首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Particle deposition in obstructed airways   总被引:4,自引:1,他引:3  
Luo HY  Liu Y  Yang XL 《Journal of biomechanics》2007,40(14):3096-3104
One approach to tackle the particle deposition in human lungs in close proximity is to develop an understanding of the particle motion in bifurcation airways. Chronic obstructive pulmonary disease (COPD) is one of the most common diseases in humans. COPD always results in inflammation that leads to narrowing and obstructing of the airways. The obstructive airways can alter the respiratory flow and particle deposition significantly. In order to study the effect of obstruction on particle deposition, four three-dimensional four-generation lung models based on the 23-generation model of Weibel [1963. Morphometry of the Human Lung. New York Academic Press, Springer, Berlin.] have been generated. The fully three-dimensional incompressible laminar Navier-Stokes equations are solved using computational fluid dynamics (CFD) solver on structured hexahedral meshes. Subsequently, a symmetric four-generation airway model serves as the reference and the other three models are considered to be obstructed at each generation, respectively. The calculation results show that the obstructive airway has significant influence on the particle deposition down-stream of the obstruction. The skewed velocity profile in the bifurcation airway is modified by the throat; consequently, more particles impact on the divider which results in higher deposition efficiency.  相似文献   

2.
Aerosol deposition in the airways with excessive mucus secretions was investigated utilizing an in vitro airway model lined with various mucus simulants of differing rheological properties. The airway model was made with a straight glass tube (1.0 cm ID and 20 cm in length) and positioned vertically. The mucus simulants were supplied into the tube at a constant rate and made to move upward through the tube as a thin layer (0.6-1.7 mm) undergoing a random wave motion by means of upward airflow. Aerosols (3.0 and 5.0-micron diam) were passed through the mucus-lined tube at flow rates of 0.33-1.17 l/s, and the deposition of the aerosols in the tube was determined by sampling the aerosols at the inlet and the outlet of the tube on filters. During the sampling, pressure drop across the tube model was also measured. Deposition efficiency in the 20-cm-long mucus-lined tube ranged from 13 to 92% with 3.0-micron-diam particles and from 66 to 98% with 5.0-micron-diam particles. This deposition was 25-300 times higher than that in the dry tube. The deposition was higher with increasing viscosity of mucus but was lower with increasing elasticity of mucus. Pressure drop across the mucus-lined tube was much higher than that in the dry tube, and the increase was more prominent with mucous layers with higher viscosity but lower elasticity values. Therefore, aerosol deposition showed a good positive relationship with pressure drop. However, percent increase of aerosol deposition in the mucus-lined tube was 2-5 times higher than that of pressure drop.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Aerosol transport and deposition in sequentially bifurcating airways   总被引:1,自引:0,他引:1  
Deposition patterns and efficiencies of a dilute suspension of inhaled particles in three-dimensional double bifurcating airway models for both in-plane and 90 deg out-of-plane configurations have been numerically simulated assuming steady, laminar, constant-property air flow with symmetry about the first bifurcation. Particle diameters of 3, 5, and 7 microns were used in the simulation, while the inlet Stokes and Reynolds numbers varied from 0.037 to 0.23 and 500 to 2000, respectively. Comparisons between these results and experimental data based on the same geometric configuration showed good agreement. The overall trend of the particle deposition efficiency, i.e., an exponential increase with Stokes number, was somewhat similar for all bifurcations. However, the deposition efficiency of the first bifurcation was always larger than that of the second bifurcation, while in general the particle efficiency of the out-of-plane configuration was larger than that of the in-plane configuration. The local deposition patterns consistently showed that the majority of the deposition occurred in the carinal region. The distribution pattern in the first bifurcation for both configurations were symmetric about the carina, which was a direct result of the uniaxial flow at the inlet. The deposition patterns about the second carina showed increased asymmetry due to highly nonuniform flow generated by the first bifurcation and were extremely sensitive to bifurcation orientation. Based on the deposition variations between bifurcation levels and orientations, the use of single bifurcation models was determined to be inadequate to resolve the complex fluid-particle interactions that occur in multigenerational airways.  相似文献   

4.
Insights into airway mechanics were sought by applying morphometric techniques to rabbit lungs fixed at several lung recoil pressures. Rabbits were treated with either nebulized carbachol followed by iv administration of carbachol or with saline solution (sham). The lungs were held at one of six values of positive end-expiratory pressure (PEEP; 10, 7, 4, 2, 0, and -4 cmH(2)O) while the animal was killed and formalin was circulated through the lungs. The lungs were removed and left in a bath of formalin for 24 h. Standard airway morphometric measurements were made on membranous bronchiole slices taken from representative blocks of tissue. Reductions in PEEP produced the expected reductions in lumen area in the carbachol-treated airways but not in the sham-treated airways for PEEP > 2 cmH(2)O. Sham-treated airways remained more open than expected until they collapsed into an oval shape at PEEPs between 4 and 2 cmH(2)O. The carbachol-treated airways exhibited this behavior at PEEP = -4 cmH(2)O. The smallest airways, which had relatively thicker walls, collapsed less than larger airways. We postulate that this behavior implies that peribronchial stress is greater than lumen pressure on collapse into the oval shape. Resistance to buckling increases with the thickness-to-radius ratio of the airway wall, which explains why the smallest airways are the most open. The development of epithelial folds appeared to follow the theoretical prediction of a previous study (Lambert RK, Codd SL, Alley MR, and Pack RJ. J Appl Physiol 77: 1206-1216, 1994).  相似文献   

5.
Particle deposition and transport in human airways isfrequently modeled numerically by the Lagrangian approach. Current formulations of such models always require some ad hoc assumptions, and they are computationally expensive. A new drift-flux model is developed and incorporated into a commercial finite volume code. Because it is Eulerian in nature, the model is able to simulate particle deposition patterns, distribution and transport both spatially and temporally. Brownian diffusion, gravitational settling, and electrostatic force are three major particle deposition mechanisms in human airways. The model is validated against analytical results for three deposition mechanisms in a straight tube prior to applying the method to a single bifurcation G3-G4. Two laminar flows with Reynolds numbers 500 and 2000 are simulated. Particle concentration contour deposition pattern, and enhancement factor are evaluated. To demonstrate how the diffusion and settling influence the deposition and transport along the bifurcation, particle sizes from 1 nm to 10 microm are studied. Different deposition mechanisms can be combined into the mass conversation equation. Combined deposition efficiency for the three mechanisms simultaneously was evaluated and compared with two commonly used empirical expressions.  相似文献   

6.
Although airway remodeling and inflammation in asthma can amplify the constriction response of a single airway, their influence on the structural changes in the whole airway network is unknown. We present a morphometric model of the human lung that incorporates cross-sectional wall areas corresponding to the adventitia, airway smooth muscle (ASM), and mucosa for healthy and mildly and severely asthmatic airways and the influence of parenchymal tethering. A heterogeneous ASM percent shortening stimulus is imposed, causing distinct constriction patterns for healthy and asthmatic airways. We calculate lung resistance and elastance from 0.1 to 5 Hz. We show that, for a given ASM stimulus, the distribution of wall area in asthmatic subjects will amplify not only the mean but the heterogeneity of constriction in the lung periphery. Moreover, heterogeneous ASM shortening that would produce only mild changes in the healthy lung can cause hyperresponsive changes in lung resistance and elastance at typical breathing rates in the asthmatic lung, even with relatively small increases in airway resistance. This condition arises when airway closures occur randomly in the lung periphery. We suggest that heterogeneity is a crucial determinant of hyperresponsiveness in asthma and that acute asthma is more a consequence of extensive airway wall inflammation and remodeling, predisposing the lung to produce an acute pattern of heterogeneous constriction.  相似文献   

7.
Liquid plugs may form in pulmonary airways during the process of liquid instillation or removal in many clinical treatments. During inspiration the plug may split at airway bifurcations and lead to a nonuniform final liquid distribution, which can adversely affect treatment outcomes. In this paper, a combination of bench top experimental and theoretical studies is presented to study the effects of inertia and gravity on plug splitting in an airway bifurcation model to simulate the liquid distributions in large airways. The splitting ratio, Rs, is defined as the ratio of the plug volume entering the upper (gravitationally opposed) daughter tube to the lower (gravitationally favored) one. Rs is measured as a function of parent tube Reynolds number, Rep; gravitational orientations for roll angle, phi, and pitch angle, gamma; parent plug length LP; and the presence of pre-existing plug blockages in downstream daughter tubes. Results show that increasing Rep causes more homogeneous splitting. A critical Reynolds number Rec is found to exist so that when Rep < or = Rec, Rs = 0, i.e., no liquid enters the upper daughter tube. Rec increases while Rs decreases with increasing the gravitational effect, i.e., increasing phi and gamma. When a blockage exists in the lower daughter, Rec is only found at phi = 60 deg in the range of Rep studied, and the resulting total mass ratio can be as high as 6, which also asymptotes to a finite value for different phi as Rep increases. Inertia is further demonstrated to cause more homogeneous plug splitting from a comparison study of Rs versus Cap (another characteristic speed) for three liquids: water, glycerin, and LB-400X. A theoretical model based on entrance flow for the plug in the daughters is developed and predicts Rs versus Rep. The frictional pressure drop, as a part of the total pressure drop, is estimated by two fitting parameters and shows a linear relationship with Rep. The theory provides a good prediction on liquid plug splitting and well simulates the liquid distributions in the large airways of human lungs.  相似文献   

8.
An important step in epithelial organ development is size maturation of the organ lumen to attain correct dimensions. Here we show that the regulated expression of Tenectin (Tnc) is critical to shape the Drosophila melanogaster hindgut tube. Tnc is a secreted protein that fills the embryonic hindgut lumen during tube diameter expansion. Inside the lumen, Tnc contributes to detectable O-Glycans and forms a dense striated matrix. Loss of tnc causes a narrow hindgut tube, while Tnc over-expression drives tube dilation in a dose-dependent manner. Cellular analyses show that luminal accumulation of Tnc causes an increase in inner and outer tube diameter, and cell flattening within the tube wall, similar to the effects of a hydrostatic pressure in other systems. When Tnc expression is induced only in cells at one side of the tube wall, Tnc fills the lumen and equally affects all cells at the lumen perimeter, arguing that Tnc acts non-cell-autonomously. Moreover, when Tnc expression is directed to a segment of a tube, its luminal accumulation is restricted to this segment and affects the surrounding cells to promote a corresponding local diameter expansion. These findings suggest that deposition of Tnc into the lumen might contribute to expansion of the lumen volume, and thereby to stretching of the tube wall. Consistent with such an idea, ectopic expression of Tnc in different developing epithelial tubes is sufficient to cause dilation, while epidermal Tnc expression has no effect on morphology. Together, the results show that epithelial tube diameter can be modelled by regulating the levels and pattern of expression of a single luminal glycoprotein.  相似文献   

9.
To more precisely measure the mechanical properties of the lung periphery in asthma, we have developed a forced oscillation technique that applies a broad-band flow signal through a wedged bronchoscope. We interpreted the data from four healthy and eight mildly asthmatic subjects in terms of an anatomically accurate computer model of the wedged segment. There was substantial overlap in impedance between the two groups, with resistance (R) showing minimal frequency dependence and elastance (E) showing positive and negative frequency dependence across subjects. After direct instillation of methacholine, R rose in both groups, but compared with healthy subjects, the asthmatic subjects displayed upward, parallel shifts in their dose-response curves. The baseline frequency-response patterns of E were enhanced after methacholine. Frequency dependencies of R and E were well reproduced in two normal subjects by a computational model that employed rigid airways connected to constant-phase tissue units but were better reproduced in the other two normal and three asthmatic subjects when the model employed heterogeneous, peripheral airway narrowing and compliant airways. To capture the frequency dependencies of R and E in the remaining five asthmatic subjects, the model was modified by increasing airway wall stiffness. These results indicate that the lung periphery of mildly asthmatic subjects is not well distinguished from that of healthy subjects by measurement of mechanical impedance at baseline, but group differences are seen after challenge with methacholine. Modeling of the response suggests that variable contributions of airway narrowing and wall compliance are operative in determining overall mechanical impedance of the lung periphery in humans with asthma, likely reflecting the functional consequences of airway inflammation and remodeling.  相似文献   

10.
Structural components of the airway wall may act to load airway smooth muscle and restrict airway narrowing. In this study, the effect of load on airway narrowing was investigated in pig isolated bronchial segments. In some bronchi, pieces of cartilage were removed by careful dissection. Airway narrowing was produced by maximum electrical field stimulation. An endoscope was used to record lumen narrowing. The compliance of the bronchial segments was determined from the cross-sectional area of the lumen and the transmural pressure. Airway narrowing and the velocity of airway narrowing were increased in cartilage-removed airways compared with intact control bronchi. Morphometric assessment of smooth muscle length showed greater muscle shortening to acetylcholine in cartilage-removed airways than in controls. Airway narrowing was positively correlated with airway compliance. Compliance and area of cartilage were negatively correlated. These results show that airway narrowing is increased in compliant airways and that cartilage significantly loads airway smooth muscle in whole bronchi.  相似文献   

11.
A computer model has been developed to simulate the movement restriction in the lamina propria-submucosa (L-S) layer (sandwiched by the basement membrane and the muscle layer) in a cartilage-free airway due to constriction of the smooth muscle layer. It is assumed that the basement membrane is inextensible; therefore, in the two-dimensional simulation, the perimeter outlining the membrane is a constant whether the airway is constricted or dilated. The cross-sectional area of the L-S layer is also assumed to be constant during the simulated airway narrowing. Folding of the mucosal membrane in constricted airways is assumed to be a consequence of the L-S area conservation and also due to tethering between the basement membrane and the muscle layer. The number of tethers determines the number of folds. The simulation indicates that the pressure in the L-S layer resulting from movement restriction can be a major force opposing muscle contraction and that the maximum shortening of the muscle layer is inversely proportional to the number of tethers (or folds) and the L-S layer thickness.  相似文献   

12.
We revisit the airway wall model of Lambert et. al. (Lambert RK, Wiggs BR, Kuwano K, Hogg JC, and Pare PD. J Appl Physiol 74: 2771-2781, 1993). We examine in detail the notion of a general airway bistability such that the airway lumen can suddenly decrease from a relatively open to a relatively closed condition without needing additional increase in active airway smooth muscle (ASM) tension during the stimulation. The onset of this bistability is an emergent consequence of the balance of forces associated with airway wall properties, parenchymal tissue properties, maximum lung elastic recoil, and the maximum stress that the ASM can generate. In healthy lungs, we find that all these properties reside in conditions that largely prevent the emergence of the bistability even during maximum ASM stimulation. In asthmatic airways, however, the airway wall and ASM remodeling conditions can tip the balance so as to promote the onset of the bistability at a lower dose of ASM stimulation (enhanced sensitivity) and then work to amplify the maximum constriction reached by each airway (enhanced reactivity). Hence, a larger fraction of asthmatic airways can display overall airway hyperreactivity. Simulations studies examine the role of increasing ASM maximum tension, airway wall stiffening, reduced lung volume, and decreased parenchymal tethering. Results predict that the single most important factor causing this airway hyperreactivity is amplified maximum ASM tension and not a thickening of the airway wall per se.  相似文献   

13.
A Jensen  H Atileh  B Suki  E P Ingenito  K R Lutchen 《Journal of applied physiology》2001,91(1):506-15; discussion 504-5
In 9 healthy and 14 asthmatic subjects before and after a standard bronchial challenge and a modified [deep inspiration (DI), inhibited] bronchial challenge and after albuterol, we tracked airway caliber by synthesizing a method to measure airway resistance (Raw; i.e., lung resistance at 8 Hz) in real time. We determined the minimum Raw achievable during a DI to total lung capacity and the subsequent dynamics of Raw after exhalation and resumption of tidal breathing. Results showed that even after a bronchial challenge healthy subjects can dilate airways maximally, and the dilation caused by a single DI takes several breaths to return to baseline. In contrast, at baseline, asthmatic subjects cannot maximally dilate their airways, and this worsens considerably postconstriction. Moreover, after a DI, the dilation that does occur in airway caliber in asthmatic subjects constricts back to baseline much faster (often after a single breath). After albuterol, asthmatic subjects could dilate airways much closer to levels of those of healthy subjects. These data suggest that the asthmatic smooth muscle resides in a stiffer biological state compared with the stimulated healthy smooth muscle, and inhibiting a DI in healthy subjects cannot mimic this.  相似文献   

14.
The thermal profiles in the airways of healthy human volunteers and patients with asthma differ after cessation of hyperpnea. The asthmatic patients rewarm their airways more rapidly. To identify thermal properties and processes that could account for the difference between these populations, we developed a model describing the radial transport of heat and water across the trachea. A distinctive feature of the model is a variable parameter describing blood supply to the mucosal and submucosal layers. Simulations performed with the model are initiated by a breath-hold maneuver and are propagative in time. Blood perfusion rates in the airway wall, the thickness of the layer of airway surface liquid, and the mucosa-submucosa thickness, all thought to be more pronounced in asthmatic patients, were varied by changing model parameters and initial conditions. Increasing the thickness of the liquid layer by more than an order of magnitude had little effect on the temperature or water content in the airway lumen. Doubling the blood flow to the mucosa-submucosa resulted in a slight increase in airway temperature. When this effect was coupled, however, with an increase in the thickness of the mucosa-submucosa layer, the increase in temperature was more pronounced. Because the bronchial circulation is the major source of heat to the airway, these results indicate that differences in airway wall thickness coupled with differences in the magnitude or responsiveness of the bronchial microcirculation could account for the differences in intra-airway temperature between the two populations.  相似文献   

15.
On the mechanism of mucosal folding in normal and asthmatic airways   总被引:4,自引:0,他引:4  
Wiggs, Barry R., Constantine A. Hrousis, Jeffrey M. Drazen,and Roger D. Kamm. On the mechanism of mucosalfolding in normal and asthmatic airways. J. Appl.Physiol. 83(6): 1814-1821, 1997.Previous studies have demonstrated that the airwaywall in asthma and chronic obstructive pulmonary disease is markedly thickened. It has also been observed that when the smooth muscle constricts the mucosa buckles, forming folds that penetrate into theairway lumen. This folding pattern may influence the amount of luminalobstruction associated with smooth muscle activation. A finite-elementanalysis of a two-layer composite model for an airway is used toinvestigate the factors that determine the mucosal folding pattern andhow it is altered as a result of changes in the thickness or stiffnessof the different layers that comprise the airway wall. Resultsdemonstrate that the most critical physical characteristic is thethickness of the thin inner layer of the model. Thickening of thisinner layer likely is represented by the enhanced subepithelialcollagen deposition seen in asthma. Other findings show a high shearstress at or near the epithelial layer, which may explain thepronounced epithelial sloughing that occurs in asthma, and steepgradients in pressure that could cause significant shifts of liquidbetween wall compartments or between the wall and luminal or vascularspaces.

  相似文献   

16.
The pressure-diameter behavior of airways within a collaterally ventilating segment of lung was evaluated radiographically in 12 excised dog lung lobes. The results were compared with the pressure-diameter behavior of airways in a lung region adjacent to the collaterally ventilating segment. Airways in each lung region were dusted with powdered tantalum, and airway diameters were measured during homogeneous and nonhomogeneous lobe inflation. Intrasegmental and extrasegmental airways behaved similarly during homogeneous lobe inflation; airway diameter increased as alveolar pressure increased. The lobe was inflated nonhomogeneously by raising pressure in the collaterally ventilating segment (Ps) while maintaining pressure at the lobar bronchus (Pao) constant at 5, 10, or 15 cmH2O. Increasing Ps at constant Pao reciprocally affected intrasegmental and extrasegmental airways. When Pao was low, intrasegmental airways were expanded, and extrasegmental airways were compressed when Ps was raised. When Pao was high, airway diameter was unaffected by increasing Ps presumably because the airways were already maximally expanded. A comparison of diameters during homogenous and nonhomogenous lobe inflation suggests a very small interdependence effect from the parenchyma surrounding the collaterally ventilating segment. These results demonstrate the combined effects of parenchymal properties and airway pressure-diameter relationships in determining the effect of local lung distortion on airway function.  相似文献   

17.
Brown, Robert H., Wayne Mitzner, Yonca Bulut, and ElizabethM. Wagner. Effect of lung inflation in vivo on airways with smoothmuscle tone or edema. J. Appl.Physiol. 82(2): 491-499, 1997.Fibrousattachments to the airway wall and a subpleural surrounding pressurecan create an external load against which airway smooth muscle mustcontract. A decrease in this load has been proposed as a possible causeof increased airway narrowing in asthmatic individuals. To study theinteraction between the airways and the surrounding lung parenchyma, weinvestigated the effect of lung inflation on relaxed airways, airwayscontracted with methacholine, and airways made edematous by infusion ofbradykinin into the bronchial artery. Measurements were made inanesthetized sheep by using high-resolution computed tomography tovisualize changes in individual airways. During methacholine infusion,airway area was decreased but increased minimally with increases intranspulmonary pressure. Bradykinin infusion caused a 50% increase inairway wall area and a small decrease in airway luminal area. Incontrast to airways contracted with methacholine, the luminal areaafter bradykinin increased substantially with increases intranspulmonary pressure, reaching 99% of the relaxed area at totallung capacity. Thus airway edema by itself did not prevent fulldistension of the airway at lung volumes approaching total lungcapacity. Therefore, we speculate that if a deep inspiration fails torelieve airway narrowing in vivo, this must be a manifestation ofairway smooth muscle contraction and not airway wall edema.

  相似文献   

18.
In 9 healthy and 14 asthmatic subjects before and after astandard bronchial challenge and a modified [deep inspiration (DI), inhibited] bronchial challenge and after albuterol, we tracked airwaycaliber by synthesizing a method to measure airway resistance (Raw;i.e., lung resistance at 8 Hz) in real time. We determined the minimumRaw achievable during a DI to total lung capacity and the subsequentdynamics of Raw after exhalation and resumption of tidal breathing.Results showed that even after a bronchial challenge healthy subjectscan dilate airways maximally, and the dilation caused by a single DItakes several breaths to return to baseline. In contrast, at baseline,asthmatic subjects cannot maximally dilate their airways, and thisworsens considerably postconstriction. Moreover, after a DI, thedilation that does occur in airway caliber in asthmatic subjectsconstricts back to baseline much faster (often after a single breath).After albuterol, asthmatic subjects could dilate airways much closer tolevels of those of healthy subjects. These data suggest that theasthmatic smooth muscle resides in a stiffer biological state comparedwith the stimulated healthy smooth muscle, and inhibiting a DI inhealthy subjects cannot mimic this.

  相似文献   

19.
A method is described for construction of an in vitro flow model based on in vivo measurements of the lumen geometry of the human carotid bifurcation. A large-scale physical model of the vessel lumen was constructed using fused deposition modeling (a rapid prototyping technique) based on magnetic resonance (MR) images of the carotid bifurcation acquired in a healthy volunteer. The lumen negative was then used to construct a flow model for experimental studies that examined the hemodynamic environment of subject-specific geometry and flow conditions. The physical model also supplements physician insight into the three-dimensional geometry of the arterial segment, complementing the two-dimensional images obtained by MR. Study of the specific geometry and flow conditions in patients with vascular disease may contribute to our understanding of the relationship between their hemodvnamic environment and conditions that lead to the development and progression of arterial disease.  相似文献   

20.
The exact site of airway narrowing in asthma and chronic obstructive pulmonary disease is unknown. High-resolution computed tomography (HRCT) is a sensitive noninvasive imaging technique that can be used to measure airway dimensions. After determining the optimal computed tomographic parameters using a phantom, we measured lobe volume and airway dimensions of isolated canine lung lobes at a transpulmonary pressure of 25 cmH2O. These measurements were repeated after deflation and administration of aerosolized saline and carbachol (256 mg/ml). Lobe volume decreased with all treatments. The maximal lobar volume change was 26% at 6 cmH2O after carbachol. Average airway lumen area decreased with all treatments. After carbachol, at transpulmonary pressures of 25, 15, 10, 8, and 6 cmH2O, lumen area decreased by 7.3 +/- 4.1, 62.0 +/- 4.9, 77.5 +/- 3.0, 31.9 +/- 9.0, and 95.2 +/- 1.0% (SE), respectively. When the airways were divided into four categories on the basis of initial lumen diameter (less than 2, 2-4, 4-6, and greater than 6 mm), the greatest decreases in luminal area after carbachol were seen in intermediate-sized airways (2-4 mm, 56 +/- 4%; 4-6 mm, 59 +/- 3%). HRCT can be used to make accurate measurements of airway dimensions and airway narrowing in excised lungs. HRCT may allow measurement of airway wall thickness and determination of the site of airway narrowing in asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号