首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Passive muscle stretching can be used in vivo to assess the viscoelastic properties of the entire musculo-articular complex, but does not allow the specific determination of the muscle or tendon viscoelasticity. In this respect, the local muscle hardness (LMH) of the gastrocnemius medialis (GM) belly was measured during a passive ankle stretching of 10 subjects using transient elastography. A Biodex isokinetic dynamometer was used to stretch ankle plantar flexors, to measure ankle angle, and the passive torque developed by the ankle joint in resistance to the stretch. Results show that the LMH increased during the stretching protocol, with an averaged ratio between maximal LMH and minimal LMH of 2.62+/-0.46. Furthermore, LMH-passive torque relationships were nicely fitted using a linear model with mean correlation coefficients (R(2)) of 0.828+/-0.099. A good reproducibility was found for the maximal passive torque (ICC=0.976, SEM=2.9Nm, CV=5.5%) and the y-intercept of the LMH-passive torque relationship (ICC=0.893, SEM=105Pa, CV=7.8%). However, the reproducibility was low for the slope of this relationship (ICC=0.631, SEM=10.35m(-2), CV=60.4%). The y-intercept of the LMH-passive torque relationship was not significantly changed after 10min of static stretching. This result confirms the finding of a previous study indicating that changes in passive torque following static stretching could be explained by an acute increase in muscle length without any changes in musculo-articular intrinsic mechanical properties.  相似文献   

6.
7.
8.
During stretching studies, surface electromyography (sEMG) is used to ensure the passive state of the muscle, for the characterization of passive muscle mechanical properties. Different thresholds (1%, 2% or 5% of maximal) are indifferently used to set “passive state”. This study aimed to investigate the effects of a slight activity on the joint and muscle mechanical properties during stretching.The joint torque and muscle shear modulus of the triceps surae muscles were measured in fifteen healthy volunteers during ankle dorsiflexions: (i) in a “fully relaxed” state, (ii) during active conditions where participants were asked to produce an sEMG amplitude of 1%, 2% or 5% of their maximal sEMG amplitude of the triceps surae. The 1% condition was the only that did not result in significant differences in joint torque or shear modulus compared to the relaxed condition. In the 2% condition, increases in joint torque were found at 80% of the maximal angle in dorsiflexion, and in the shear modulus of gastrocnemius medialis and gastrocnemius lateralis at the maximal angle in dorsiflexion. During the 5% condition, joint torque and the shear modulus of gastrocnemius medialis were higher than during relaxed condition at angles larger than 40% of maximal angle in dorsiflexion. The results provide new insights on the thresholds that should be considered for the design of stretching studies. A threshold of 1% seems much more appropriate than a 2% or 5% threshold in healthy participants. Further studies are required to define similar thresholds for patients.  相似文献   

9.
We analyse the Molecular Jet-hypothesis proposed by Morel & Bachouchi (1988, J. theor. Biol. 132, 83.). This hypothesis attempts to explain the movement of covaspheres that contain myosin heads attached to actin filaments. This movement occurs during muscle contraction. However, the hypothesis does not predict the velocity of covaspheres correctly. Therefore, we are studying additional aspects of the hypothesis.  相似文献   

10.
Sarcopenia, the loss of skeletal muscle mass and function during aging, is a major contributor to disability and frailty in the elderly. Previous studies found a protective effect of reduced histone deacetylase activity in models of neurogenic muscle atrophy. Because loss of muscle mass during aging is associated with loss of motor neuron innervation, we investigated the potential for the histone deacetylase (HDAC) inhibitor butyrate to modulate age‐related muscle loss. Consistent with previous studies, we found significant loss of hindlimb muscle mass in 26‐month‐old C57Bl/6 female mice fed a control diet. Butyrate treatment starting at 16 months of age wholly or partially protected against muscle atrophy in hindlimb muscles. Butyrate increased muscle fiber cross‐sectional area and prevented intramuscular fat accumulation in the old mice. In addition to the protective effect on muscle mass, butyrate reduced fat mass and improved glucose metabolism in 26‐month‐old mice as determined by a glucose tolerance test. Furthermore, butyrate increased markers of mitochondrial biogenesis in skeletal muscle and whole‐body oxygen consumption without affecting activity. The increase in mass in butyrate‐treated mice was not due to reduced ubiquitin‐mediated proteasomal degradation. However, butyrate reduced markers of oxidative stress and apoptosis and altered antioxidant enzyme activity. Our data is the first to show a beneficial effect of butyrate on muscle mass during aging and suggests HDACs contribute to age‐related muscle atrophy and may be effective targets for intervention in sarcopenia and age‐related metabolic disease.  相似文献   

11.
12.
The aim of this human study was to investigate the effect of experimentally induced muscle pain on the modifications of motor unit discharge rate during sustained, constant-force contractions. Intramuscular and multichannel surface electromyographic (EMG) signals were collected from the right and left tibialis anterior muscle of 11 volunteers. The subjects performed two 4-min-long isometric contractions at 25% of the maximal dorsiflexion torque, separated by a 20-min rest. Before the beginning of the second contraction, hypertonic (painful; right leg) or isotonic (nonpainful; left leg) saline was injected into the tibialis anterior. Pain intensity scores did not change significantly in the first 150 s of the painful contraction. Exerted torque and its coefficient of variation were the same for the painful and nonpainful contractions. Motor unit discharge rate was higher in the beginning of the nonpainful contraction than the painful contraction on the right side [means +/- SE, 11.3 +/- 0.2 vs. 10.6 +/- 0.2 pulses/s (pps); P < 0.01] whereas it was the same for the two contractions on the left side (11.6 +/- 0.2 vs. 11.5 +/- 0.2 pps). The decrease in discharge rate in 4 min was smaller for the painful (0.4 +/- 0.1 pps) than for the control contractions (1.3 +/- 0.1 pps). Initial value and decrease in motor unit conduction velocity were not different in the four contractions (right leg, 4.0 +/- 0.1 m/s with decrease of 0.6 +/- 0.1 m/s in 4 min; left leg, 4.1 +/- 0.1 m/s with 0.7 +/- 0.1 m/s decrease). In conclusion, stimulation of nociceptive afferents by injection of hypertonic saline did not alter motor unit conduction velocity but reduced the initial motor unit discharge rates and the difference between initial and final discharge rates during sustained contraction.  相似文献   

13.
The purpose of this study was to assess the effect of low-frequency force steadiness practice in the plantar flexor muscles on postural sway during quiet standing. Healthy young 21 men (21±1 yrs) were randomly assigned to a practice group (n=14) and a nonexercising control group (n=7). Practice groups were divided by frequency of practice: 7 participants practiced once a week, and the other 7 twice a week, for 4 weeks. Steadiness practice required practice group to 5 sets of 60-s contraction at levels corresponding to 10% and 20% maximal voluntary contraction (MVC) in the plantar flexor muscles. The 4-week-long practice period reduced the force fluctuations (assessed as the standard deviation (SD) of the outputted force during steady isometric plantar flexion) and postural sway (assessed as SD of the center of mass velocity during quiet standing). However, these practice effects were not significantly affected by the practice frequencies (1 vs. 2 sessions per week) examined in this study. Further, a linear regression analysis revealed the association between prepractice postural sway and the relative change in postural sway by the practice (r=-0.904) in the practice group. These results suggest that the steadiness practice in plantar flexor muscles improves postural stability during quiet standing, even though the practice is low-frequency (once a week) and low-intensity (within 20% MVC). These practice effects are dependent on prepractice postural stability. Further, the present results have provided the functional significance of force fluctuation in lower limb muscles.  相似文献   

14.
15.
We investigated the effects of caffeine mouth rinse on endurance performance, muscle recruitment (i.e., electromyographic activity of the vastus lateralis and rectus femoris), rating of perceived effort and heart rate. Twelve physically-active healthy men cycled at 80% of their respiratory compensation point until task failure. The participants rinsed their mouths for 10 seconds with placebo (PLA, 25 mL of a solution composed of non-caloric mint essence) or caffeine (CAF, 25 mL of 1.2% of anhydrous caffeine concentration with non-caloric mint essence) every 15 minutes of exercise. Time until exhaustion increased 17% (effect size = 0.70) in CAF compared to PLA (p = 0.04). The wavebands of low-frequency electromyographic activity (EMG) of the vastus lateralis and rectus femoris was lower in CAF group than PLA at 50% of the time until exhaustion (p = 0.04). The global EMG signal was lower in CAF group than PLA at 100% of the time until exhaustion (p = 0.001). The rating of perceived effort pooled was higher in CAF mouth rinse (p = 0.001) than PLA group. No effect was found on the heart rate between the groups (p > 0.05). Caffeine mouth rinse increases endurance performance, rating of perceived effort and decreases muscle activity during a moderate-intensity exercise.  相似文献   

16.
17.
In cardiac muscle, the giant protein titin exists in different length isoforms expressed in the molecule's I-band region. Both isoforms, termed N2-A and N2-B, comprise stretches of Ig-like modules separated by the PEVK domain. Central I-band titin also contains isoform-specific Ig-motifs and nonmodular sequences, notably a longer insertion in N2-B. We investigated the elastic behavior of the I-band isoforms by using single-myofibril mechanics, immunofluorescence microscopy, and immunoelectron microscopy of rabbit cardiac sarcomeres stained with sequence-assigned antibodies. Moreover, we overexpressed constructs from the N2-B region in chick cardiac cells to search for possible structural properties of this cardiac-specific segment.We found that cardiac titin contains three distinct elastic elements: poly-Ig regions, the PEVK domain, and the N2-B sequence insertion, which extends approximately 60 nm at high physiological stretch. Recruitment of all three elements allows cardiac titin to extend fully reversibly at physiological sarcomere lengths, without the need to unfold Ig domains. Overexpressing the entire N2-B region or its NH(2) terminus in cardiac myocytes greatly disrupted thin filament, but not thick filament structure. Our results strongly suggest that the NH(2)-terminal N2-B domains are necessary to stabilize thin filament integrity. N2-B-titin emerges as a unique region critical for both reversible extensibility and structural maintenance of cardiac myofibrils.  相似文献   

18.
The aim of the present study was to test the hypothesis that the oxidation rate of ingested carbohydrate (CHO) is impaired during exercise in the heat compared with a cool environment. Nine trained cyclists (maximal oxygen consumption 65 +/- 1 ml x kg body wt(-1) x min(-1)) exercised on two different occasions for 90 min at 55% maximum power ouptput at an ambient temperature of either 16.4 +/- 0.2 degrees C (cool trial) or 35.4 +/- 0.1 degrees C (heat trial). Subjects received 8% glucose solutions that were enriched with [U-13C]glucose for measurements of exogenous glucose, plasma glucose, liver-derived glucose and muscle glycogen oxidation. Exogenous glucose oxidation during the final 30 min of exercise was significantly (P < 0.05) lower in the heat compared with the cool trial (0.76 +/- 0.06 vs. 0.84 +/- 0.05 g/min). Muscle glycogen oxidation during the final 30 min of exercise was increased by 25% in the heat (2.07 +/- 0.16 vs. 1.66 +/- 0.09 g/min; P < 0.05), and liver-derived glucose oxidation was not different. There was a trend toward a higher total CHO oxidation and a lower plasma glucose oxidation in the heat although this did not reach statistical significance (P = 0.087 and P = 0.082, respectively). These results demonstrate that the oxidation rate of ingested CHO is reduced and muscle glycogen utilization is increased during exercise in the heat compared with a cool environment.  相似文献   

19.
Postexercise muscle soreness was induced in the elbow flexors of human volunteer subjects through the use of a regimen of eccentric contractions. Physical examination before and 48 h after the exercise included measurements of range of elbow motion at the elbow and of arm diameter. Electromyographic (EMG) observations, utilizing fine wire electrodes introduced into each of the elbow flexors, were carried out before and 48 h after the exercise. These observations included resting EMG levels, EMG activity under various isometric loads, and activity during active and passive extensions. The soreness induced was accompanied by a reduction in resting elbow angle while the subjects stood with arms relaxed at their sides, decreased range of both flexion and extension of the elbow, and swelling of the arm. EMG measurements showed no increase in EMG activity as the sore arms were extended passively at the elbow, indicating that the extra resistance to extension associated with the soreness was not a result of stretch receptor-induced activity in the flexors. The results rule out the possibility that neuromuscular activity is responsible for the restriction of motion and are consistent with the idea that edematous changes within the perimuscular connective tissue alter the elastic behavior of the muscles and cause restriction of motion.  相似文献   

20.
The purpose of this study was to determine the effect of an acute static stretching bout of the biceps brachii on torque, electromyography (EMG), and mechanomyography (MMG) during concentric isokinetic muscle actions. Eighteen (men, n = 10; women, n = 8) adult subjects (M +/- SD age = 22.7 +/- 2.8 years; weight = 78.0 +/- 17.0 kg; height = 177.9 +/- 11.0 cm) performed maximal isokinetic (30 and 270 degrees.s(-1)) forearm flexion strength testing on 2 occasions while EMG and MMG were recorded. Subjects were randomly assigned to stretching (STR) or nonstretching (NSTR) protocols before strength testing. Two-way ANOVAs with repeated measures revealed significantly (p < or = 0.05) greater torque for NSTR (M +/- SEM = 36.9 +/- 3.3 N.m) vs. STR (35.2 +/- 3.3 N.m), significantly greater MMG amplitude for STR vs. NSTR for 30 degrees.s(-1) (STR = 93.5 +/- 14.4 mV; NSTR = 63.1 +/- 10.6 mV) and 270 degrees.s(-1) (STR = 207.6 +/- 35.6 mV; NSTR = 136.4 +/- 31.7 mV), and no difference in EMG amplitude. These results indicate that a greater ability to produce torque without prior stretching is related to the musculotendinous stiffness of the muscle rather than the number of motor units activated. This suggests that performing activities that reduce muscle stiffness (such as stretching), may be detrimental to performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号