首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
 The pulp of ripe bananas (Musa acuminata) contains an abundant thaumatin-like protein (TLP). Characterization of the protein and molecular cloning of the corresponding gene from banana demonstrated that the native protein consists of a single polypeptide chain of 200 amino acid residues. Molecular modelling further revealed that the banana thaumatin-like protein (Ban-TLP) adopts an overall fold similar to that of thaumatin and thaumatin-like PR-5 proteins. Although the banana protein exhibits an electrostatically polarized surface, which is believed to be essential for the antifungal properties of TLPs, it is apparently devoid of antifungal activity towards pathogenic fungi. It exhibits a low but detectable in vitro endo-β-1,3-glucanase (EC 3.2.1.x) activity. As well as being present in fruits, Ban-TLP also occurs in root tips where its accumulation is enhanced by methyl jasmonate treatment of plants. Pulp of plantains (Musa acuminata) also contains a very similar TLP, which is even more abundant than its banana homologue. Our results demonstrate for the first time that fruit-specific (abundant) TLPs are not confined to dicots but occur also in fruits of monocot species. The possible role of the apparent widespread accumulation of fruit-specific TLPs is discussed. Received: 7 January 2000 / Accepted: 26 April 2000  相似文献   

2.
类Tubby蛋白质(Tubby-like protein,TLP)在动植物中广泛存在,暗示其在生命过程中发挥重要的作用。水稻(Oryza sativa)基因组中有14个TLP家族成员,首先制备了这些蛋白质的抗体,用免疫印迹方法检测了它们在水稻叶片不同生长时期的表达情况,揭示其表达模式;然后对Xa21介导的水稻白叶枯病抗性反应不同时间点进行检测,发现OsTLP2、OsTLP7、OsTLP8和OsTLP9等4个蛋白质的表达发生了变化;进一步比较它们在抗病、感病反应和对照处理中的表达情况,发现不同反应间的表达也有区别。该研究结果为阐释水稻TLP在叶片生长过程中的功能,尤其是在水稻-白叶枯病菌互作过程中的作用提供了重要线索。  相似文献   

3.
4.
Thaumatin‐like proteins (TLPs) were shown to be induced in rice plants (cv. IR58) that were infected with the sheath blight fungus, Rhizoctonia solani . Western blot analysis revealed the presence of two TLPs with sizes of 25 and 24 kDa which are different from a previously reported TLP with a size of 15.6 kDa from rice plants infiltrated with the non‐pathogenic bacterium, Pseudomonas syringae pv. syringae . By probing a cDNA expression library prepared from RNA isolated from R. solani ‐infected rice plants with a TLP antibody, several putative TLP cDNA clones were isolated and sequenced. The cDNA clones appeared to be derived from two different genes which shared only 77% sequence identity with each other and a lower percentage of sequence identity with the previously reported TLP cDNA clone. Southern blot analysis with the two TLP cDNAs revealed different rice genomic DNA fragments. Northern blot analysis also confirmed that a 1.1‐kb RNA detectable by the TLP cDNA inserts was induced by fungal infection. Thus rice TLPs are encoded by a family of at least three genes which are differentially expressed in responses to bacterial or fungal pathogens.  相似文献   

5.
Thaumatin-like proteins (TLPs) are pathogenesis-related proteins, which are involved in plant defense responses to pathogen infection. Expression of the Pinus sylvestris L. TLP gene is up-regulated by methyl jasmonate treatment and inoculation with Heterobasidion annosum. A full-length Pinus taeda TLP gene sequence was used to design PCR primers for amplification of the full-length TLP gene from P. sylvestris. A putative 705-bp open reading frame of TLP gene was cloned into Escherichia coli cells, and then subcloned into the overexpression vector pET100 using BL21 Star expression bacteria. Optimization of the expression of recombinant TLP was achieved by decreasing both expression temperature and IPTG concentration. The purified 24.6-kDa TLP shows antimicrobial activity against 12 fungal species.  相似文献   

6.
7.
Blueberry (Vaccinium corymbosum) is a fruit very much appreciated by consumers for its antioxidant potential and health‐promoting traits. Its beneficial potential properties are mainly due to a high content of anthocyanins and their amount can change after elicitation with methyl jasmonate. The aim of this work is to evaluate the changes in expression of several genes, accumulation of phenolic compounds and alterations in antioxidant potential in two different blueberry cultivars (‘Duke’ and ‘Blueray’) in response to methyl jasmonate (0.1 mM). Results showed that 9 h after treatment, the expression of phenylalanine ammonium lyase, chalcone synthase and anthocyanidin synthase genes was stimulated more in the ‘Blueray’ variety. Among the phenols measured an increase was recorded also for epicatechin and anthocyanin concentrations. ‘Duke’ is a richer sourche of anthocyanins compared to ‘Blueray’, treatment with methyl jasmonate promoted in ‘Blueray’ an increase in pigments as well as in the antioxidant potential, especially in fully ripe berries, but treated ‘Duke’ berries had greater levels, which were not induced by methyl jasmonate treatment. In conclusion, methyl jasmonate was, in some cases, an effective elicitor of phenolic metabolism and gene expression in blueberry, though with different intensity between cultivars.  相似文献   

8.
Antifreeze activity increases in winter rye ( Secale cereale L.) during cold acclimation as the plants accumulate antifreeze proteins (AFPs) that are similar to glucanases, chitinases and thaumatin-like proteins (TLPs) in the leaf apoplast. In the present work, experiments were conducted to assess the role of drought and abscisic acid (ABA) in the regulation of antifreeze activity and accumulation of AFPs. Antifreeze activity was detected as early as 24 h of drought treatment at 20°C and increased as the level of apoplastic proteins increased. Apoplastic proteins accumulated rapidly under water stress and reached a level within 8 days that was equivalent to the level of apoplastic proteins accumulated when plants were acclimated to cold temperature for 7 weeks. These drought-induced apoplastic proteins had molecular masses ranging from 11 to 35 kDa and were identified as two glucanases, two chitinases, and two TLPs, by using antisera raised against cold-induced rye glucanase, chitinase, and TLP, respectively. Apoplastic extracts obtained from plants treated with ABA lacked the ability to modify the growth of ice crystals, even though ABA induced the accumulation of apoplastic proteins within 4 days to a level similar to that obtained when plants were either drought-stressed for 8 days or cold-acclimated for 7 weeks. These ABA-induced apoplastic proteins were identified immunologically as two glucanases and two TLPs. Moreover, the ABA biosynthesis inhibitor fluridone did not prevent the accumulation of AFPs in the leaves of cold-acclimated rye plants. Our results show that cold acclimation and drought both induce antifreeze activity in winter rye plants and that the pathway regulating AFP production is independent of ABA.  相似文献   

9.
The effect of atmospheric methyl jasmonate on the oxylipin pathway was investigated in leaves of tobacco (Nicotiana tabacum L.), cucumber (Cucumis sativa L.), and Arabidopsis thaliana (L.). Differential sensitivities of test plants to methyl jasmonate were observed. Thus, different concentrations of methyl jasmonate were required for induction of changes in the oxylipin pathway. Arabidopsis was the least and cucumber the most sensitive to methyl jasmonate. Methyl jasmonate induced the accumulation of lipoxygenase protein and a corresponding increase in extractable lipoxygenase activity. Atmospheric methyl jasmonate additionally induced hydroperoxide lyase activity and the enhanced production of several volatile six-carbon products. It is interesting that lipid hydroperoxidase activity, which is a measure of hydroperoxide lyase plus allene oxide synthase plus possibly other lipid hydroperoxide-metabolizing activities, was not changed by methyl jasmonate treatment. Methyl jasmonate selectively altered the activity of certain enzymes of the oxylipin pathway (lipoxygenase and hydroperoxide lyase) and increased the potential of leaves for greatly enhanced six-carbon-volatile production.  相似文献   

10.
During cold acclimation, antifreeze proteins (AFPs) that are similar to pathogenesis-related proteins accumulate in the apoplast of winter rye (Secale cereale L. cv Musketeer) leaves. AFPs have the ability to modify the growth of ice. To elucidate the role of AFPs in the freezing process, they were assayed and immunolocalized in winter rye leaves, crowns, and roots. Each of the total soluble protein extracts from cold-acclimated rye leaves, crowns, and roots exhibited antifreeze activity, whereas no antifreeze activity was observed in extracts from nonacclimated rye plants. Antibodies raised against three apoplastic rye AFPs, corresponding to a glucanase-like protein (GLP, 32 kD), a chitinase-like protein (CLP, 35 kD), and a thaumatin-like protein (TLP, 25 kD), were used in tissue printing to show that the AFPs are localized in the epidermis and in cells surrounding intercellular spaces in cold-acclimated plants. Although GLPs, CLPs, and TLPs were present in nonacclimated plants, they were found in different locations and did not exhibit antifreeze activity, which suggests that different isoforms of pathogenesis-related proteins are produced at low temperature. The location of rye AFPs may prevent secondary nucleation of cells by epiphytic ice or by ice propagating through the xylem. The distributions of pathogenesis-induced and cold-accumulated GLPs, CLPs, and TLPs are similar and may reflect the common pathways by which both pathogens and ice enter and propagate through plant tissues.  相似文献   

11.
Thaumatin-like proteins (TLPs) are the products of a large, highly complex gene family involved in host defence and a wide range of developmental processes in fungi, plants, and animals. Despite their dramatic diversification in organisms, TLPs appear to have originated in early eukaryotes and share a well-defined TLP domain. Nonetheless, determination of the roles of individual members of the TLP superfamily remains largely undone. This review summarizes recent advances made in elucidating the varied TLP activities related to host resistance to pathogens and other physiological processes. Also discussed is the current state of knowledge on the origins and types of TLPs, regulation of gene expression, and potential biotechnological applications for TLPs.  相似文献   

12.
13.
《Genomics》2020,112(3):2499-2509
Thaumatin-like proteins (TLPs), which belong to pathogenesis-related (PR) protein family 5 (PR5), are involved in plant host defense and various developmental processes. The functions of the TLP family have been extensively discussed in multiple organisms, whereas the detailed information of this family in melon has not been reported yet. In this study, we identified 28 TLP genes in the melon genome and a N-terminal signal peptide was found highly conserved within each member of this family. Phylogeny analysis indicated that TLPs from melon and other plant species were clustered into ten groups. Twelve segmental and seven tandem duplication gene pairs that underwent purifying selection were identified. TLP genes expressed differentially in different tissues/organs, and were significantly induced after Podosphaera xanthii infection. TLPs in breeding line MR-1 tend to express early after pathogen infection compared with cultivar Top Mark. Our study provides a comprehensive understanding of the melon TLP family and demonstrates their potential roles in disease resistance, therefore provides more reference for further research.  相似文献   

14.
Plant stress proteins of the thaumatin-like family discovered in animals   总被引:4,自引:0,他引:4  
Thaumatin-like proteins (TLPs) are polypeptides of about 200 residues synthesized by plants in response to fungal infection. In addition to the exceptionally strong sweet taste exhibited by some members, they are also reported to be endowed with endo-beta-1,3-glucanase activity and alpha-amylase inhibiting properties. However, the detailed mechanism of their antifungal action is not completely understood. So far, TLPs have only been described in plants, with several members of the family expressed in the same species. Here, for the first time in animals, we report the identification of two genes encoding members of the thaumatin-like proteins family in the desert locust Schistocerca gregaria and show their expression in different parts of the body. Southern blot and Western blot experiments revealed the presence of orthologous genes and their expression products in the related species Locusta migratoria. A search through the available genomes yielded similar sequences in the nematode Caenorhabditis but not in Drosophila and other insects. A three-dimensional model of S. gregaria TLP suggests a glucanase function. As in plants, TLPs could play a defense role in insects against pathogens.  相似文献   

15.
Thaumatin-like proteins (TLPs) and chitinases are the main constituents of so-called protein hazes which can form in finished white wine and which is a great concern of winemakers. These soluble pathogenesis-related (PR) proteins are extracted from grape berries. However, their distribution in different grape tissues is not well documented. In this study, proteins were first separately extracted from the skin, pulp and seed of Sauvignon Blanc grapes, followed by trypsin digestion and analysis by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Proteins identified included 75 proteins from Sauvignon Blanc grape skin, 63 from grape pulp and 35 from grape seed, mostly functionally classified as associated with metabolism and energy. Some were present exclusively in specific grape tissues; for example, proteins involved in photosynthesis were only detected in grape skin and proteins found in alcoholic fermentation were only detected in grape pulp. Moreover, proteins identified in grape seed were less diverse than those identified in grape skin and pulp. TLPs and chitinases were identified in both Sauvignon Blanc grape skin and pulp, but not in the seed. To relatively quantify the PR proteins, the protein extracts of grape tissues were seperated by HPLC first and then analysed by SDS-PAGE. The results showed that the protein fractions eluted at 9.3 min and 19.2 min under the chromatographic conditions of this study confirmed that these corresponded to TLPs and chitinases seperately. Thus, the relative quantification of TLPs and chitinases in protein extracts was carried out by comparing the area of corresponding peaks against the area of a thamautin standard. The results presented in this study clearly demonstrated the distribution of haze-forming PR proteins in grape berries, and the relative quantification of TLPs and chitinases could be applied in fast tracking of changes in PR proteins during grape growth and determination of PR proteins in berries at harvest.  相似文献   

16.
Transthyretin (TTR) is a tetrameric protein involved in the distribution of thyroid hormones in vertebrates. The amino acid sequence of TTR is highly conserved across vertebrates. Hypothetical TTR-like proteins (TLPs) were inferred from the identification of genes in nonvertebrate species. Here, we identified five motifs defining TLPs and three motifs defining both TTRs and TLPs. These motifs were mapped onto structurally conserved and functionally important regions of TTRs. These motifs were used to build hidden Markov models for accurate identification of TLPs in other organisms. TLPs were divided into three main groups based on their N-terminal regions. Most TLPs are cytosolic, but in plants and slime mold, we predict they are peroxisomal. We verified that the TLPs from enterobacteria were periplasmic. We demonstrated that TLP genes are expressed in a bacterium (E. coli), an invertebrate animal (C. elegans), and a plant (A. thaliana). These TLPs have similar subunit molecular weights to TTRs, are tetramers, and are predicted to have similar three-dimensional (3D) structures to TTRs, but do not bind thyroid hormones or similar ligands. We suggest that like TTRs, the N-terminal and C-terminal regions of TLPs are integral in defining the function of TLPs in nonvertebrate species and that the TLP gene duplicated in primitive vertebrates to produce the TTR gene. TLP/TTR has retained its overall structure, but changed function and localization during evolution in bacteria, invertebrates, plants, and vertebrates.  相似文献   

17.
18.
Abstract

The effect of Xanthomonas oryzae pv. oryzae infection on induction of phenylalanine ammonia-lyase (PAL), peroxidase (PO), phenolics and thaumatin-like proteins (TLPs) in rice was studied. PAL activity increased significantly one day after inoculation with X. o. pv. oryzae and the maximum enzyme activity was observed two days after inoculation. The phenolic content in rice leaves increased significantly one day after inoculation and the maximum accumulation of phenols was observed two days after inoculation. Significant increase in peroxidase activity was observed in rice leaves one day after inoculation with X. o. pv. oryzae. Isozyme analysis indicated that three peroxidase isozymes (PO-1, PO-2 and PO-3) were induced after inoculation with X. o. pv. oryzae. Immunoblot analysis of protein extracts from control and pathogen inoculated rice plants revealed the induced accumulation of 16 and 24 kDa TLPs in rice leaves in response to X. o. pv. oryzae infection. TLP mRNA accumulation was induced strongly in rice leaves in response to infection by X. o. pv. oryzae.  相似文献   

19.
Cross-reactivity of plant foods is an important phenomenon in allergy, with geographical variations with respect to the number and prevalence of the allergens involved in this process, whose complexity requires detailed studies. We have addressed the role of thaumatin-like proteins (TLPs) in cross-reactivity between fruit and pollen allergies. A representative panel of 16 purified TLPs was printed onto an allergen microarray. The proteins selected belonged to the sources most frequently associated with peach allergy in representative regions of Spain. Sera from two groups of well characterized patients, one with allergy to Rosaceae fruit (FAG) and another against pollens but tolerant to food-plant allergens (PAG), were obtained from seven geographical areas with different environmental pollen profiles. Cross-reactivity between members of this family was demonstrated by inhibition assays. Only 6 out of 16 purified TLPs showed noticeable allergenic activity in the studied populations. Pru p 2.0201, the peach TLP (41%), chestnut TLP (24%) and plane pollen TLP (22%) proved to be allergens of probable relevance to fruit allergy, being mainly associated with pollen sensitization, and strongly linked to specific geographical areas such as Barcelona, Bilbao, the Canary Islands and Madrid. The patients exhibited >50% positive response to Pru p 2.0201 and to chestnut TLP in these specific areas. Therefore, their recognition patterns were associated with the geographical area, suggesting a role for pollen in the sensitization of these allergens. Finally, the co-sensitizations of patients considering pairs of TLP allergens were analyzed by using the co-sensitization graph associated with an allergen microarray immunoassay. Our data indicate that TLPs are significant allergens in plant food allergy and should be considered when diagnosing and treating pollen-food allergy.  相似文献   

20.
In tobacco plants, wounding induces production of a set of defense-related proteins such as basic pathogenesis-related (PR) proteins and proteinase inhibitors (PIs) via the jasmonate/ethylene pathway. Although class III plant peroxidase (POX) is also wound-inducible, the regulatory mechanism for its wound-induced expression is not fully understood. Here, we describe that a tobacco POX gene (tpoxN1), which is constitutively expressed in roots, is induced locally 30 min after wounding and then systemically in tobacco plants. Infection of necrotizing virus also induced tpoxN1 gene. The wound-induced expression was not enhanced by known wound-signal compounds such as methyl jasmonate (MeJA) and ethephon in contrast to other wound-inducible genes such as basic PR-1 and PI-II genes. And treatment with MeJA and coronatine, biological analogs of jasmonate, rather suppressed the tpoxN1 expression. Salicylic acid, an antagonist of jasmonate-based wound signaling, did not suppress the wound-induced expression of tpoxN1. Only spermine, which is reported as an endogenous inducer for acidic PR genes in tobacco mosaic virus-infected tobacco leaves, could induce tpoxN1 gene expression. These results suggest that wound-induced expression of the tpoxN1 gene is regulated differently from that of the basic PR and PI-II genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号