首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Fujihashi M  Peapus DH  Kamiya N  Nagata Y  Miki K 《Biochemistry》2003,42(38):11093-11099
Aleuria aurantia possesses a fucose-specific lectin (AAL) that is widely used as a specific probe for fucose. Fucosylated sugars often play pivotal roles in many cellular processes. We have determined the crystal structure of AAL at 2.24 A resolution in complex with only three fucose molecules in its five sugar binding sites of a six-fold beta-propeller structure. Very recently, the structure of AAL has been independently determined, showing that all the five binding sites were occupied by fucose molecules [Wimmerova, M., et al. (2003) J. Biol. Chem. 278, 27059-27067]. Stabilization of the arginine conformation bound to fucose molecules plays an essential role in generating the difference in the affinity in the five binding sites. Binding models with a couple of saccharides based on biochemical assays suggest that hydrophobic contacts also play important roles in AAL recognizing its ligand.  相似文献   

2.
3.
Aleuria aurantia lectin is a fungal protein composed of two identical 312-amino acid subunits that specifically recognizes fucosylated glycans. The crystal structure of the lectin complexed with fucose reveals that each monomer consists of a six-bladed beta-propeller fold and of a small antiparallel two-stranded beta-sheet that plays a role in dimerization. Five fucose residues were located in binding pockets between the adjacent propeller blades. Due to repeats in the amino acid sequence, there are strong similarities between the sites. Oxygen atoms O-3, O-4, and O-5 of fucose are involved in hydrogen bonds with side chains of amino acids conserved in all repeats, whereas O-1 and O-2 interact with a large number of water molecules. The nonpolar face of each fucose residue is stacked against the aromatic ring of a Trp or Tyr amino acid, and the methyl group is located in a highly hydrophobic pocket. Depending on the precise binding site geometry, the alpha- or beta-anomer of the fucose ligand is observed bound in the crystal. Surface plasmon resonance experiments conducted on a series of oligosaccharides confirm the broad specificity of the lectin, with a slight preference for alphaFuc1-2Gal disaccharide. This multivalent carbohydrate recognition fold is a new prototype of lectins that is proposed to be involved in the host recognition strategy of several pathogenic organisms including not only the fungi Aspergillus but also the phytopathogenic bacterium Ralstonia solanacearum.  相似文献   

4.
The Galalpha1,3Galbeta1,4GlcNAc-specific lectin from the mushroom Marasmius oreades (MOA) contains a ricin B chain-like (QXW)(3) domain at its N-terminus that is composed of three identical subdomains (alpha, beta, and gamma) and a C-terminal domain of unknown function. Here, we investigate the structure-function relationship of MOA to define the number and location of its carbohydrate-binding sites. Based on the sequence alignment of MOA to the ricin B-chain lactose-binding sites, we systematically constructed mutants by site-directed mutagenesis. We have used precipitation and hemagglutination assay for the primary analyses, and surface plasmon resonance for the kinetic analysis. Among amino acid residues at the putative carbohydrate-binding sites, Gln(46) in the alpha subdomain and Trp(138) in the gamma subdomain have been identified to be important amino acid residues directly or indirectly involved in carbohydrate recognition. By surface plasmon resonance, Q46A and W138A were 2.4- and 4.3-fold less active than that of the wild-type MOA (K(a) = 2 x 10(7)), respectively. A double-site mutant (Q46A/W138A) had activity similar to W138A. The C-terminal deletion mutant MOADeltaC showed hemagglutination and precipitation activity, although its binding constant was 12.5-fold less active (K(a) = 1.6 x 10(6)) than that of the wild-type MOA. A C-terminal deletion mutant with mutations at both Gln(46) and Trp(138) (MOADeltaC-Q46A/W138A) was 12,500-fold less active (K(a) = 1.6 x 10(3)) than that of the wild-type MOA. On the basis of this observation, we conclude that both alpha and gamma subdomains are most probably involved in carbohydrate binding, but the beta subdomain appears to be inactive.  相似文献   

5.
Zak O  Ikuta K  Aisen P 《Biochemistry》2002,41(23):7416-7423
A defining feature of all transferrins is the absolute dependence of iron binding on the concomitant binding of a synergistic anion, normally but not necessarily carbonate. Acting as a bridging ligand between iron and protein, it completes the coordination requirements of iron to lock the essential metal in its binding site. To investigate the role of the synergistic anion in the iron-binding and iron-donating properties of human transferrin, a bilobal protein with an iron binding site in each lobe, we have selectively mutated the anion-binding threonine and arginine ligands that form an essential part of the electrostatic and hydrogen-bonding network holding the synergistic anion to the protein. Preservation of either ligand is sufficient to maintain anion binding, and therefore iron binding, in the mutated lobe. Arginine is a stronger ligand than threonine, and its loss weakens carbonate and therefore iron binding, but maintains the ability of nitrilotriacetate to serve as a carbonate surrogate. Replacement of both ligands abolishes anion binding and consequently iron binding in the affected lobe. Loss of anion binding in either lobe results in a monoferric protein binding iron in normal fashion only in the opposite lobe. Both monoferric proteins are capable of transferrin receptor-dependent binding and iron donation to K562 cells, but with diminished receptor occupancy by the protein bearing iron only in the N-lobe.  相似文献   

6.
Y6 and Y115 are key amino acids involved in enzyme-substrate interactions in mu-class glutathione S-transferase (GST). They provide electrophilic assistance and stabilize substrates through their hydroxyl groups. Two site-directed mutants (Y7F and Y116F) and the wild-type shrimp GSTs were expressed in Escherichia coli, and the steady-state kinetic parameters were determined using CDNB as the second substrate. The mutants were modeled based on a crystal structure of a mu-class GST to obtain further insights about the changes at the active site. The Y116F mutant had an increase in kcat contrary to Y7F compared to the wild type. Molecular modeling showed that the shrimp GST has a H108 residue that may contribute to compensate and lead to a less deleterious change when conserved tyrosine residues are mutated. This work indicates that shrimp GST is a useful model to understand the catalysis mechanisms in this critical enzyme.  相似文献   

7.
Oligonucleotide-directed, site-specific mutagenesis is being applied to the problem of ion-gradient driven active transport with the lac permease as a model system. It has been shown that Arg-302, His-322 and Glu-325, neighboring residues in putative transmembrane helices IX and X, play an important role in lactose-coupled H+ translocation, possibly as components of a catalytic triad similar to that found in the serine proteases. In addition, Cys residues, long thought to be involved in the mechanism of the permease, are not directly involved in either substrate binding or H+ translocation. Finally, a variety of mutations have no effect on permease activity indicating that single amino acid changes do not lead indiscriminately to long-range conformational alterations.  相似文献   

8.
Chillar A  Wu J  So SP  Ruan KH 《FEBS letters》2008,582(19):2863-2868
A peptide constrained to a conformation of second extracellular loop of human prostaglandin-E(2) (PGE(2)) receptor subtype3 (hEP3) was synthesized. The contacts between the peptide residues at S211 and R214, and PGE(2) were first identified by NMR spectroscopy. The results were used as a guide for site-directed mutagenesis of the hEP3 protein. The S211L and R214L mutants expressed in HEK293 cells lost binding to [(3)H]PGE(2). This study found that the non-conserved S211 and R214 of the hEP3 are involved in PGE(2) recognition, and implied that the corresponding residues in other subtype receptors could be important to distinguish the different configurations of PGE(2) ligand recognition sites.  相似文献   

9.
The purpose of this study was to determine the effect of heme pocket hydrophobicity on the reactivity of manganese peroxidase. Residues within 5 A of the heme active site were identified. From this group, Leu169 and Ser172 were selected and mutated to Phe and Ala, respectively. The mutant proteins were then characterized by steady-state kinetics. Whereas the Leu169Phe mutation had little, if any, effect on activity, the Ser172Ala mutation decreased kcat and also the specificity constant (kcat/Km) for Mn2+, but not H2O2. Transient-state studies indicated that the mutation affected only the reactions of compound II. These results indicate that compound II is the most sensitive to changes in the heme environment.  相似文献   

10.
Mutagenesis and immobilization are usually considered to be unrelated techniques with potential applications to improve protein properties. However, there are several reports showing that the use of site-directed mutagenesis to improve enzyme properties directly, but also how enzymes are immobilized on a support, can be a powerful tool to improve the properties of immobilized biomolecules for use as biosensors or biocatalysts. Standard immobilizations are not fully random processes, but the protein orientation may be difficult to alter. Initially, most efforts using this idea were addressed towards controlling the orientation of the enzyme on the immobilization support, in many cases to facilitate electron transfer from the support to the enzyme in redox biosensors. Usually, Cys residues are used to directly immobilize the protein on a support that contains disulfide groups or that is made from gold. There are also some examples using His in the target areas of the protein and using supports modified with immobilized metal chelates and other tags (e.g., using immobilized antibodies). Furthermore, site-directed mutagenesis to control immobilization is useful for improving the activity, the stability and even the selectivity of the immobilized protein, for example, via site-directed rigidification of selected areas of the protein. Initially, only Cys and disulfide supports were employed, but other supports with higher potential to give multipoint covalent attachment are being employed (e.g., glyoxyl or epoxy-disulfide supports). The advances in support design and the deeper knowledge of the mechanisms of enzyme-support interactions have permitted exploration of the possibilities of the coupled use of site-directed mutagenesis and immobilization in a new way. This paper intends to review some of the advances and possibilities that these coupled strategies permit.  相似文献   

11.
J A Wells  M Vasser  D B Powers 《Gene》1985,34(2-3):315-323
A method is described for the efficient insertion of mutagenic oligodeoxynucleotide cassettes which allow saturation of a target amino acid codon with multiple mutations. Restriction sites are introduced by oligonucleotide-directed mutagenesis procedures to flank closely the target codon in the plasmid containing the gene. The restriction sites to be introduced are chosen based on their uniqueness to the plasmid, proximity to the target codon and conservation of the final amino acid coding sequence. The flanking restriction sites in the plasmid are digested with the cognate restriction enzymes, and short synthetic duplex DNA cassettes (10-25 bp) are inserted. The mutagenic cassette is designed to restore fully the wild-type coding sequence, except over the target codon, and to eliminate one or both restriction sites. Elimination of a restriction site facilitates selection of clones containing the mutagenic oligodeoxynucleotide cassette. To make the cassettes, single-stranded oligodeoxynucleotides and their complements are synthesized in separate pools containing different codons over the target. This method has been successfully applied to generate 19 amino acid substitutions at position 222 in the subtilisin protein sequence.  相似文献   

12.
To test the hypothesis that actA allelic variation contributes to virulence differences among Listeria monocytogenes strains, cell-to-cell spread and intracellular ActA phosphorylation patterns were characterized for 14 wild-type isolates and selected isogenic mutants. Our data show that (i) while actA allelic variation is not responsible for enhanced cell-to-cell spread observed in epidemic clone I strains, actA allelic variation may contribute to reduced plaque size observed in some isolates, (ii) actA sequence alone determines phosphorylation-dependent ActA banding patterns, and (iii) sequence variation at the positively selected ActA residue 498 does not contribute to ActA phosphorylation patterns or to differences in cell-to-cell spread.  相似文献   

13.
W Kokotek  W Lotz 《Gene》1991,98(1):7-13
A mobilizable cloning vector was constructed from defined fragments to serve as a suicide plasmid for site-directed mutagenesis. The new vector, pKOK4, closely resembles plasmid pBR325. However, the inverted duplication existing in the latter was not introduced. The useful cloning sites of pBR325 (EcoRI, HindIII, EcoRV, BamHI, SalI, PstI and PvuI) were retained and are located in one of the three resistance markers, ApR, CmR or TcR, respectively. Also, in pKOK4 the CmR gene retains its own promoter. The mob site of plasmid RP4 was introduced as a 760-bp fragment at a defined location. The mobilization frequency of pKOK4 within Escherichia coli strains is approx. 4 x 10(-2) per recipient cell. The size of pKOK4, deduced from the construction, is 6368 bp. We used pKOK4 for site-directed mutagenesis of hup-specific DNA from Rhizobium leguminosarum B10. Integration of the vector could be distinguished reliably from marker exchange by screening for the antibiotic resistance(s) of the plasmid. This reduced the number of clones to be retested by colony and Southern hybridization to approx. 1% of the original number. Of these, almost 70% contained the desired marker exchange.  相似文献   

14.
The cytomegalovirus maturational proteinase is synthesized as a precursor that undergoes at least three processing cleavages. Two of these were predicted to be at highly conserved consensus sequences--one near the carboxyl end of the precursor, called the maturational (M) site, and the other near the middle of the precursor, called the release (R) site. A third less-well-conserved cleavage site, called the inactivation (I) site, was also identified near the middle of the human cytomegalovirus 28-kDa assemblin homolog. We have used site-directed mutagenesis to verify all three predicted sequences in the simian cytomegalovirus proteinase, and have shown that the proteinase precursor is active without cleavage at these sites. We have also shown that the P4 tyrosine and the P2 lysine of the R site were more sensitive to substitution than the other R- and M-site residues tested: substitution of alanine for P4 tyrosine at the R site severely reduced cleavage at that site but not at the M site, and substitution of asparagine for lysine at P2 of the R site reduced M-site cleavage and nearly eliminated I-site cleavage but had little effect on R-site cleavage. With the exception of P1' serine, all R-site mutations hindered I-site cleavage, suggesting a role for the carboxyl end of assemblin in I-site cleavage. Pulse-chase radiolabeling and site-directed mutagenesis indicated that assemblin is metabolically unstable and is degraded by cleavage at its I site. Fourteen amino acid substitutions were also made in assemblin, the enzymatic amino half of the proteinase precursor. Among those tested, only 2 amino acids were identified as essential for activity: the single absolutely conserved serine and one of the two absolutely conserved histidines. When the highly conserved glutamic acid (Glu22) was substituted, the proteinase was able to cleave at the M and I sites but not at the R site, suggesting either a direct (e.g., substrate recognition) or indirect (e.g., protein conformation) role for this residue in determining substrate specificity.  相似文献   

15.
Epidermal growth factor receptor (EGFR), a transmembrane glycoprotein, is overexpressed in many cancers such as head-neck, breast, prostate, and skin cancers for this reason it is a good target in cancer therapy and diagnosis. In nanobody-based cancer diagnosis and treatment, nanobodies with high affinity toward receptor (e.g. EGFR) results in effective treatment or diagnosis of cancer. In this regard, the main aim of this study is to develop a method based on molecular dynamic (MD) simulations for designing of 7D12 based nanobody with high affinity compared with wild-type nanobody. By surveying electrostatic and desolvation interactions between different residues of 7D12 and EGFR, the critical residues of 7D12 that play the main role in the binding of 7D12 to EGFR were elucidated and based on these residues, five logical variants were designed. Following the 50 ns MD simulations, pull and umbrella sampling simulation were performed for 7D12 and all its variants in complex with EGFR. Binding free energy of 7D12 (and all its variants) with EGFR was obtained by weighted histogram analysis method. According to binding free energy results, GLY101 to GLU mutation showed the highest binding affinity but this variant is unstable after 50 ns MD simulations. ALA100 to GLU mutation shows suitable binding enhancement with acceptable structural stability. Suitable position and orientation of GLU in residue 100 of 7D12 against related amino acids of EGFR formed some extra hydrogen and electrostatic interactions which resulted in binding enhancement.  相似文献   

16.
The primary electron donor P700 of photosystem I is a dimer comprised of chlorophyll a (P(B)) and chlorophyll a' (P(A)). P(A) is involved in a hydrogen bond network with several surrounding amino acid residues and a nearby water molecule. To investigate the influence of hydrogen bond interactions on the properties of P700, the threonine at position A739, which donates a putative hydrogen bond to the 13(1)-keto group of P(A), was replaced with valine, histidine, and tyrosine in Chlamydomonas reinhardtii using site-directed mutagenesis. Growth of the mutants was not impaired. (i) The (P700(+)* - P700) FTIR difference spectra of the mutants lack a negative band at 1634 cm(-1) observed in the wild-type spectrum and instead exhibit a new negative band between 1658 and 1672 cm(-1) depending on the mutation. This band can therefore be assigned to the 13(1)-keto group of P(A) which is upshifted to higher frequencies upon removal of the hydrogen bond. (ii) The main bleaching band in the Q(y)() region of the (P700(+)* - P700) and ((3)P700 - P700) absorption difference spectra is blue shifted for the mutants by approximately 6 nm compared to that of the wild type. A blue shift is also observed for the main bleaching in the Soret region. (iii) The (P700(+)* - P700) CD difference spectrum of the wild type reveals two bands at 694 nm (positive CD) and 680 nm (negative CD) of approximately equal area. For each mutant, these two components are blue-shifted to the same extent. The results strongly suggest that a blue shift of the Q(y) absorption band of P(A) is responsible for a blue shift of the exciton bands. (iv) Redox titrations yielded a decrease in the midpoint potential for the oxidation of P700 by 32 mV for the exchange of Thr against Val. (v) ENDOR spectroscopy shows that the hfc of the methyl protons at position 12 of the spin-carrying Chl P(B) is decreased due to the removal of the hydrogen bond to P(A). This indicates a redistribution of spin density in P700(+)* compared to that in the wild type. This gives evidence for an electronic coupling between the two halves of the dimer in the wild type and mutants.  相似文献   

17.
We have utilized infidelity of DNA synthesis as a basis for site-directed mutagenesis. Both an endonuclease restriction fragment and a synthetic oligonucleotide were used as primers. DNA polymerase from bacteriophage T4 was used to elongate primer termini to a position immediately adjacent to two different preselected positions on phiX174 DNA templates. Then, the error-prone DNA polymerase from avian myeloblastosis virus was used to insert single non-complementary nucleotides at the designated positions at high efficiency. DNA sequence analysis confirmed that the mutant phage produced as a result of each site-specific mutagenesis reaction contained the nucleotide that was complementary to the one provided during the DNA copying reaction. The general applicability of this methodology to cloned DNAs will be discussed.  相似文献   

18.
The periplasmic nitrate reductase (NapAB), a member of the DMSO reductase superfamily, catalyzes the first step of the denitrification process in bacteria. In this heterodimer, a di-heme NapB subunit is associated to the catalytic NapA subunit that binds a [4Fe-4S] cluster and a bis(molybdopterin guanine dinucleotide) cofactor. Here, we report the kinetic characterization of purified mutated heterodimers from Rhodobacter sphaeroides. By combining site-directed mutagenesis, redox potentiometry, EPR spectroscopy, and enzymatic characterization, we investigate the catalytic role of two conserved residues (M153 and R392) located in the vicinity of the molybdenum active site. We demonstrate that M153 and R392 are involved in nitrate binding: the Vm measured on the M153A and R392A mutants are similar to that measured on the wild-type enzyme, whereas the Km for nitrate is increased 10-fold and 200-fold, respectively. The use of an alternative enzymatic assay led us to discover that NapAB is uncompetitively inhibited by Zn2+ ions (Ki' = 1 microM). We used this property to further probe the active site access in the mutant enzymes. It is proposed that R392 acts as a filter by preventing a direct reduction of the Mo atom by small reducing molecules and partially protecting the active site against zinc inhibition. In addition, we show that M153 is a key residue mediating this inhibition likely by coordinating Zn2+ ions via its sulfur atom. This residue is not conserved in the DMSO reductase superfamily while it is conserved in the periplasmic nitrate reductase family. Zinc inhibition is therefore likely to be specific and restricted to periplasmic nitrate reductases.  相似文献   

19.
Tyrosine hydroxylase (TH), the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter dopamine, is inactivated by peroxynitrite. The sites of peroxynitrite-induced tyrosine nitration in TH have been identified by matrix-assisted laser desorption time-of-flight mass spectrometry and tyrosine-scanning mutagenesis. V8 proteolytic fragments of nitrated TH were analyzed by matrix-assisted laser desorption time-of-flight mass spectrometry. A peptide of 3135.4 daltons, corresponding to residues V410-E436 of TH, showed peroxynitrite-induced mass shifts of +45, +90, and +135 daltons, reflecting nitration of one, two, or three tyrosines, respectively. These modifications were not evident in untreated TH. The tyrosine residues (positions 423, 428, and 432) within this peptide were mutated to phenylalanine to confirm the site(s) of nitration and assess the effects of mutation on TH activity. Single mutants expressed wild-type levels of TH catalytic activity and were inactivated by peroxynitrite while showing reduced (30-60%) levels of nitration. The double mutants Y423F,Y428F, Y423F,Y432F, and Y428F,Y432F showed trace amounts of tyrosine nitration (7-30% of control) after exposure to peroxynitrite, and the triple mutant Y423F,Y428F,Y432F was not a substrate for nitration, yet peroxynitrite significantly reduced the activity of each. When all tyrosine mutants were probed with PEO-maleimide activated biotin, a thiol-reactive reagent that specifically labels reduced cysteine residues in proteins, it was evident that peroxynitrite resulted in cysteine oxidation. These studies identify residues Tyr(423), Tyr(428), and Tyr(432) as the sites of peroxynitrite-induced nitration in TH. No single tyrosine residue appears to be critical for TH catalytic function, and tyrosine nitration is neither necessary nor sufficient for peroxynitrite-induced inactivation. The loss of TH catalytic activity caused by peroxynitrite is associated instead with oxidation of cysteine residues.  相似文献   

20.
Crystals of a fragment of human fibronectin encompassing the 7th through the RGD-containing 10th type III repeats (FN7–10) have been produced with protein expressed in E. coli. The crystals are monoclinic with one molecule in the asymmetric unit and diffract to beyond 2.0 Å Bragg spacings. A mutant FN7–10 was produced in which three methionines, in addition to the single native methionine already present, have been introduced by site-directed mutagenesis. Diffraction-quality crystals of this mutant protein have been grown in which methionine was replaced with selenomethionine. The introduction of methionine by site-directed mutagenesis to allow phasing from selenomethionyl-substituted crystals is shown to be feasible by this example and is proposed as a general approach to solving the crystallographic phase problem. Strategies for selecting propitious sites for methionine mutations are discussed. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号