首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transmission of mechanical muscle force to bone for musculoskeletal stability and movement is one of the most important functions of tendon. The load-bearing tendon core is composed of highly aligned collagen-rich fascicles interspersed with stromal cells (tenocytes). Despite being built to bear very high mechanical stresses, supra-physiological/repetitive mechanical overloading leads to tendon microdamage in fascicles, and potentially to tendon disease and rupture. To date, it is unclear to what extent intrinsic healing mechanisms of the tendon core compartment can repair microdamage. In the present study, we investigated the healing capacity of the tendon core compartment in an ex vivo tissue explant model. To do so, we isolated rat tail tendon fascicles, damaged them by applying a single stretch to various degrees of sub-rupture damage and longitudinally assessed downstream functional and structural changes over a period of several days. Functional damage was assessed by changes in the elastic modulus of the material stress-strain curves, and biological viability of the resident tenocytes. Structural damage was quantified using a fluorescent collagen hybridizing peptide (CHP) to label mechanically disrupted collagen structures. While we observed functional mechanical damage for strains above 2% of the initial fascicle length, structural collagen damage was only detectable for 6% strain and beyond. Minimally loaded/damaged fascicles (2–4% strain) progressively lost elastic modulus over the course of tissue culture, despite their collagen structures remaining intact with high degree of maintained cell viability. In contrast, more severely overloaded fascicles (6–8% strain) with damage at the molecular/collagen level showed no further loss of the elastic modulus but markedly decreased cell viability. Surprisingly, in these heavily damaged fascicles the elastic modulus partially recovered, an effect also seen in further experiments on devitalized fascicles, implying the possibility of a non-cellular but matrix-driven mechanism of molecular repair. Overall, our findings indicate that the tendon core has very little capacity for self-repair of microdamage. We conclude that stromal tenocytes likely do not play a major role in anabolic repair of tendon matrix microdamage, but rather mediate catabolic matrix breakdown and communication with extrinsic cells that are able to effect tissue repair.  相似文献   

2.
This study describes the development and application of a novel rat patellar tendon model of mechanical fatigue for investigating the early in vivo response to tendon subfailure injury. Patellar tendons of adult female Sprague-Dawley rats were fatigue loaded between 1–35 N using a custom-designed loading apparatus. Patellar tendons were subjected to Low-, Moderate- or High-level fatigue damage, defined by grip-to-grip strain measurement. Molecular response was compared with that of a laceration-repair injury. Histological analyses showed that progression of tendon fatigue involves formation of localized kinked fiber deformations at Low damage, which increased in density with presence of fiber delaminations at Moderate damage, and fiber angulation and discontinuities at High damage levels. RT-PCR analysis performed at 1- and 3-day post-fatigue showed variable changes in type I, III and V collagen mRNA expression at Low and Moderate damage levels, consistent with clinical findings of tendon pathology and were modest compared with those observed at High damage levels, in which expression of all collagens evaluated were increased markedly. In contrast, only type I collagen expression was elevated at the same time points post-laceration. Findings suggest that cumulative fatigue in tendon invokes a different molecular response than laceration. Further, structural repair may not be initiated until reaching end-stage fatigue life, where the repair response may unable to restore the damaged tendon to its pre-fatigue architecture.  相似文献   

3.
In some clinical trials or clinical practice, the therapeutic agent is administered repeatedly, and doses are adjusted in each patient based on repeatedly measured continuous responses, to maintain the response levels in a target range. Because a lower dose tends to be selected for patients with a better outcome, simple summarizations may wrongly show a better outcome for the lower dose, producing an incorrect dose–response relationship. In this study, we consider the dose–response relationship under these situations. We show that maximum‐likelihood estimates are consistent without modeling the dose‐modification mechanisms when the selection of the dose as a time‐dependent covariate is based only on observed, but not on unobserved, responses, and measurements are generated based on administered doses. We confirmed this property by performing simulation studies under several dose‐modification mechanisms. We examined an autoregressive linear mixed effects model. The model represents profiles approaching each patient's asymptote when identical doses are repeatedly administered. The model takes into account the previous dose history and provides a dose–response relationship of the asymptote as a summary measure. We also examined a linear mixed effects model assuming all responses are measured at steady state. In the simulation studies, the estimates of both the models were unbiased under the dose modification based on observed responses, but biased under the dose modification based on unobserved responses. In conclusion, the maximum‐likelihood estimates of the dose–response relationship are consistent under the dose modification based only on observed responses.  相似文献   

4.
We measured a number of pigmentation and skin response phenotypes in a sample of volunteers (n=397) living in State College, PA. The majority of this sample was composed of four groups based on stated ancestry: African‐American, European‐American, Hispanic and East Asian. Several measures of melanin concentration (L*, melanin index and adjusted melanin index) were estimated by diffuse reflectance spectroscopy and compared. The efficacy of these measures for assessing constitutive pigmentation and melanogenic dose–response was evaluated. Similarly, several measures of erythema (a*, erythema index and adjusted erythema index) were compared and evaluated in their efficacy in measuring erythema and erythemal dose–response. We show a high correspondence among all of the measures for the assessment of constitutive pigmentation and baseline erythema. However, our results demonstrate that evaluating melanogenic dose–response is highly dependent on the summary statistic used: while L* is a valid measure of constitutive pigmentation it is not an effective measure of melanogenic dose–response. Our results also confirm the use of a*, as it is shown to be highly correlated with the adjusted erythema index, a more advanced measure of erythema based on the apparent absorbance. Diffuse reflectance spectroscopy can be used to quantify the constitutive pigmentation, melanogenic dose–response at 7 d and erythemal dose–response at both 24 h and 7 d postexposure.  相似文献   

5.
Damage accumulation underlies tendinopathy. Animal models of overuse injuries do not typically control loads applied to the tendon. Our in vivo model in the rat patellar tendon allows direct control of the loading applied to the tendon. Despite this advantage, natural variation among tendons results in different amounts of damage induced by the same loading protocol. Our objectives were to (1) assess changes in the initial mechanical parameters (hysteresis, stiffness of the loading and unloading load-displacement curves, and elongation) after fatigue loading to identify parameters that are indicative of the induced damage, and (2) evaluate the relationships between these identified initial damage indices with the stiffness 7 day after loading. Left patellar tendons of adult, female retired breeder, Sprague-Dawley rats (n = 68) were fatigue loaded per our previously published in vivo fatigue loading protocol. To induce a range of damage, fatigue loading consisted of either 5, 100, 500 or 7200 cycles that ranged from 1 N to 40 N. Diagnostic tests were applied before and immediately after fatigue loading, and after 45 min of recovery to deduce recoverable and non-recoverable changes in initial damage indices. Relationships between these initial damage indices and the 7-day stiffness (at sacrifice) were determined. Day-0 hysteresis, loading and unloading stiffness exhibited cycle-dependent changes. Initial hysteresis loss correlated with the 7-day stiffness. k-means cluster analysis demonstrated a relationship between 7-day stiffness and day-0 hysteresis and unloading stiffness. This analysis also separated samples that exhibited low from high damage in response to both high or low number of cycles; a key delineation for interpretation of the biological response in future studies. Identifying initial parameters that reflect the induced damage is critical since the ability of the tendon to repair depends on the damage induced and the number of applied loading cycles.  相似文献   

6.
Tendon functionality is related to its mechanical properties. Tendon damage leads to a reduction in mechanical strength and altered biomechanical behavior, and therefore leads to compromised ability to carry out normal functions such as joint movement and stabilization. Damage can also accumulate in the tissue and lead to failure. A noninvasive method with which to measure such damage potentially could quantify structural compromise from tendon injury and track improvement over time. In this study, tendon mechanics are measured before and after damage is induced by "overstretch" (strain exceeding the elastic limit of the tissue) using a traditional mechanical test system while ultrasonic echo intensity (average gray scale brightness in a B-mode image) is recorded using clinical ultrasound. The diffuse damage caused by overstretch lowered the stress at a given strain in the tissue and decreased viscoelastic response. Overstretch also lowered echo intensity changes during stress relaxation and cyclic testing. As the input strain during overstretch increased, stress levels and echo intensity changes decreased. Also, viscoelastic parameters and time-dependent echo intensity changes were reduced.  相似文献   

7.
The purpose of this study wasto determine the effect of long-term exercise on tendon compliance andto ascertain whether tendons adapt differently to downhill running vs.running on a level surface. We carried out this investigation on thegastrocnemius tendon of helmeted guinea fowl (Numidameleagris) that were trained for 8-12 wk before commencingexperimental procedures. We used an in situ technique to measure tendonstiffness. The animals were deeply anesthetized with isofluorane duringall in situ procedures. Our results indicate that long-term exerciseincreased tendon stiffness. This finding held true after normalizationfor the cross-sectional area of the free tendon, likely reflecting achange in the material properties of the exercised tendons. Whethertraining consisted of level or downhill running did not appear toinfluence response of the tendon to exercise. We hypothesize that theincreased stiffness observed in tendons after a long-term runningprogram may be a response to repeated stress and may function as amechanism to resist tendon damage due to mechanical fatigue.

  相似文献   

8.
Achilles tendon ruptures have been linked with detrimental changes in muscle-tendon structure, which may help explain long-term functional deficits. However, the causal effects of muscle-tendon structure on joint function have not been tested in a controlled setting. Therefore, the purpose of this study was to test the implications of muscle-tendon unit parameters on simulated single-leg heel raise height. We hypothesized that muscle fiber length and resting ankle angle – a clinical surrogate measure of tendon slack length – would predict single-leg heel raise height more strongly than other parameters. To test this hypothesis, we developed a two-part simulation paradigm that recreated clinically relevant muscle-tendon scenarios and then tested these parameters on single-leg heel raise height. We found that longer muscle fibers had the greatest positive effect on single-leg heel raise height. However, tendon slack length, determined by simulating resting ankle angles in a secondary analysis, revealed a stronger negative correlation with heel raise height. Our findings support previous clinical observations that both muscle fascicle length and resting tendon length are important muscle-tendon parameters for patient function. In addition to minimizing tendon elongation following rupture, treatment plans should focus on preserving plantarflexor muscle structure to mitigate functional loses following Achilles tendon ruptures.  相似文献   

9.
In this study, we propose a method for quantitative prediction of changes in concentrations of a number of key signaling, structural and effector molecules within the extracellular matrix of tendon. To achieve this, we introduce the notion of elementary cell responses (ECRs). An ECR defines a normal reference secretion profile of a molecule by a tenocyte in response to the tenocyte’s local strain. ECRs are then coupled with a model for mechanical damage of tendon collagen fibers at different straining conditions of tendon and then scaled up to the tendon tissue level for comparison with experimental observations. Specifically, our model predicts relative changes in ECM concentrations of transforming growth factor beta, interleukin 1 beta, collagen type I, glycosaminoglycan, matrix metalloproteinase 1 and a disintegrin and metalloproteinase with thrombospondin motifs 5, with respect to tendon straining conditions that are consistent with the observations in the literature. In good agreement with a number of in vivo and in vitro observations, the model provides a logical and parsimonious explanation for how excessive mechanical loading of tendon can lead to under-stimulation of tenocytes and a degenerative tissue profile, which may well have bearing on a better understanding of tendon homeostasis and the origin of some tendinopathies.  相似文献   

10.
Under tensile loading, tendon undergoes a number of unique structural changes that govern its mechanical response. For example, stretching a tendon is known to induce both the progressive “uncrimping” of wavy collagen fibrils and extensive lateral contraction mediated by fluid flow out of the tissue. However, it is not known whether these processes are interdependent. Moreover, the rate-dependence of collagen uncrimping and its contribution to tendon's viscoelastic mechanical properties are unknown. Therefore, the objective of this study was to (a) develop a methodology allowing for simultaneous measurement of crimp, stress, axial strain and lateral contraction in tendon under dynamic loading; (b) determine the interdependence of collagen uncrimping and lateral contraction by testing tendons in different swelling conditions; and (c) assess how the process of collagen uncrimping depends on loading rate. Murine flexor carpi ulnaris (FCU) tendons in varying ionic environments were dynamically stretched to a set strain level and imaged through a plane polariscope with the polarizer and analyzer at a fixed angle. Analysis of the resulting images allowed for direct measurement of the crimp frequency and indirect measurement of the tendon thickness. Our findings demonstrate that collagen uncrimping and lateral contraction can occur independently and interstitial fluid impacts tendon mechanics directly. Furthermore, tensile stress, transverse contraction and degree of collagen uncrimping were all rate-dependent, suggesting that collagen uncrimping plays a role in tendon's dynamic mechanical response. This study is the first to characterize the time-dependence of collagen uncrimping in tendon, and establishes structure–function relationships for healthy tendons that can be used to better understand and assess changes in tendon mechanics after disease or injury.  相似文献   

11.

Background

The deep tendon reflex assessments that are essential to the accurate diagnosis of neurological or neuromuscular disorders are conducted subjectively in clinical neurology. Our aim was to assess deep tendon reflexes objectively with a new reflex quantification method.

Methodology/Principal Findings

The present study used a motion analysis technique to collect quantitative measurements for both the input and output of normal patellar tendon reflex. Reflex responses were measured as knee angles. The patellar tendon reflexes of 100 healthy subjects were examined using 6 levels of tendon taps, where all the assessments were captured using motion capture system. A linear relationship was found between the experimental maximum tapping velocity and tapping angle (coefficient of determination = 0.989), which was consistent with the theoretical values. Tapping velocities were predictable according to tapping angles. The findings proved the reproducibility of tapping method in producing consistent input. The reflex amplitude was consistent between two randomly assigned groups, and linearly proportionate to the tapping velocity.

Conclusions/Significance

The findings on reflex amplitude indicate that motion analysis is a valid and reliable method of assessing and measuring deep tendon reflexes.  相似文献   

12.
The use of carbon ion beams in cancer therapy (also known as hadron therapy) is steadily growing worldwide; therefore, the demand for more efficient dosimetry systems is also increasing because daily quality assurance (QA) measurements of hadron radiotherapy is one of the most complex and time consuming tasks. The aim of this study is to develop a two-dimensional dosimetry system that offers high spatial resolution, a large field of view, quick data response, and a linear dose–response relationship.We demonstrate the dose imaging performance of a novel digital dose imager using carbon ion beams for hadron therapy. The dose imager is based on a newly-developed gaseous detector, a well-type glass gas electron multiplier. The imager is successfully operated in a hadron therapy facility with clinical intensity beams for radiotherapy. It features a high spatial resolution of less than 1 mm and an almost linear dose–response relationship with no saturation and very low linear-energy-transfer dependence. Experimental results show that the dose imager has the potential to improve dosimetry accuracy for daily QA.  相似文献   

13.
Tendons transmit load from muscle to bone by utilizing their unique static and viscoelastic tensile properties. These properties are highly dependent on the composition and structure of the tissue matrix, including the collagen I hierarchy, proteoglycans, and water. While the role of matrix constituents in the tensile response has been studied, their role in compression, particularly in matrix pressurization via regulation of fluid flow, is not well understood. Injured or diseased tendons and tendon regions that naturally experience compression are known to have alterations in glycosaminoglycan content, which could modulate fluid flow and ultimately mechanical function. While recent theoretical studies have predicted tendon mechanics using poroelastic theory, no experimental data have directly demonstrated such behavior. In this study, we use high-bandwidth AFM-based rheology to determine the dynamic response of tendons to compressive loading at the nanoscale and to determine the presence of poroelastic behavior. Tendons are found to have significant characteristic dynamic relaxation behavior occurring at both low and high frequencies. Classic poroelastic behavior is observed, although we hypothesize that the full dynamic response is caused by a combination of flow-dependent poroelasticity as well as flow-independent viscoelasticity. Tendons also demonstrate regional dependence in their dynamic response, particularly near the junction of tendon and bone, suggesting that the structural and compositional heterogeneity in tendon may be responsible for regional poroelastic behavior. Overall, these experiments provide the foundation for understanding fluid-flow-dependent poroelastic mechanics of tendon, and the methodology is valuable for assessing changes in tendon matrix compressive behavior at the nanoscale.  相似文献   

14.
Fatigue loading is a primary cause of tendon degeneration, which is characterized by the disruption of collagen fibers and the appearance of abnormal (e.g., cartilaginous, fatty, calcified) tissue deposits. The formation of such abnormal deposits, which further weakens the tissue, suggests that resident tendon cells acquire an aberrant phenotype in response to fatigue damage and the resulting altered mechanical microenvironment. While fatigue loading produces clear changes in collagen organization and molecular denaturation, no data exist regarding the effect of fatigue on the local tissue mechanical properties. Therefore, the objective of this study was to identify changes in the local tissue stiffness of tendons after fatigue loading. We hypothesized that fatigue damage would reduce local tissue stiffness, particularly in areas with significant structural damage (e.g., collagen denaturation). We tested this hypothesis by identifying regions of local fatigue damage (i.e., collagen fiber kinking and molecular denaturation) via histologic imaging and by measuring the local tissue modulus within these regions via atomic force microscopy (AFM). Counter to our initial hypothesis, we found no change in the local tissue modulus as a consequence of fatigue loading, despite widespread fiber kinking and collagen denaturation. These data suggest that immediate changes in topography and tissue structure – but not local tissue mechanics – initiate the early changes in tendon cell phenotype as a consequence of fatigue loading that ultimately culminate in tendon degeneration.  相似文献   

15.
In an attempt to stabilize the dose response in the Salmonella typhimurium test (STT), the use of DNA-bound products from BP was evaluated as a measure of the biologically effective dose. In addition to the previously documented interlaboratory variation, we observed a 3-fold difference in the dose response of TA100 to BP even when the assay was repeated with the same experimental conditions. When overall BP-DNA adduct formation was related to the level of His+ revertants, a series of responses emerged with two predominating. In the first type of response around 70 revertants per plate were generated for every BP molecule bound per 10(6) nucleotides of cellular DNA. The second response gave about 1400 revertants per plate for one BP bound in every 10(6) nucleotides. Several intermediates curves were also detected. The variation in the mutational response to binding levels occurred regardless of the source of S9 or the growth stage of the cells. These experiments indicate that there was no constant level of DNA damage that would lead to a specified number of revertants of TA100 by BP and that DNA modification was not solely responsible for mutagenic potency. It is possible that an induction of an error-prone repair function of the muc gene carried by the plasmid pKM101 in TA100 may be affecting the relationship between the measured adduct level and reversion frequency.  相似文献   

16.
We have used DNA microarrays to identify changes in gene expression in cells of the radioresistant human glioma cell lines T98G and U373 after low radiation doses (0.2-2 Gy). Using Bayesian linear models, we have identified a set of genes that respond to low doses of radiation; furthermore, a hypothesis-driven approach to data analysis has allowed us to identify groups of genes with defined non-linear dose responses. Specifically, one of the cell lines we have examined (T98G) shows increased radiosensitivity at low doses (low-dose hyper-radiosensitivity, HRS); thus we have also assessed sets of genes whose dose response mirrors this survival pattern. We have also investigated a time course for induction of genes over the period when the DNA damage response is expected to occur. We have validated these data using quantitative PCR and also compared genes up-regulated in array data to genes present in the polysomal RNA fraction after irradiation. Several of the radioresponsive genes that we describe code for proteins that may have an impact on the outcome of irradiation in these cells, including RAS homologues and kinases involved in checkpoint signaling, so understanding their differential regulation may suggest new ways of altering radioresistance. From a clinical perspective these data may also suggest novel targets that are specifically up-regulated in gliomas during radiotherapy treatments.  相似文献   

17.
18.
Tendon pathology has many manifestations, from spontaneous rupture to chronic tendinitis or tendinosis; the etiology and pathology of each are very different, and poorly understood. Tendon is a comparatively poorly vascularised tissue that relies heavily upon synovial fluid diffusion to provide nutrition. During tendon injury, as with damage to any tissue, there is a requirement for cell infiltration from the blood system to provide the necessary reparative factors for tissue healing. We describe in this review the response of the vasculature to tendon damage in a number of forms, and how and when the revascularisation or neovascularisation process occurs. We also include a section on the revascularisation of tendon during its use as a tendon graft in both ligament reconstruction and tendon–tendon grafting.  相似文献   

19.
The objectives of this study are twofold. First, to further develop the understanding of the relationship between the observed mechanical response and changes in the crimp pattern in human patellar tendon bone units. This is accomplished through the use of a specially constructed test frame and microscope system that permits observation and measurement of the crimp patterns as a function of load. Second, the results of the experimental study are used to develop a constitutive equation that includes spatial variation in the crimp pattern. The results of both the experimental and analytical study imply that local strain in the proximity of the attachment site is significantly larger than the strain in the central region of the tendon. The experimental and histological results are for specimens taken from four human bone-patellar tendon-bone units.  相似文献   

20.
The objective of this paper is to review the use, in mutagenesis, of various mathematical models to describe the dose–response relationship and to try to identify thresholds. It is often taken as axiomatic that genotoxic carcinogens could damage DNA at any level of exposure, leading to a mutation, and that this could ultimately result in tumour development. This has led to the assumption that for genotoxic chemicals, there is no discernible threshold. This assumption is increasingly being challenged in the case of aneugens. The distinction between `absolute' and `pragmatic' thresholds is made and the difficulties in determining `absolute' thresholds using hypothesis testing approaches are described. The potential of approaches, based upon estimation rather than statistical significance for the characterization of dose–response relationships, is stressed. The achievement of a good fit of a mathematical model to experimental data is not proof that the mechanism supposedly underlying this model is operating. It has been argued, in the case of genotoxic chemicals, that any effects produced by a genotoxic chemical which augments that producing a background incidence in unexposed individuals will lead to a dose–response relationship that is non-thresholded and is linear at low doses. The assumptions underlying this presumption are explored in the context of the increasing knowledge of the mechanistic basis of mutagenicity and carcinogenicity. The possibility that exposure to low levels of genotoxic chemicals may induce and enhance defence and repair mechanisms is not easily incorporated into many of the existing mathematical models and should be an objective in the development of the next generation of biologically based dose–response (BB-DR) models. Studies aimed at detecting or characterizing non-linearities in the dose–response relationship need appropriate experimental designs with careful attention to the choice of biomarker, number and selection of dose levels, optimum allocation of experimental units and appropriate levels of replication within and repetition of experiments. The characterization of dose–response relationships with appropriate measures of uncertainty can help to identify `pragmatic' thresholds based upon biologically relevant criteria which can help in the regulatory process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号