear forces were about 10–20 times smaller than the axial force. Resultant forces acted almost vertically on the tibial plateau even during high flexion. Highest moments acted in the frontal plane with a typical peak to peak range ?2.91% BWm (adduction moment) to 1.61% BWm (abduction moment) throughout all activities. Peak flexion/extension moments ranged between ?0.44% BWm (extension moment) and 3.16% BWm (flexion moment). Peak external/internal torques lay between ?1.1% BWm (internal torque) and 0.53% BWm (external torque).The knee joint is highly loaded during daily life. In general, resultant contact forces during dynamic activities were lower than the ones predicted by many mathematical models, but lay in a similar range as measured in vivo by others. Some of the observed load components were much higher than those currently applied when testing knee implants.  相似文献   

11.
The purpose of this study was to characterize biomechanically three different crouch walking patterns, artificially induced in eight neurologically intact subjects and to compare them to selected cases of pathological crouch walking. The subjects were equipped with a lightweight mechanical exoskeleton with artificial muscles that acted in parallel with hamstrings and iliopsoas muscles. They walked at a speed of approximately 1m/s along the walkway under four experimental conditions: normal walking (NW), hamstrings contracture emulation (HAM), iliopsoas contracture emulation (IPS) and emulation of both hamstrings and iliopsoas contractures (IPSHAM). Reflective markers and force platform data were collected and ankle, knee and hip-joint angles, moments and powers were calculated. HAM and IPSHAM shifted ankle-angle rotation profiles into dorsiflexion during midstance compared to IPS and NW where ankle-angle trajectories were similar. HAM, IPS and IPSHAM shifted the knee angle of rotation profiles into flexion during stance, compared to NW. IPS and IPSHAM shifted hip angle of rotation profiles toward pronounced flexion while HAM shifted hip angle of rotation profile toward extension, compared to NW. HAM and IPSHAM significantly increased ankle moment during midstance, compared to IPS and NW where ankle moment profiles were similar. All experimental conditions exhibited similar behavior in the knee-moment profiles during midstance while IPS and IPSHAM knee-moment profiles exhibited significantly higher knee-extension moment during terminal stance and pre-swing. In the hip joint all experimental conditions exhibited similar shape of hip moment profiles throughout the gait cycle. HAM and IPS kinematic and kinetic patterns were qualitatively compared to two selected clinical cases, showing considerable similarity. This implies that distinct differences in kinematics and kinetics between HAM, IPS and IPSHAM may be clinically relevant in helping determine the relative contribution of hamstrings and iliopsoas muscles contractures to particular crouch walking.  相似文献   

12.
Our purpose was to demonstrate the ability of an actively controlled partial body weight support (PBWS) system to provide gait synchronized support during the stance period of a single lower extremity while examining the affect of such a support condition on gait asymmetry. Using an instrumented treadmill and a motion capture system, we compared gait parameters of twelve healthy elderly subjects (age 65-80 years) during unsupported walking to those while walking with 20% body weight support provided during only the stance period of the right limb. Specifically, we examined peak three-dimensional ground reaction force (GRF) data and the symmetry of lower extremity sagittal plane joint angles and of time and distance parameters. A reduction in all three GRF components was observed for the supported limb during modulated support. Reductions observed in the vertical GRF were comparable to the desired 20% support level. Additionally, GRF components examined for the unsupported limb during modulated support were consistently similar to those measured during unsupported walking. Modulated support caused statistically significant increases in asymmetry for knee flexion during stance (increased 5.9%), hip flexion during late swing (increased 9.1%), and the duration of single limb support (increased 2.8%). However, the observed increases were similar or considerably less than the natural variability in the asymmetry of these parameters during unsupported walking. The ability of the active PBWS device to provide unilateral support may offer new and possibly improved applications of PBWS rehabilitation for patients with unilateral walking deficits such as hemiparesis or orthopaedic injury.  相似文献   

13.
The purpose of the study was to investigate the effects of an asymmetric sidepack carrying system on frontal plane joint moments of force in both lower extremities and in the L5/S1 joint during level walking. Ground reaction force data and frontal plane film records were obtained from five males performing three walking conditions: 0, 10 and 20% bodyweight loads in a sidepack supported by the left shoulder. Inverse dynamics were used to calculate the lower extremity moments during stance and a static model of the pelvis was used to calculate the L5/S1 moments during single support for each limb. Normal walking was characterized by symmetric kinetics between left and right limbs and around the L5/S1 joint. The asymmetric loads produced unbalanced lateral trunk muscle dominance between left and right limb stance phases, increased right hip and knee moments and decreased left hip and knee moments. During normal walking, the L5/S1 moment was dominant on the contralateral trunk side for both limbs. The asymmetric loads applied to the left side caused a shift in L5/S1 moment dominance to the right side during left and right single support phases.  相似文献   

14.
Accurate knowledge of the isolated contributions of joint movements to the three-dimensional displacement of the center of mass (COM) is fundamental for understanding the kinematics of normal walking and for improving the treatment of gait disabilities. Saunders et al. (1953) identified six kinematic mechanisms to explain the efficient progression of the whole-body COM in the sagittal, transverse, and coronal planes. These mechanisms, referred to as the major determinants of gait, were pelvic rotation, pelvic list, stance knee flexion, foot and knee mechanisms, and hip adduction. The aim of the present study was to quantitatively assess the contribution of each major gait determinant to the anteroposterior, vertical, and mediolateral displacements of the COM over one gait cycle. The contribution of each gait determinant was found by applying the concept of an ‘influence coefficient’, wherein the partial derivative of the COM displacement with respect to a prescribed determinant was calculated. The analysis was based on three-dimensional measurements of joint angular displacements obtained from 23 healthy young adults walking at slow, normal and fast speeds. We found that hip flexion, stance knee flexion, and ankle-foot interaction (comprised of ankle plantarflexion, toe flexion and the displacement of the center of pressure) are the major determinants of the displacements of the COM in the sagittal plane, while hip adduction and pelvic list contribute most significantly to the mediolateral displacement of the COM in the coronal plane. Pelvic rotation and pelvic list contribute little to the vertical displacement of the COM at all walking speeds. Pelvic tilt, hip rotation, subtalar inversion, and back extension, abduction and rotation make negligible contributions to the displacements of the COM in all three anatomical planes.  相似文献   

15.
Combined knowledge of the functional kinematics and kinetics of the human body is critical for understanding a wide range of biomechanical processes including musculoskeletal adaptation, injury mechanics, and orthopaedic treatment outcome, but also for validation of musculoskeletal models. Until now, however, no datasets that include internal loading conditions (kinetics), synchronized with advanced kinematic analyses in multiple subjects have been available. Our goal was to provide such datasets and thereby foster a new understanding of how in vivo knee joint movement and contact forces are interlinked – and thereby impact biomechanical interpretation of any new knee replacement design. In this collaborative study, we have created unique kinematic and kinetic datasets of the lower limb musculoskeletal system for worldwide dissemination by assessing a unique cohort of 6 subjects with instrumented knee implants (Charité – Universitätsmedizin Berlin) synchronized with a moving fluoroscope (ETH Zürich) and other measurement techniques (including whole body kinematics, ground reaction forces, video data, and electromyography data) for multiple complete cycles of 5 activities of daily living. Maximal tibio-femoral joint contact forces during walking (mean peak 2.74 BW), sit-to-stand (2.73 BW), stand-to-sit (2.57 BW), squats (2.64 BW), stair descent (3.38 BW), and ramp descent (3.39 BW) were observed. Internal rotation of the tibia ranged from 3° external to 9.3° internal. The greatest range of anterio-posterior translation was measured during stair descent (medial 9.3 ± 1.0 mm, lateral 7.5 ± 1.6 mm), and the lowest during stand-to-sit (medial 4.5 ± 1.1 mm, lateral 3.7 ± 1.4 mm). The complete and comprehensive datasets will soon be made available online for public use in biomechanical and orthopaedic research and development.  相似文献   

16.
The neuromuscular control of the hindlimb of American alligators (Alligator mississippiensis) walking on a treadmill was analyzed using simultaneous electromyography (EMG) and cineradiography. EMG and kinematic data were integrated with myological information to discern the interplay of muscles mediating hip and knee movement during the high walk. Twelve muscles, subdivided into 23 individual heads, cross the hip joint of Alligator. Activity patterns of 12 heads of 11 hip muscles and one knee muscle were recorded and quantified. An additional five heads from four muscles were recorded in single individuals. During the stance phase, the caudofemoralis longus prevents hip flexion and actively shortens to retract the femur through an arc of 60–80°. At the same time, the adductor femoris 1 and pubo-ischio-tibialis control femoral abduction. The knee is extended 30–40° during stance by contraction of the femoro-tibialis internus. These stance phase muscles often produce discontinuous, periodic EMG signals within their normal burst profile. In late stance and early swing, the ilio-fibularis and the pubo-ischio-tibialis are responsible for flexing the knee. The limb is protracted by the pubo-ischio-femoralis internus 2 and pubo-ischio-femoralis externus 2, which flex the hip. The ilio-femoralis abducts the limb during swing to suspend it above the tread. The role of the ambiens 1, which is active in midswing, is unclear. The ilio-tibialis 2, flexor-tibialis externus and flexor-tibialis internus 2 yield sporadic, low amplitude EMGs; these muscles are recruited at a very low level, if at all, during the slow high walk. Although EMGs do not conclusively delineate muscle function, activity patterns are particularly helpful in elucidating the complex interaction of muscular heads in this system. J. Morphol. 234:197–212, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Knee ligamentous injuries persist in the sport of Alpine skiing. To better understand the load mechanisms which lead to injury, pure varus/valgus and pure axial moments were applied both singly and in combination to the right knees of six human test subjects. The corresponding relative knee rotations in three degrees of freedom were measured. Knee flexion angles for each test subject were 15 and 60 degrees for the individual moments and 60 degrees for the combination moments. For both knee flexion angles the hip flexion angle was 0 degrees. Leg muscles were quiescent and axial force was minimal during all tests. Tables of data include sample statistics for each of four flexibility parameters in each loading direction. Data were analyzed statistically to test for significant differences in flexibility parameters between the test conditions. In flexing the knee from 15 to 60 degrees, the resulting knee rotations under single moments depended upon flexion angle with varus, valgus, and internal rotations increasing significantly. Also, rotations were different depending on load direction; varus rotation was significantly different and greater than valgus rotation at both flexion angles. Also external rotation was significantly different and greater than internal at 15 degrees flexion, but not at 60 degrees flexion. Coupled rotations under single moments were also observed. Applying pure varus/valgus moments resulted in coupled external/internal rotations which were inconsistent and hence not significant. Applying pure axial moments resulted in consistent and hence significant varus/valgus rotations; an external axial moment induced varus rotation and an internal axial moment induced valgus rotation. For combination moments, varus/valgus rotations decreased significantly from those rotations at similar load levels in the single moment studies. Also, a varus moment significantly increased external rotation and a valgus moment significantly decreased internal rotation. These differences indicate significant interaction between corresponding load combinations. These results suggest that load interaction is a potentially important phenomenon in knee injury mechanics.  相似文献   

18.
Tibiofemoral loading is very important in cartilage degeneration as well as in component survivorship after total knee arthroplasty. We have previously reported the axial knee forces in vivo. In this study, a second-generation force-sensing device that measured all six components of tibial forces was implanted in a 74-kg, 83-year-old male. Video motion analysis, ground reaction forces, and knee forces were measured during walking, stair climbing, chair-rise, and squat activities. Peak total force was 2.3 times body weight (BW) during walking, 2.5 x BW during chair rise, 3.0 x BW during stair climbing, and 2.1 x BW during squatting. Peak anterior shear force at the tibial tray was 0.30 x BW during walking, 0.17 x BW during chair rise, 0.26 x BW during stair climbing, and 0.15 x BW during squatting. Peak flexion moment at the tray was 1.9% BW x Ht (percentage of body weight multiplied by height) for chair-rise activity and 1.7% BW x Ht for squat activity. Peak adduction moment at the tray was -1.1% BW x Ht during chair-rise, -1.3% BW x Ht during squatting. External knee flexion and adduction moments were substantially greater than flexion and adduction moments at the tray. The axial component of forces predominated especially during the stance phase of walking. Shear forces and moments at the tray were very modest compared to total knee forces. These findings indicate that the soft tissues around the knee absorbed most of the external shear forces. Our results highlight the importance of direct measurements of knee forces.  相似文献   

19.
Osteoarthritis (OA) is a chronic disorder resulting in degenerative changes to the knee joint. Three-dimensional gait analysis provides a unique method of measuring knee dynamics during activities of daily living such as walking. The purpose of this study was to identify biomechanical features characterizing the gait of patients with mild-to-moderate knee OA and to determine if the biomechanical differences become more pronounced as the locomotor system is stressed by walking faster. Principal component analysis was used to compare the gait patterns of a moderate knee OA group (n=41) and a control group (n=43). The subjects walked at their self-selected speed as well as at 150% of that speed. The two subject groups did not differ in knee joint angles, stride length, and stride time or walking speed. Differences in the magnitude and shape of the knee joint moment waveforms were found between the two groups. The OA group had larger adduction moment magnitudes during stance and this higher magnitude was sustained for a longer portion of the gait cycle. The OA group also had a reduced flexion moment and a reduced external rotation moment during early stance. Increasing speed was associated with an increase in the magnitude of all joint moments. The fast walks did not, however, increase or bring out any biomechanical differences between the OA and control groups that did not exist at the self-selected walks.  相似文献   

20.
The relations between kinematic abnormalities and post traumatic osteoarthritis have not yet been clearly elucidated. This study was conducted to determine the finite helical axes parameters and the tibiofemoral translation vector in the knee joints of two surgically induced injury sheep models: anterior cruciate ligament and medial collateral ligament transection (ACL/MCL Tx) (n = 5) and lateral meniscectomy (n = 5). We hypothesized that morphological damage in the experimental joints would be correlated to alterations in these kinematic variables. There was no strong evidence that morphological damage to the joints 20 weeks post ACL/MCL transection or meniscectomy was correlated with alterations in the finite helical axes variables. Nevertheless, significant correlations were found between the morphological damage to the joints and the magnitude of the change in the translation vectors after ACL/MCL transection (significant correlations (p = 0.005) during stance and trends (p < 0.1) at all points analyzed during swing). It can be concluded that: (1) osteoarthritic-like morphological damage after ACL/MCL transection is more critically correlated to the absolute tibiofemoral translational change and (2) alterations in analyzed kinematic variables cannot solely define osteoarthritis risk after meniscal injuries. From a clinical perspective, our results suggest that the magnitude of the change in the translation vector, which is independent of the coordinate system and combines the effects of the three translational degrees of freedom, i.e. medial–lateral, anterior-posterior and inferior-superior, would be an osteoarthritis risk factor after ligament injury, and requires validation in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号