首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Captopril when administered intracerebroventricularly (icv) in doses of 100, 300, 500 and 1000 micrograms induced a dose dependent antinociceptive effect in rats. Naloxone pretreatment (10 mg/kg, ip) completely antagonised antinociceptive effect of captopril, suggesting thereby the involvement of brain enkephalinergic system. Captopril 300 micrograms, icv potentiated the antinociceptive effect of morphine in intact animals. The bilateral adrenalectomy did not have any effect on this potentiation as against the reported blockade of potentiation in adrenalectomized animals when captopril was administered by systemic route. Thus potentiation of morphine induced antinociception by icv captopril is unlikely to be exerted through an effect on adrenal function and is most likely due to increased brain enkephalin levels.  相似文献   

2.
This study investigated the mechanism of agonist-induced opioid receptor down-regulation. Incubation of HEK 293 cells expressing FLAG-tagged delta and mu receptors with agonists caused a time-dependent decrease in opioid receptor levels assayed by immunoblotting. Pulse-chase experiments using [(35)S]methionine metabolic labeling indicated that the turnover rate of delta receptors was accelerated 5-fold following agonist stimulation. Inactivation of functional G(i) and G(o) proteins by pertussis toxin-attenuated down-regulation of the mu opioid receptor, while down-regulation of the delta opioid receptor was unaffected. Pretreatment of cells with inhibitors of lysosomal proteases, calpain, and caspases had little effect on mu and delta opioid receptor down-regulation. In marked contrast, pretreatment with proteasome inhibitors attenuated agonist-induced mu and delta receptor down-regulation. In addition, incubation of cells with proteasome inhibitors in the absence of agonists increased steady-state mu and delta opioid receptor levels. Immunoprecipitation of mu and delta opioid receptors followed by immunoblotting with ubiquitin antibodies suggested that preincubation with proteasome inhibitors promoted accumulation of polyubiquitinated receptors. These data provide evidence that the ubiquitin/proteasome pathway plays a role in agonist-induced down-regulation and basal turnover of opioid receptors.  相似文献   

3.
Kappa receptor mediated opioid dependence in rhesus monkeys   总被引:1,自引:0,他引:1  
D E Gmerek  J H Woods 《Life sciences》1986,39(11):987-992
The kappa receptor-selective agonist U-50, 488 was administered chronically to rhesus monkeys. Tolerance developed to the overt behavioral effects of U-50,488 without cross-tolerance to morphine. Withdrawal behaviors produced by deprivation, naloxone or quadazocine administration in U-50, 488-dependent monkeys consisted of hyperactivity, excessive grooming, and yawning. The syndrome was suppressed in a dose-related manner by a kappa agonist, ethylketazocine, but not by doses of morphine that suppressed its own withdrawal. The mu-selective antagonist, beta-funaltrexamine, at doses which are active in morphine-dependent monkeys, did not precipitate withdrawal in U50, 488-dependent monkeys. Dependence, which is the result of activity at the kappa receptor, was distinct from morphine dependence.  相似文献   

4.
Opioid dependence is correlated with the adaptive changes at the cellular level following chronic opioid use, and believed to be the main cause for the relapse of drug taking behavior of addicts. Despite decades of intensive studies, the underlying mechanisms of morphine dependence are still unclear. Here, we present evidence that JWA was induced by chronic morphine treatment in specific brain regions, and knockdown of JWA expression significantly reduced the withdrawal response to chronic morphine treatment in rats. We further demonstrated that the morphine induced DOR expression, while activation of DARPP-32 and MAP kinase was suppressed by JWA knockdown. Through an in vitro cell model of chronic morphine exposure, we also found that JWA is required for maintaining the stability of DOR via the ubiquitin–proteasome pathway. These observations suggest that JWA is directly involved in the regulation of chronic morphine dependence.  相似文献   

5.
C57 BL/6J (C57) mice display a particular pattern of responses following morphine administration, such as a rapid development of tolerance to the pharmacological action of the opiate and an increase in locomotor activity after a single injection of the drug. We have measured met-enkephalin content and the responsiveness of different opiate receptors after repeated administration of morphine and naloxone. Prolonged morphine administration changes neither met-enkephalin levels, nor the density of the opiate receptors in mice brain. In contrast repeated administration of the opiate antagonist naloxone, produced a marked increase in the number of 3H- DHM and 3H- DADLE binding sites in striatum and brainstem without modifying met-enkephalin concentrations. Behavioral studies have indicated that the morphine-induced increase in locomotor activity is enhanced in naloxone pretreated mice, thus suggesting a possible correlation between the behavioral response to morphine in C57 mice and the higher number of opiate receptors in the striatum.  相似文献   

6.
The inhibitory effects of kappa-opioid receptor agonists on systemic skin scratching induced by the intravenous administration of morphine, a micro-opioid receptor agonist, were investigated in rhesus monkeys. Intravenous pretreatment with kappa-opioid receptor agonists, either TRK-820 at 0.25 and 0.5 microg/kg or U-50488H at 64 and 128 microg/kg, inhibited systemic skin scratching induced by morphine at 1 mg/kg, i.v. in a dose-dependent manner. By the intragastric route, apparent inhibitory effects on morphine-induced systemic skin scratching were evident following pretreatment with TRK-820 at 4 microg/kg but not with U-50488H from 512 to 2048 microg/kg. These results suggest that TRK-820 produces antipruritic effects on i.v. morphine-induced systemic skin scratching and is more readily absorbed intragastrically than is U-50488H, resulting in high bioavailability in the intragastric route.  相似文献   

7.
The effects of 17β-estradiol (E2), administered in Silastic capsules for 24 hours at intervals of 10 or 14 days, on follicular development and menstrual cycle characteristics were studied in 13 rhesus monkeys. In seven monkeys receiving E2 at l0-day intervals for 50 treatment periods, new follicles frequently developed between treatments but usually regressed. In seven instances, the follicles persisted longer than expected but were steroidogenically suppressed and regressed spontaneously. Ovulation occurred in only two instances. In six monkeys receiving E2 at 14-day intervals, new follicles developed regularly, with seven ovulations occurring in 37 treatment periods. A persistent anovulatory follicle was noted in only one instance. Menstruation occurred with equal frequency, and the interval from treatment to onset of menstruation was not significantly different regardless of treatment or the occurrence of ovulation; the intervals between menstruation approximated those of normal menstrual cycles. In general, following termination of treatment, menstrual cycles returned to normal quickly. These data indicate that E2 administered intermittently at 10-day intervals effectively suppresses ovulation, and they provide new insight into the actions of E2 on folliculogenesis in primates.  相似文献   

8.
Z H Song  A E Takemori 《Life sciences》1991,48(15):1447-1453
The modulatory effects of intrathecally (i.t.) administered dynorphin A(1-17) and dynorphin A(1-13) on morphine antinociception have been studied previously in rats by other investigators. However, both potentiating and attenuating effects have been reported. In this study, the modulatory effects of i.t. administered dynorphin A(1-17) as well as the smaller fragment, dynorphin A(1-8), were studied in mice. In addition, nor-binaltorphimine (nor-BNI), a highly selective kappa opioid receptor antagonist, and naltrindole (NTI), a highly selective delta opioid receptor antagonist, were used to characterize the possible involvement of spinal kappa and delta opioid receptors in the modulatory effects of the dynorphins. Dynorphin A(1-17) and dynorphin A(1-8) administered i.t. at doses that did not alter tail-flick latencies, were both able to antagonize in a dose-dependent manner, the antinociceptive action of s.c. administered morphine sulfate. The antinociceptive ED50 of morphine sulfate was increased 3.9- and 5.3-fold by 0.4 nmol/mouse of dynorphin A(1-17) and dynorphin A(1-8), respectively. Injections of 0.4 and 0.8 nmol/mouse of nor-BNI i.t., but not its inactive enantiomer (+)-1-nor-BNI, inhibited dose-dependently the antagonistic effects of the dynorphins. These doses of nor-BNI alone did not affect the antinociceptive action of morphine sulfate. Intrathecal administration of 5 nmol/mouse of NTI also did not affect the modulatory effects of dynorphins. These observations that dynorphins exert their antagonistic effects on morphine-induced antinociception stereoselectively through spinal kappa opioid receptors may suggest a coupling between spinal kappa and mu opioid receptors.  相似文献   

9.
Heroin, α-l-acetylmethadol (LAAM), morphine, and methadone each maintained self-administration in rhesus monkeys. The order of relative potency was heroin ≥ LAAM > morphine ≥ methadone. Total daily drug intake increased as dose per injection increased; maximum daily intake was inversely related to relative potency. At high doses, self-injection of methadone and LAAM caused stupor and/or respiratory failure in some monkeys. These toxic effects were partly or completely reversible by naloxone.  相似文献   

10.
This study was essentially an in vivo protection experiment designed to test further the hypothesis that stress induces release of endogenous opioids which then act at opioid receptors. Rats that were either subjected to restraint stress for 1 hr or unstressed were injected ICV with either saline or 2.5 micrograms of beta-funaltrexamine (beta-FNA), an irreversible opioid antagonist that alkylates the mu-opioid receptor. Twenty-four hours later, subjects were tested unstressed for morphine analgesia (tail-flick assay) or were sacrificed and opioid binding in brain was determined. [3H]D-Ala2NMePhe4-Gly5(ol)enkephalin (DAGO) served as a specific ligand for mu- opioid receptors, and [3H]-bremazocine as a general ligand for all opioid receptors. Rats injected with saline while stressed were significantly less sensitive to the analgesic action of morphine 24 hr later than were their unstressed counterparts. Beta-FNA pretreatment attenuated morphine analgesia in an insurmountable manner. Animals pretreated with beta-FNA while stressed were significantly more sensitive to the analgesic effect of morphine than were animals that received beta-FNA while unstressed, consistent with the hypothesis that stress induces release of endogenous opioids that would protect opioid receptors from alkylation by beta-FNA. beta-FNA caused small and similar decreases in [3H]-DAGO binding in brain of both stressed and unstressed animals. Stressed rats injected with saline tended to have increased levels of [3H]DAGO and [3H]-bremazocine binding compared to the other groups. This outcome may be relevant to the tolerance to morphine analgesia caused by stress.  相似文献   

11.
《Life sciences》1997,60(9):PL155-PL159
An antisense oligodeoxynucleotide (ODN) targeting 20 bases of the coding sequence of the cloned delta opioid receptor (DOR-1), a mismatched ODN (different from the antisense ODN at 4 bases) or saline was administered to 3 groups of CD-1 mice implanted with naltrexone pellets (7.5 mg) for 7 days. Morphine supersensitivity (i.e., increased potency as defined by decreased morphine ED50 values) was observed 24 h after pellet removal (day 8) in mice treated with saline or mismatch ODN, but not in antisense ODN treated mice. Antisense ODN alone had no effect on basal nociceptive thresholds or morphine analgesia but reduced the analgesic potency of the delta2 opioid agonist [D-Ala2]deltorphin II. These data suggest that the delta2 opioid receptor system participates in the adaptive changes contributing to increased morphine potency following chronic naltrexone treatment.  相似文献   

12.
Bu Q  Yang Y  Yan G  Hu Z  Hu C  Duan J  Lv L  Zhou J  Zhao J  Shao X  Deng Y  Li Y  Li H  Zhu R  Zhao Y  Cen X 《Journal of Proteomics》2012,75(4):1330-1342
It has been known that the reinforcing effects and long-term consequences of morphine are closely associated with nucleus accumbens (NAc) in the brain, a key region of the mesolimbic dopamine pathway. However, the proteins involved in neuroadaptive processes and withdrawal symptom in primates of morphine dependence have not been well explored. In the present study, we performed proteomes in the NAc of rhesus monkeys of morphine dependence and withdrawal intervention with clonidine or methadone. Two-dimensional electrophoresis was used to compare changes in cytosolic protein abundance in the NAc. We found a total of 46 proteins differentially expressed, which were further identified by mass spectrometry analysis. The identified proteins can be classified into 6 classes: metabolism and mitochondrial function, synaptic transmission, cytoskeletal proteins, oxidative stress, signal transduction and protein synthesis and degradation. Importantly, we discovered 14 proteins were significantly but similarly altered after withdrawal therapy with clonidine or methadone, revealing potential pharmacological strategies or targets for the treatment of morphine addiction. Our study provides a comprehensive understanding of the neuropathophysiology associated with morphine addiction and withdrawal therapy in primate, which is helpful for the development of opiate withdrawal pharmacotherapies.  相似文献   

13.
The S-3-nitro-2-pyridinesulfenyl (SNpys) group in an affinity ligand can bind to a free thiol group of a cysteine residue in a target receptor molecule, forming a disulfide bond via the thiol-disulfide exchange reaction. SNpys-containing Leu-enkephalin analogues of [-Ala2, Leu5]-enkephalyl-Cys(Npys)6 and [-Ala2,Leu(CH2SNpys)5]enkephalin, and dynorphin A analogues of [-Ala2,Cys(Npys)12]dynorphin A-(1-13) amide and [-Ala2,Cys(Npys)8]dynorphin A-(1-9) amide have been found to affinity-label all of the δ, μ (rat brain), and κ (guinea pig brain) opioid receptor subtypes. In this study, using these chemically synthesized SNpys-containing analogues, we attempted to identify the analogues that affinity-label the cysteine residue at position 60 of the δ opioid receptor. We first established the assay procedure, principally based on the receptor binding assay to use COS-7 cells expressing the δ opioid receptor. Then, using a mutant δ receptor with the Cys60Ala substitution, we assayed the SNpys-containing analogues for their specific affinity-labeling. [-Ala2,Cys(Npys)12]dynorphin A-(1-13) amide was found to have drastically reduced labeling activity for this mutant receptor as compared to its activity for the wild-type δ receptor. Other analogues exhibited almost the same activity for both the wild-type and mutant δ receptors. These results indicate that the δ-Cys60 residue has a free thiol group, which is labeled by [-Ala2,Cys(Npys)12]dynorphin A-(1-13) amide.  相似文献   

14.
Rhesus monkeys (Macaca mulatta) have shown the ability to monitor their own mental states, but fail the mirror self-recognition test. In humans, the sense of self-agency is closely related to self-awareness, and results from monitoring the relationship between intentional, sensorimotor and perceptual information. Humans and rhesus monkeys were trained to move a computer icon with a joystick while a distractor icon partially matched their movements. Both humans and monkeys were able to monitor and identify the icon they were controlling, suggesting they have some understanding of self-agency.  相似文献   

15.
Endocardiosis was diagnosed as an incidental finding in two rhesus monkeys. The gross and histologic appearance of the lesions was described, and the similarity of this lesion to lesions of endocardiosis as found in dogs and man was discussed.The animals used in this study were handled in accordance with the Guide for Laboratory Animal Facilities and Care established by the National Academy of Science, National Research Council.  相似文献   

16.
Gene targeting was used to delete exon 2 of mouse DOR-1, which encodes the delta opioid receptor. Essentially all 3H-[D-Pen2,D-Pen5]enkephalin (3H-DPDPE) and 3H-[D-Ala2,D-Glu4]deltorphin (3H-deltorphin-2) binding is absent from mutant mice, demonstrating that DOR-1 encodes both delta1 and delta2 receptor subtypes. Homozygous mutant mice display markedly reduced spinal delta analgesia, but peptide delta agonists retain supraspinal analgesic potency that is only partially antagonized by naltrindole. Retained DPDPE analgesia is also demonstrated upon formalin testing, while the nonpeptide delta agonist BW373U69 exhibits enhanced activity in DOR-1 mutant mice. Together, these findings suggest the existence of a second delta-like analgesic system. Finally, DOR-1 mutant mice do not develop analgesic tolerance to morphine, genetically demonstrating a central role for DOR-1 in this process.  相似文献   

17.
In this study, the antinociceptive interactions of fixed ratio combinations of intracerebroventricularly (i.c.v.) given morphine and subantinociceptive doses of the delta agonists, [D-Pen2, D-Pen5]enkephalin (DPDPE), [D-Ala2, Glu4]deltorphin (DELT) or [Met5]enkephalin (MET) were examined using the mouse warm water tail flick test. When morphine was coadministered with DPDPE or DELT in a 4:1 and 9:1 mixture, respectively, a synergistic antinociceptive effect was observed. In contrast, when morphine was coadministered with MET in a 1:2 fixed ratio mixture, a subadditive interaction occurred. These results demonstrate both positive and negative modulatory interactions of delta agonists with morphine in an antinociceptive endpoint and that these interactions can be either supra- or subadditive. The data support the concept of a functional interaction between opioid mu and delta receptors and a potential regulatory role for the endogenous ligands of the opioid delta receptor.  相似文献   

18.
19.
20.
Six rhesus macaques were adapted to morphine dependence by injecting three doses of morphine (5 mg/kg of body weight) for a total of 20 weeks. These animals along with six control macaques were infected intravenously with mixture of simian-human immunodeficiency virus KU-1B (SHIV(KU-1B)), SHIV(89.6P), and simian immunodeficiency virus 17E-Fr. Levels of circulating CD4(+) T cells and viral loads in the plasma and the cerebrospinal fluid were monitored in these macaques for a period of 12 weeks. Both morphine and control groups showed precipitous loss of CD4(+) T cells. However this loss was more prominent in the morphine group at week 2 (P = 0.04). Again both morphine and control groups showed comparable peak plasma viral load at week 2, but the viral set points were higher in the morphine group than that in the control group. Likewise, the extent of virus replication in the cerebral compartment was more pronounced in the morphine group. These results provide a definitive evidence for a positive correlation between morphine and levels of viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号