首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N Onishi  T Tanaka 《Applied microbiology》1995,61(11):4026-4030
A thermostable beta-galactosidase which catalyzed the production of galacto-oligosaccharide from lactose was solubilized from a cell wall preparation of Sterigmatomyces elviae CBS8119. The enzyme was purified to homogeneity by means of chromatography on DEAE-Toyopearl, Butyl-Toyopearl, Chromatofocusing, and p-aminobenzyl 1-thio-beta-D-galactopyranoside agarose columns. The molecular weight of the purified enzyme was estimated to be about 170,000 by gel filtration with a Highload-Superdex 200pg column and 86,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its isoelectric point, determined by polyacrylamide gel electrofocusing, was 4.1. The optimal temperature for enzyme activity was 85 degrees C. It was stable at temperatures up to 80 degrees C for 1 h. The optimal pH range for the enzyme was 4.5 to 5.0, it was stable at pH 2.5 to 7.0, and its activity was inhibited by Hg2+. The Km values for o-nitrophenyl-beta-D-galactopyranoside and lactose were 9.5 and 2.4 mM, respectively, and the maximum velocities for these substrates were 96 and 240 mumol/min per mg of protein, respectively. In addition, this enzyme possessed a high level of transgalactosylation activity. Galacto-oligosaccharides, including tri- and tetrasaccharides, were produced with a yield, by weight, of 39% from 200-mg/ml lactose.  相似文献   

2.
A milk-clotting enzyme from Bacillus subtilis K-26 was purified by gel filtration and ion-exchange chromatography resulting in a 24-fold increase in specific activity with an 80% yield. Polyacrylamide gel electrophoresis and ultracentrifugel analysis revealed that the purified enzyme was homogeneous and had a molecular weight of 27,000 and a Km of 2.77mg/ml for κ-casein. The enzyme was most stable at pH 7.5 and showed increasing clotting activity with decrease in milk pH up to 5.0. The maximum milk-clotting activity was obtained at 60°C, but the enzyme was inactivated by heating for 30 min at 60°C. The enzyme was irreversibly inhibited by EDTA and unaffected by DFP. Heavy-metal ions (Hg2+, Pb2+) inactivated the enzyme.  相似文献   

3.
A cellulase from the ruminal fungus Orpinomyces joyonii cloned in Escherichia coli was purified 88-fold by chromatography on High Q and hydroxyapatite. N-terminal amino acid sequence analyses confirmed that the cellulase represented the product of the cellulase gene Cel B2. The purified enzyme possessed high activity toward barley beta-glucan, lichenan, carboxymethyl cellulose (CMC), xylan, but not toward laminarin and pachyman. In addition, the cloned enzyme was able to hydrolyze p-nitrophenyl (PNP)-cellobioside, PNP-cellotrioside, PNP-cellotetraoside, PNP-cellopentaoside, but not PNP-glucopyranoside. The specific activity of the cloned enzyme on barley beta-glucan was 297 units/mg protein. The purified enzyme appeared as a single band in SDS-polyacrylamide gel electrophoresis and the molecular mass of this enzyme (58000) was consistent with the value (56463) calculated from the DNA sequence. The optimal pH of the enzyme was 5.5, and the enzyme was stable between pH 5.0 and pH 7.5. The enzyme had a temperature optimum at 40 degrees C. The K(m) values estimated for barley beta-glucan and CMC were 0.32 and 0.50 mg/ml, respectively.  相似文献   

4.
An extracellular exoinulinase (2,1-beta-D fructan fructanohydrolase, EC 3.2.1.7), which catalyzes the hydrolysis of inulin into fructose and glucose, was purified 23.5-fold by ethanol precipitation, followed by Sephadex G-100 gel permeation from a cell-free extract of Kluyveromyces marxianus YS-1. The partially purified enzyme exhibited considerable activity between pH 5 to 6, with an optimum pH of 5.5, while it remained stable (100%) for 3 h at the optimum temperature of 50 degrees C. Mn2+ and Ca2+ produced a 2.4-fold and 1.2-fold enhancement in enzyme activity, whereas Hg2+ and Ag2+ completely inhibited the inulinase. A preparation of the partially purified enzyme effectively hydrolyzed inulin, sucrose, and raffinose, yet no activity was found with starch, lactose, and maltose. The enzyme preparation was then successfully used to hydrolyze pure inulin and raw inulin from Asparagus racemosus for the preparation of a high-fructose syrup. In a batch system, the exoinulinase hydrolyzed 84.8% of the pure inulin and 86.7% of the raw Asparagus racemosus inulin, where fructose represented 43.6 mg/ml and 41.3 mg/ml, respectively.  相似文献   

5.
Bacillus stearothermophilus T-6 produces an extracellular xylanase that was shown to optimally bleach pulp at pH 9 and 65 degrees C. The enzyme was purified and concentrated in a single adsorption step onto a cation exchanger and is made of a single polypeptide with an apparent M(r) of 43,000 (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Xylanase T-6 is an endoxylanase that completely degrades xylan to xylose and xylobiose. The pIs of the purified protein were 9 and 7 under native and denaturing conditions, respectively. The optimum activity was at pH 6.5; however, 60% of the activity was still retained at pH 10. At 65 degrees C and pH 7, the enzyme was stable for more than 10 h; at 65 degrees C and pH 9, the half-life of the enzyme was approximately 6 h. Kinetic experiments at 55 degrees C gave Vmax and Km values of 288 U/mg and 1.63 mg/ml, respectively. The enzyme had no apparent requirement for cofactors, and its activity was strongly inhibited by Zn2+, Cd2+, and Hg2+. Xylan completely protected the protein from inactivation by N-bromosuccinimide. The N-terminal sequence of the first 45 amino acids of the enzyme showed high homology with the N-terminal region of xylanase A from the alkalophilic Bacillus sp. strain C-125.  相似文献   

6.
A chitinase (EC. 3.2.1.14) from autolysed culture filtrate of Penicillium oxalicum was purified by precipitation with ammonium sulphate, gel filtration and ion exchange chromatographies. The purified enzyme showed a single protein band in SDS gel electrophoresis. The enzyme is an acidic protein with a pI of 4.5 and has a molecular weight of 54 900 as estimated from SDS gel electrophoresis and 21 500 from gel filtration. The optimum pH and temperature were 5.0 and 35°C, respectively. The enzyme was stable at temperatures up to 45°C and in a pH range between 4.0 and 6.0. The Km was 2.5 mg ml-1 for colloidal chitin, Hg2+ and Ag+ were effective inhibitors. The viscosimetric study carried out using carboxymethyl chitin as substrate revealed the endotype action of this enzyme.  相似文献   

7.
An extracellular alkaline carboxymethycellulase (CMCase) from Bacillus subtilis was purified by salt precipitation followed by anion-exchange chromatography using DEAE-Sepharose. The cell-free supernatant containing crude enzyme had a CMCase activity of 0.34 U/mg. The purified enzyme gave a specific activity of 3.33 U/mg, with 10-fold purification and an overall activity yield of 5.6%. The purified enzyme displayed a protein band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with an apparent molecular size of 30 kDa, which was also confirmed by zymogram analysis. The enzyme displayed multisubstrate specificity, showing significantly higher activity with lichenan and β-glucan as compared to carboxymethylcellulose (CMC), laminarin, hydroxyethylcellulose, and steam-exploded bagasse, and negligible activity with crystalline substrate such as Avicel and filter paper. It was optimally active at pH 9.2 and temperature 45°C. The enzyme was stable in the pH range 6–10 and retained 70% activity at pH 12. Thermal stability analysis revealed that the enzyme was stable in temperature range of 20°C to 45°C and retained more than 50% activity at 60°C for 30 min. The enzyme had a Km of 0.13 mg/ml and Vmax of 3.38 U/mg using CMC as substrate.  相似文献   

8.
An extracellular cycloamylose (cyclodextrin) glucanotransferase (EC 2.4.1.19) from Bacillus macerans was purified to homogeneity by adsorption on starch, ammonium sulfate fractionation, column chromatography on DEAE-cellulose, and gel filtration on Sephadex G-100. The enzyme had a molecular weight of 67,000 and consisted of one polypeptide chain. The isoelectric point was pH 5.4. Temperature and pH optima were 60° and 5.45.8, respectively. The purified enzyme was quite stable at 50° (pH 6.0), but lost ≈80% of its activity at 60° for 30 min (pH 6.0). Prolonged digestion by trypsin did not affect the catalytic properties of the enzyme. The Km for starch was 5.7 mg/ml.  相似文献   

9.
Trichoderma asperellum produces at least two extracellular beta-1,3-glucanases upon induction with cell walls from Rhizoctonia solani. A beta-1,3-glucanase was purified by gel filtration and ion exchange chromatography. A typical procedure provided 35.7-fold purification with 9.5% yield. The molecular mass of the purified exo-beta-1,3-glucanases was 83.1 kDa as estimated using a 12% (w/v) SDS-electrophoresis slab gel. The enzyme was only active toward glucans containing beta-1,3-linkages and hydrolyzed laminarin in an exo-like fashion to form glucose. The K(m) and V(max) values for exo-beta-1,3-glucanase, using laminarin as substrate, were 0.087 mg ml(-1) and 0.246 U min(-1), respectively. The pH optimum for the enzyme was pH 5.1 and maximum activity was obtained at 55 degrees C. Hg(2+) strongly inhibited the purified enzyme.  相似文献   

10.
Purification and characterization of rat brain prostaglandin D synthetase   总被引:6,自引:0,他引:6  
Prostaglandin D synthetase was purified 2,600-fold from rat brain to apparent homogeneity, as judged by polyacrylamide gel electrophoresis and ultracentrifugation. The purified enzyme was a monomeric protein with a molecular weight of 27,000 +/- 1,000. The pI value, sedimentation coefficient, and partial specific volume were 4.6, 4.1 s, and 0.73 ml/g, respectively. The enzyme was stable between pH 4 and 11 at the temperature lower than 25 degrees C and resistant to a heat treatment under alkaline conditions (pH 8-11). About 50% of the activity was detected after a heat treatment at 100 degrees C for 5 min at pH 10. However, the enzyme was readily inactivated by the isomerase reaction of prostaglandin H2 to prostaglandin D2. The enzyme required sulfhydryl compounds such as dithiothreitol, glutathione, beta-mercaptoethanol, cysteine, and cysteamine for the reaction, but stoichiometric oxidation of these sulfhydryl compounds was not observed. The optimum pH, Km value for prostaglandin H2, and the turnover number were 9.5, 14 microM, and 170 min-1, respectively. The antibody was raised against the purified enzyme in a rabbit, which showed only one positive band in immunoblotting after gel electrophoresis of crude extracts of the brain at the same position as that of the purified enzyme. More than 90% of the prostaglandin D synthetase activity in the brain was absorbed by an excess amount of the antibody, indicating that our preparation is a major component of the enzyme responsible for the biosynthesis of prostaglandin D2 in the brain.  相似文献   

11.
A deficiency in alpha-N-acetylglucosaminidase is known as mucopolysaccharidosis IIIB or Sanfilippo B syndrome. We purified this enzyme almost 39,000-fold from liver to homogeneity with 3% recovery. Use of concanavalin A (Con A)-Sepharose and heparin-Sepharose resulted in 13.4-fold and 11.6-fold purifications of the enzymatic activity, respectively. The molecular mass was estimated to be 300 kDa by gel filtration and 80 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The isoelectric point was 5.1, optimal pH was 4.5, and the Km for p-nitrophenyl alpha-N-acetylglucosamine was 0.13-0.20 mM. The purified enzyme was stable at 50 degrees C for 1 h and within the pH range of 6.5-8.5. Anti-serum against the purified enzyme raised in BALB/c mice inhibited the activities of alpha-N-acetylglucosaminidase.  相似文献   

12.
A Karmali  L R Santos 《Biochimie》1988,70(10):1373-1377
Peroxidase (Ec 1.11.1.7) was purified from needles of Pinus pinaster to apparent homogeneity by DE-52 cellulose chromatography with a final recovery of enzyme activity of about 85%. The purified enzyme (A402/A275 = 1.05) had a specific activity of about 948 U/mg of protein and ran as a single protein band both on SDS-PAGE and native PAGE with Mr of 37,000 and 151,000, respectively. Both native PAGE and isoelectric focusing gels of the purified enzyme were stained for activity which coincided with the protein band. The pI of the purified enzyme was found to be 3.2 by isoelectric focusing on an ultrathin polyacrylamide gel. The enzyme has an optimum pH of activity of 5.0 and temperature optimum of 30 degrees C. Stability studies of the enzyme as a function of pH and temperature suggest that it is most stable at pH 5.0 and 0-40 degrees C, respectively.  相似文献   

13.
Succinyltrialanine p-nitroanilide(STANA)-hydrolytic enzyme was purified 5,200-fold from porcine liver soluble fraction with a yield of 75% by ammonium sulfate fractionation and chromatographies on DEAE-Sephacel, Sephadex G-150, and hydroxylapatite columns. The purified enzyme was homogeneous as judged by polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate (SDS). The pI of the enzyme was 4.9 by dis gel electrofocusing and the molecular weight was calculated to be 72,000 by gel filtration on a Sephadex G-150 column and 74,000 by SDS-polyacrylamide gel electrophoresis. Acidic amino acids amounted to 17.2% of the total amino acid residues, and the basic ones, 12.9%. No hexosamine was detected. The STANA-hydrolytic enzyme showed maximal activity at pH 7.4 against succinyltrialanine p-nitroanilide and at pH 6.5 against succinyl-Gly-Pro-4-methylcoumaryl 7-amide (MCA), and was stable between pH 6 and 7 in the presence of dithiothreitol. This enzyme hydrolyzed succinyl-Gly-Pro-Leu-Gly-Pro-MCA, succinyl-Gly-Pro-MCA, succinyl-Ala-Pro-Ala-MCA, and several proline-containing natural peptides in addition to succinyltrialanine p-nitroanilide, but was unable to hydrolyze the substrates of aminopeptidases, dipeptidylaminopeptidase IV, trypsin, and chymotrypsin. Elastatinal and chymostatin were effective inhibitors and their IC50 values were 8.7 micrograms/ml and 18.2 micrograms/ml, respectively. The enzyme was completely inhibited by 10(-7) M p-chloromercuribenzoic acid (pCMB), 10(-7) M p-chloromercuriphenylsulfonic acid (pCMPS), and 10(-4) M diisopropyl phosphofluoridate (DFP), but not by 1 mM E-64, which is known as an inhibitor specific to thiol proteinase. The enzyme was easily inactivated by agitation in a Vortex mixer, and its activity was recovered by the addition of thiol compounds such as dithiothreitol, 2-mercaptoethanol and cysteine. The effects of inhibitors and thiol compounds were substantially identical when the enzyme activity was measured with either succinyltrialanine p-nitroanilide or succinyl-Gly-Pro-MCA as a substrate. These results indicate that the STANA-hydrolytic enzyme in the liver soluble fraction is a post-proline cleaving enzyme [EC 3.4.21.26].  相似文献   

14.
The glycogen phosphorylase (EC 2.4.1.1) from the mycelium of Phymatotrichum omnivorum was purified by ammonium sulfate fractionation, gel filtration on Sephacryl S-200, and DEAE-cellulose ion-exchange chromatography to more than 100-fold. The purified enzyme was homogeneous; this was confirmed by polyacrylamide gel electrophoresis. Sodium dodecyl sulfate-gel electrophoresis indicated the relative molecular size of the enzyme was around 145,000. The approximate molecular weight by gel filtration was 116,000. The optimum pH of the enzyme was 7.0 and the enzyme was more specific for glycogen, with a Km value of 0.36 mg/ml. Nucleotides AMP, ADP, and ATP and compounds containing an "SH" group inhibited the enzyme activity. Diethyldithiocarbamate, EDTA, ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid, and Cu2+ were the potent inhibitors of the glycogen phosphorylase activity, Ca2+, Cu2+, Co2+, and Fe2+ stimulated the enzyme activity. The enzyme preparation was stable at 4 degrees C during a period of 30 days.  相似文献   

15.
A Monascus pilosus strain was selected for production of intracellular alpha-galactosidase. Optimum conditions for mycelial growth and enzyme induction were determined. Galactose was one of the best enzyme inducers. The enzyme was purified by ammonium sulfate precipitation, gel filtration, and ion exchange chromatography and was demonstrated to be homogeneous by slab gel electrophoresis. The molecular weight of this enzyme, estimated by gel filtration, was about 150,000. The optimum conditions for the enzyme reaction was pH 4.5 to 5.0 at 55 degrees C. The purified enzyme was stable at 55 degrees C or below and in buffer at pH 3 to 8. The activity was inhibited by mercury, silver, and copper ions. The kinetics of this enzyme, with p-nitrophenyl-alpha-d-galactoside as substrate, was determined: K(m) was about 0.8 mM, and V(max) was 39 mumol/min per mg of protein. Enzymatic hydrolysis of melibiose, raffinose, and stachyose was analyzed by thin-layer chromatography.  相似文献   

16.
An extracellular polygalacturonase was isolated from 5-day culture filtrates of Thermoascus aurantiacus CBMAI-756 and purified by gel filtration and ion-exchange chromatography. The enzyme was maximally active at pH 5.5 and 60–65°C. The apparent K m with citrus pectin was 1.46 mg/ml and the V max was 2433.3 μmol/min/mg. The apparent molecular weight of the enzyme was 30 kDa. The enzyme was 100% stable at 50°C for 1 h and showed a half-life of 10 min at 60°C. Polygalacturonase was stable at pH 5.0–5.5 and maintained 33% of initial activity at pH 9.0. Metal ions, such as Zn+2, Mn+2, and Hg+2, inhibited 50, 75 and 100% of enzyme activity. The purified polygalacturonase was shown to be an endo/exo-enzyme, releasing mono, di and tri-galacturonic acids within 10 min of hydrolysis.  相似文献   

17.
Thermomonospora curvata produces an extracellular alpha-amylase. Maximal amylase production by cultures in a starch-mineral salts medium occurred at pH 7.5 and 53 degrees C. The crude enzyme was unstable to heating (65 degrees C) at pH 4 to 6, and was activated when heated at pH 8. The enzyme was purified 66-fold with a 9% yield and appeared homogeneous on discontinuous gel electrophoresis. The pH and temperature optima for activity of the purified enzyme were 5.5 to 6.0 and 65 degrees C. The molecular weight was calculated to be 62,000. The Km for starch was 0.39 mg/ml. The amylolytic pattern consisted of a mixture of maltotetraose and maltopentaose.  相似文献   

18.
A full-length xylanase gene, encoding 326 amino acids belonging to the fungal glycosyl hydrolase family 10, from Aspergillus terreus BCC129 was cloned and sequenced. Sequence analysis suggested that the first 25 amino acids of this enzyme is the signal peptide. Therefore, only the mature xylanase gene of 906 bp was cloned into a yeast expression vector, pPICZalphaA, for heterologous expression in Pichia pastoris. A band of approximately, 33 kDa was observed on the SDS-PAGE gel after one day of methanol induction. The expressed enzyme was purified by gel filtration chromatography. The purified recombinant xylanase demonstrated optimal activity at 60 degrees C, pH 5.0 and a Km of 4.8 +/- 0.07 mg/ml and a Vmax of 757 +/- 14.54 micromol/min mg, using birchwood xylan as a substrate. Additionally, the purified enzyme demonstrated broad pH stability from 4 to 10 when incubated at 40 degrees C for 4 h. It also showed a moderate thermal stability since it retained 90% of its activity when incubated at 50 degrees C, 30 min, making this enzyme a potential use in the animal feed and paper and pulp industries.  相似文献   

19.
From the culture filtrate of Macrophomina phaseolina, two forms of carboxymethylcellulase were separated by ion-exchange chromatography and designated as CMCase-I and CMCase-II. CMCase-I was purified following a four-step procedure involving gel filtration on Sephadex G-75, Con-A Sepharose 4B affinity chromatography, fast protein liquid chromatography on mono Q anion-exchanger and on Superose 12 gel filtration. The final preparation was homogeneous by SDS-PAGE, isoelectric focussing in thin layers of polyacrylamide gels and immunoelectrophoresis. The enzyme showed optimum activity at pH 5.5 and 65 degrees C, was stable to heating at 65 degrees C for 10 min, and retained 31% of original activity after heating at 80 degrees C for 10 min. The molecular weight of the enzyme was 3.5 x 10(4) Da. A Km of 0.25 mg/ml was determined using carboxymethyl-cellulose as the substrate.  相似文献   

20.
A thermostable extracellular glucoamylase from the thermophilic fungus Humicola grisea was purified to homogeneity. Its molecular mass and isoelectric point were 74 kDa and 8.4, respectively. The enzyme contained 5% carbohydrate, showed maximal activities at pH 6.0 and 60(deg)C, and was stable at 55(deg)C and pH 6.0 for 2 h. The K(infm) of soluble starch hydrolysis at 50(deg)C and pH 6.0 was 0.14 mg/ml. The purified enzyme was remarkably insensitive to glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号