首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:对比内侧间室性膝关节骨关节炎(KOA)患者应用腓骨近端截骨术与胫骨高位截骨术治疗的疗效。方法:选取2016年11月到2017年12月在我院接受治疗的内侧间室性KOA患者32例,采用随机数字表法将所有患者分为腓骨近端截骨组与胫骨高位截骨组各16例,比较两组患者的手术时间、住院时间、术中出血量和住院费用,比较两组患者术前、术后3个月、术后6个月的美国特种外科医院膝关节评分(HSS)、美国膝关节协会评分(KSS)、视觉模拟疼痛评分(VAS)和股胫角(FTA),比较两组患者术后出现的并发症的发生率。结果:腓骨近端截骨组患者的手术时间、住院时间短于胫骨高位截骨组,术中出血量和住院费用均显著少于胫骨高位截骨组(P0.05);术后3个月、术后6个月两组患者的HSS评分、KSS评分均明显高于术前,VAS评分、FTA均明显低于术前(P0.05);术前、术后3个月、术后6个月两组患者的HSS评分、KSS评分、VAS评分、FTA比较均无统计学差异(P0.05);两组患者的并发症发生率比较无统计学差异(P0.05)。结论:腓骨近端截骨术和胫骨高位截骨术均可有效治疗内侧间室性KOA,改善患者的膝关节功能和疼痛感,纠正内翻畸形,但腓骨近端截骨术手术时间和住院时间更短,术中出血量和住院费用更少。  相似文献   

2.
Variable stiffness shoes that have a stiffer lateral than medial sole may reduce the external knee adduction moment (EKAM) and pain during walking in patients with medial compartment knee osteoarthritis (OA). However, the mechanism by which EKAM may be reduced in the OA knee with this intervention remains unclear. Three hypotheses were tested in this study: (1) The reduction in EKAM during walking with the variable stiffness shoe is associated with a reduction in GRF magnitude and/or (2) frontal plane lever arm. (3) A reduction in frontal plane lever arm occurs either by moving the center of pressure laterally under the shoe and/or by dynamically reducing the medial component of GRF. Thirty-two subjects (20 male, 12 female; age: 58.7 ± 9.3 years; height: 1.62 ± 0.08 m; mass: 81.3 ± 14.6 kg) with medial compartment knee osteoarthritis were studied walking in a gait laboratory. The frontal plane lever arm was significantly reduced (1.62%, 0.07%ht, p=0.02) on the affected side while the magnitude of the GRF was not significantly changed. The reduction in the lever arm was weakly correlated with a medial shift in the COP. However, the combined medial shift in the COP and reduction in the medial GRF explained 50% of the change of the frontal plane lever arm. These results suggest that the medial shift in the COP at the foot produced by the intervention shoe stimulates an adaptive dynamic response during gait that reduces the frontal plane lever arm.  相似文献   

3.
To understand the mechanical consequences of knee injury requires a detailed analysis of the effect of that injury on joint contact mechanics during activities of daily living. Three-dimensional (3D) knee joint geometric models have been combined with knee joint kinematics to dynamically estimate the location of joint contact during physiological activities—using a weighted center of proximity (WCoP) method. However, the relationship between the estimated WCoP and the actual location of contact has not been defined. The objective of this study was to assess the relationship between knee joint contact location as estimated using the image-based WCoP method, and a directly measured weighted center of contact (WCoC) method during simulated walking. To achieve this goal, we created knee specific models of six human cadaveric knees from magnetic resonance imaging. All knees were then subjected to physiological loads on a knee simulator intended to mimic gait. Knee joint motion was captured using a motion capture system. Knee joint contact stresses were synchronously recorded using a thin electronic sensor throughout gait, and used to compute WCoC for the medial and lateral plateaus of each knee. WCoP was calculated by combining knee kinematics with the MRI-based knee specific model. Both metrics were compared throughout gait using linear regression. The anteroposterior (AP) location of WCoP was significantly correlated with that of WCoC on both tibial plateaus in all specimens (p<0.01, 95% confidence interval of Pearson?s coefficient r>0), but the correlation was not significant in the mediolateral (ML) direction for 4/6 knees (p>0.05). Our study demonstrates that while the location of joint contact obtained from 3D knee joint contact model, using the WCoP method, is significantly correlated with the location of actual contact stresses in the AP direction, that relationship is less certain in the ML direction.  相似文献   

4.
The objective of this study was to describe the rate of change in knee cartilage volume over 4.5 years in subjects with symptomatic knee osteoarthritis (OA) and to determine factors associated with cartilage loss. One hundred and five subjects were eligible for this longitudinal study. Subjects' tibial cartilage volume was assessed by magnetic resonance imaging (MRI) at baseline, at 2 years and at 4.5 years. Of 105 subjects, 78 (74%) completed the study. The annual percentage losses of medial and lateral tibial cartilage over 4.5 years were 3.7 ± 4.7% (mean ± SD; 95% confidence interval 2.7 to 4.8%) and 4.4 ± 4.7% (mean ± SD; 95% confidence interval 3.4 to 5.5%), respectively. Cartilage volume in each individual seemed to track over the study period, relative to other study participants. After multivariate adjustment, annual medial tibial cartilage loss was predicted by lesser severity of baseline knee pain but was independent of age, body mass index and structural factors. No factors specified a priori were associated with lateral cartilage volume rates of change. Tibial cartilage declines at an average rate of 4% per year in subjects with symptomatic knee OA. There was evidence to support the concept that tracking occurs in OA. This may enable the prediction of cartilage change in an individual. The only significant factor affecting the loss of medial tibial cartilage was baseline knee pain, possibly through altered joint loading.  相似文献   

5.
Examinations of bone density changes in selected knee bone ends were evaluated prospectively in a randomized group of 28 patients, aged from 41 to 65 (mean: 55.3 years), who had varus deformations of their mechanic limb axes, mean 8 degrees. The examinations were conducted during the preoperative period, 10 days, 3, 6, and 12 weeks, as well as 6 and 12 months after the procedure. A statistically significant increase in bone density was observed in the medial tibial condyle area, while a statistically insignificant decrease of bone density was noted in the medial femoral condyles. Bone density increased in the lateral tibial condyle area, whereas there were no density changes in the area of the lateral femoral condyles. The research results demonstrate that the relief achieved in ailments after high tibial osteotomies does not directly correspond to the bone density of the affected areas.  相似文献   

6.
This study determined in-vitro anterior cruciate ligament (ACL) force patterns and investigated the effect of external tibial loads on the ACL force patterns during simulated weight-bearing knee flexions. Nine human cadaveric knee specimens were mounted on a dynamic knee simulator, and weight-bearing knee flexions with a 100N of ground reaction force were simulated; while a robotic/universal force sensor (UFS) system was used to provide external tibial loads during the movement. Three external tibial loading conditions were simulated, including no external tibial load (termed BW only), a 50N anterior tibial force (ATF), and a 5Nm internal rotation tibial torque (ITT). The tibial and femoral kinematics was measured with an ultrasonic motion capture system. These movement paths were then accurately reproduced on a robotic testing system, and the in-situ force in the ACL was determined via the principle of superposition. The results showed that the ATF significantly increased the in-situ ACL force by up to 60% during 0-55 degrees of flexion, while the ITT did not. The magnitude of ACL forces decreased with increasing flexion angle for all loading conditions. The tibial anterior translation was not affected by the application of ATF, whereas the tibial internal rotation was significantly increased by the application of ITT. These data indicate that, in a weight-bearing knee flexion, ACL provides substantial resistance to the externally applied ATF but not to the ITT.  相似文献   

7.
The anterior-posterior (AP) stability of the knee is an important aspect of functional performance. Studies have shown that the stability increases when compressive loads are applied, as indicated by reduced laxity, but the mechanism has not been fully explained. A test rig was designed which applied combinations of AP shear and compressive forces, and measured the AP displacements relative to the neutral position. Five knees were evaluated at compressive loads of 0, 250, 500, and 750 N, with the knee at 15° flexion. At each load, three cycles of shear force at ±100 N were applied. For the intact knee under load, the posterior tibial displacement was close to zero, due to the upward slope of the anterior medial tibial surface. The soft tissues were then resected in sequence to determine their role in AP laxity. After anterior cruciate ligament (ACL) resection, the anterior tibial displacement increased significantly even under load, highlighting its importance in stability. Meniscal resection further increased displacement but also the vertical displacement increased, implying the meniscus was providing a buffering effect. The PCL had no effect on any of the displacements under load. Plowing cartilage deformation and surface friction were negligible. This work highlighted the particular importance of the upward slope of the anterior medial tibial surface and the ACL to AP knee stability under load. The results are relevant to the design of total knees which reproduce anatomic knee stability behavior.  相似文献   

8.
There is some debate in the literature regarding the role of quadriceps-hamstrings co-contraction in the onset and progression of knee osteoarthritis. Does co-contraction during walking increase knee contact loads, thereby causing knee osteoarthritis, or might it be a compensatory mechanism to unload the medial tibial condyle? We used a detailed musculoskeletal model of the lower limb to test the hypothesis that selective activation of lateral hamstrings and quadriceps, in conjunction with inhibited medial gastrocnemius, can actually reduce the joint contact force on the medial compartment of the knee, independent of changes in kinematics or external forces. “Baseline” joint loads were computed for eight subjects with moderate medial knee osteoarthritis (OA) during level walking, using static optimization to resolve the system of muscle forces for each subject?s scaled model. Holding all external loads and kinematics constant, each subject?s model was then perturbed to represent non-optimal “OA-type” activation based on mean differences detected between electromyograms (EMG) of control and osteoarthritis subjects. Knee joint contact forces were greater for the “OA-type” than the “Baseline” distribution of muscle forces, particularly during early stance. The early-stance increase in medial contact load due to the “OA-type” perturbation could implicate this selective activation strategy as a cause of knee osteoarthritis. However, the largest increase in the contact load was found at the lateral condyle, and the “OA-type” lateral activation strategy did not increase the overall (greater of the first or second) medial peak contact load. While “OA-type” selective activation of lateral muscles does not appear to reduce the medial knee contact load, it could allow subjects to increase knee joint stiffness without any further increase to the peak medial contact load.  相似文献   

9.
Biomechanical non-invasive interventions have been previously reported to reduce pain and facilitate superior levels of function in patients with medial knee osteoarthritis [OA]. One such treatment is the AposTherapy, a customized program utilizing a foot-worn biomechanical device allowing center of pressure modification and continuous perturbation during gait. The influence of this intervention on objective gait metrics has yet to be determined. The aim of the current study was to prospectively examine changes in kinetic and kinematic parameters in patients enrolled in this treatment program. Twenty-five females with symptomatic bilateral medial compartment knee OA were enrolled in the customized daily treatment program. All patients underwent barefoot gait analysis testing and completed subjective questionnaires prior to treatment initiation and on two follow-up visits. Significantly reduced knee adduction moment (KAM) magnitude was noted during barefoot walking after three and nine months of treatment. On average, the knee adduction impulse and the 1st and 2nd KAM peaks were reduced by 13%, 8.4%, and 12.7%, respectively. Furthermore, moment reduction was accompanied by elevated walking velocity, significant pain reduction, and increased functional activity. In addition to symptomatic improvement, our results suggest that this treatment program can alter kinetic gait parameters in this population. We speculate that these adaptations account for the symptomatic and functional improvement reported for this intervention.  相似文献   

10.
In this study, the effects of medial collateral ligament (MCL) release and the limb correction strategies with pre-existing MCL laxity on tibiofemoral contact force distribution after high tibial osteotomy (HTO) were investigated. The medial and lateral contact forces of the knee were quantified during simulated standing using computational modeling techniques. MCL slackness had a primary influence on contact force distribution of the knee, while there was little effect of simulated limb correction. Anterior and middle bundle release, which involved the partial release of two-thirds of the superficial MCL, was shown to be an optimal surgical method in HTO, achieving balanced contact distribution in simulated weight-bearing standing.  相似文献   

11.
目的:观察关节镜手术联合胫骨高位截骨(HTO)治疗内侧膝关节骨关节炎(KOA)的临床疗效。方法:本研究为回顾性研究,将2018年2月~2020年9月间在我院接受治疗的内侧KOA患者63根据手术方式的不同分为A组和B组,分别为30例和33例。A组进行HTO手术,B组进行关节镜手术联合HTO治疗。术前、术后6周、术后12周采用美国纽约特种外科医院(HSS)评分、视觉模拟量表(VAS)评分评价两组患者膝关节功能、疼痛情况。采用36项简明健康状况调查表(SF-36)评价两组患者术前与术后12周的生活质量变化情况。记录两组术后并发症发生情况。术前、术后12周采用MB-Ruler软件测量两组患者机械胫骨近端内侧角(mMPTA)、解剖股胫角(aFTA)。结果:术后6周、术后12周,B组HSS评分高于A组,VAS评分低于A组(P<0.05)。术后12周,B组SF-36量表各维度评分高于A组(P<0.05)。术后3周,B组mMPTA、aFTA小于A组(P<0.05)。两组术后并发症发生率组间对比无差异(P>0.05)。结论:相对于单纯的HTO手术,关节镜手术联合HTO治疗内侧KOA患者,可有效促进膝关节功能改善,减轻疼痛症状,调整下肢力线,近期疗效肯定。  相似文献   

12.
Most biomechanical studies of the knee have focused on knee flexion angles between 0 degrees and 120 degrees. The posterior cruciate ligament (PCL) has been shown to constrain posterior laxity of the knee in this range of flexion. However, little is known about PCL function in higher flexion angles (greater than 120 degrees ). This in vitro study examined knee kinematics before and after cutting the PCL at high flexion under a posterior tibial load and various muscle loads. The results demonstrated that although the PCL plays an important role in constraining posterior tibial translation at low flexion angles, the PCL had little effect in constraining tibial translation at 150 degrees of flexion under the applied loads.  相似文献   

13.
Despite significant advances in scaffold design, manufacture, and development, it remains unclear what forces these scaffolds must withstand when implanted into the heavily loaded environment of the knee joint. The objective of this study was to fully quantify the dynamic contact mechanics across the tibial plateau of the human knee joint during gait and stair climbing. Our model consisted of a modified Stanmore knee simulator (to apply multi-directional dynamic forces), a two-camera motion capture system (to record joint kinematics), an electronic sensor (to record contact stresses on the tibial plateau), and a suite of post-processing algorithms. During gait, peak contact stresses on the medial plateau occurred in areas of cartilage–cartilage contact; while during stair climb, peak contact stresses were located in the posterior aspect of the plateau, under the meniscus. On the lateral plateau, during gait and in early stair-climb, peak contact stresses occurred under the meniscus, while in late stair-climb, peak contact stresses were experienced in the zone of cartilage–cartilage contact. At 45% of the gait cycle, and 20% and 48% of the stair-climb cycle, peak stresses were simultaneously experienced on both the medial and lateral compartment, suggesting that these phases of loading warrant particular consideration in any simulation intended to evaluate scaffold performance. Our study suggests that in order to design a scaffold capable of restoring ‘normal’ contact mechanics to the injured knees, the mechanics of the intended site of implantation should be taken into account in any pre-clinical testing regime.  相似文献   

14.
Diaphyseal bone formation in murine tibiae in response to knee loading.   总被引:3,自引:0,他引:3  
Mechanical stimulation is critical for bone architecture and bone mass. The aim of this study was to examine the effects of mechanical loads applied to the knee. The specific question was whether loads applied to the tibial epiphysis would enhance bone formation in the tibial diaphysis. In C57/BL/6 mice, loads of 0.5 N were applied for 3 min per day for 3 days at 5, 10, or 15 Hz. Bone samples were harvested 13 days after the last loading. The strains were measured 13 +/- 2 microstrains at 5 Hz in the diaphysis. The histomorphometric data in the diaphysis clearly showed enhanced bone formation. First, compared with nonloaded control the cross-sectional cortical area was increased by 11% at 5 Hz and 8% at 10 Hz (both P < 0.05). Second, the cortical thickness was elevated by 12% at 5 Hz (P < 0.01) and 8% at 10 Hz (P < 0.05). Third, mineralizing surface (MS/BS), mineral apposition rate (MAR), and bone formation rate (BFR/BS) were increased at 5 Hz (P < 0.01 for MS/BS; P < 0.001 for MAR and BFR/BS) and at 10 Hz (P < 0.05 for MS/BS; P < 0.01 for MAR and BFR/BS). Bone formation was enhanced more extensively in the medial side than the lateral or the posterior side. The results reveal that knee loading is an effective means to enhance bone formation in the tibial diaphysis in a loading-frequency dependent manner without inducing significant in situ strain at the site of bone formation.  相似文献   

15.
Proper tension of the knee’s soft tissue envelope is important during total knee arthroplasty; incorrect tensioning potentially leads to joint stiffness or instability. The latter remains an important trigger for revision surgery. The use of sensors quantifying the intra-articular loads, allows surgeons to assess the ligament tension at the time of surgery. However, realistic target values are missing. In the framework of this paper, eight non-arthritic cadaveric specimens were tested and the intra-articular loads transferred by the medial and lateral compartment were measured using custom sensor modules. These modules were inserted below the articulating surfaces of the proximal tibia, with the specimens mounted on a test setup that mimics surgical conditions. For both compartments, the highest loads are observed in full extension. While creating knee flexion by lifting the femur and flexing the hip, mean values (standard deviation) of 114 N (71 N) and 63 N (28 N) are observed at 0° flexion for the medial and lateral compartment respectively. Upon flexion, both medial and lateral loads decrease with mean values at 90° flexion of 30 N (22 N) and 6 N (5 N) respectively. The majority of the load is transmitted through the medial compartment. These observations are linked to the deformation of the medial and lateral collaterals, in addition to the anatomy of the passive soft tissues surrounding the knee. In conclusion, these findings provide tangible clinical guidance in assessing the soft tissue loads when dealing with anatomically designed total knee implants.  相似文献   

16.
To describe the differences in knee structure and non-knee structural factors between offspring having at least one parent with a total knee replacement for severe primary knee osteoarthritis and age- and sex-matched controls with no family history of knee osteoarthritis, a population-based longitudinal study of 163 matched pairs (mean age 45 years, range 26 to 61) was performed at baseline and about 2 years later. Knee cartilage defect score (0 to 4), cartilage volume and bone size were determined with T1-weighted fat saturation magnetic resonance imaging. Body mass index (BMI), lower-limb muscle strength, knee pain, physical work capacity at 170 beats/minute (PWC170) and radiographic osteoarthritis were measured by standard protocols. In comparison with controls, offspring had higher annual knee cartilage loss (-3.1% versus -2.0% at medial tibial site, -1.9% versus -1.1% at lateral tibial site and -4.7% versus -3.7% at patellar site, all P < 0.05), a greater increase in medial cartilage defect score (+0.15 versus -0.01, P < 0.05) and a greater decline in PWC170 (-0.7 watts/kg versus -0.4 watts/kg, P < 0.01). There were no significant differences in change in BMI, lower-limb muscle strength, knee pain or tibial bone area between these two groups; however, the differences in knee cartilage loss and cartilage defect change decreased in magnitude and became non-significant after adjustment for baseline cartilage volume, tibial bone area, BMI and knee pain. This longitudinal study suggests that knee cartilage loss, change in cartilage defects and decrease in physical fitness all have roles in the development of knee osteoarthritis, which is most probably polygenic but may reflect a shared environment. Importantly, the cartilage changes are largely dependent on baseline differences in cartilage volume, tibial bone area, BMI and knee pain, suggesting that these factors might have a role in their initiation.  相似文献   

17.
The aim of this study was to image tibio-femoral movement during flexion in the living knee. Ten loaded male Caucasian knees were initially studied using MRI, and the relative tibio-femoral motions, through the full flexion arc in neutral tibial rotation, were measured. On knee flexion from hyperextension to 120 degrees , the lateral femoral condyle moved posteriorly 22 mm. From 120 degrees to full squatting there was another 10 mm of posterior translation, with the lateral femoral condyle appearing almost to sublux posteriorly. The medial femoral condyle demonstrated minimal posterior translation until 120 degrees . Thereafter, it moved 9 mm posteriorly to lie on the superior surface of the medial meniscal posterior horn. Thus, during flexion of the knee to 120 degrees , the femur rotated externally through an angle of 20 degrees . However, on flexion beyond 120 degrees , both femoral condyles moved posteriorly to a similar degree. The second part of this study investigated the effect of gender, side, load and longitudinal rotation. The pattern of relative tibio-femoral movement during knee flexion appears to be independent of gender and side. Femoral external rotation (or tibial internal rotation) occurs with knee flexion under loaded and unloaded conditions, but the magnitude of rotation is greater and occurs earlier on weight bearing. With flexion plus tibial internal rotation, the pattern of movement follows that in neutral. With flexion in tibial external rotation, the lateral femoral condyle adopts a more anterior position relative to the tibia and, particularly in the non-weight bearing knee, much of the femoral external rotation that occurs with flexion is reversed.  相似文献   

18.
Medial knee osteoarthritis is a debilitating disease. Surgical and conservative interventions are performed to manage its progression via reduction of load on the medial compartment or equivalently its surrogate measure, the external adduction moment. However, some studies have questioned a correlation between the medial load and adduction moment. Using a musculoskeletal model of the lower extremity driven by kinematics–kinetics of asymptomatic subjects at gait midstance, we aim here to quantify the relative effects of changes in the knee adduction angle versus changes in the adduction moment on the joint response and medial/lateral load partitioning. The reference adduction rotation of 1.6° is altered by ±1.5° to 3.1° and 0.1° or the knee reference adduction moment of 17 N m is varied by ±50% to 25.5 N m and 8.5 N m. Quadriceps, hamstrings and tibiofemoral contact forces substantially increased as adduction angle dropped and diminished as it increased. The medial/lateral ratio of contact forces slightly altered by changes in the adduction moment but a larger adduction rotation hugely increased this ratio from 8.8 to a 90 while in contrast a smaller adduction rotation yielded a more uniform distribution. If the aim in an intervention is to diminish the medial contact force and medial/lateral load ratio, a drop of 1.5° in adduction angle is much more effective (causing respectively 12% and 80% decreases) than a reduction of 50% in the adduction moment (causing respectively 4% and 13% decreases). Substantial role of changes in adduction angle is due to the associated alterations in joint nonlinear passive resistance. These findings explain the poor correlation between knee adduction moment and tibiofemoral compartment loading during gait suggesting that the internal load partitioning is dictated by the joint adduction angle.  相似文献   

19.
Obesity is the primary risk factor for the development and progression of medial compartment knee osteoarthritis. Laterally wedged insoles can reduce many of the biomechanical risk factors for disease development in osteoarthritis patients and lean individuals but their efficacy is unknown for at-risk, obese women. The purpose was to determine how an 8° laterally wedged insole influenced kinetic and kinematic gait parameters in obese women. Gait analysis was performed on fourteen obese (average 29.3 years; BMI 37.2kg/m(2)) and 14 lean control women (average 26.1 years; BMI 22.4kg/m(2)) with and without a full-length, wedged insole. Peak joint angles, the external knee adduction moment and its angular impulse were calculated during preferred and standard 1.24m/s walking speeds. Statistical significance was assessed using a 2-way ANOVA (α=0.05). The insole significantly reduced the peak external knee adduction moment (mean decrease of 3.6±3.9Nm for obese and 1.9±1.8Nm for controls) and its angular impulse in both groups. The wedged insoles also produced small changes in ankle dorsiflexion (obese: 1.2±1.4° increase; control: 1.5±1.4° increase) and eversion range of motion (obese: 1.3±1.9° decrease; control: 1.5±1.2° decrease) but did not alter peak angles of superior joints. Although the majority of obese women may develop knee osteoarthritis during their lifetime, a prophylactic insole intervention could allow obese women with no severe knee malalignments to be active while preventing or delaying disease onset. However, the long-term effects of the insole have not yet been examined.  相似文献   

20.
Analysis of polyethylene component wear and implant loosening in total knee arthroplasty (TKA) requires precise knowledge of in vivo articular motion and loading conditions. This study presents a simultaneous in vivo measurement of tibiofemoral articular contact forces and contact kinematics in three TKA patients. These measurements were accomplished via a dual fluoroscopic imaging system and instrumented tibial implants, during dynamic single leg lunge and chair rising-sitting. The measured forces and contact locations were also used to determine mediolateral distribution of axial contact forces. Contact kinematics data showed a medial pivot during flexion of the knee, for all patients in the study. Average axial forces were higher for lunge compared to chair rising-sitting (224% vs. 187% body weight). In this study, we measured peak anteroposterior and mediolateral forces averaging 13.3% BW during lunge and 18.5% BW during chair rising-sitting. Mediolateral distributions of axial contact force were both patient and activity specific. All patients showed equitable medial-lateral loading during lunge but greater loads at the lateral compartment during chair rising-sitting. The results of this study may enable more accurate reproduction of in vivo loads and articular motion patterns in wear simulators and finite element models. This in turn may help advance our understanding of factors limiting longevity of TKA implants, such as aseptic loosening and polyethylene component wear, and enable improved TKA designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号