首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
蛋白激酶Cδ可能参与肥大心肌细胞转向凋亡   总被引:1,自引:0,他引:1  
Guo WG  Yu ZB  Xie MJ 《生理学报》2006,58(3):269-274
为了探讨肥大心肌细胞对凋亡刺激的易感性及蛋白激酶Cδ(protein kinase Cδ,PKCδ)在其中的作用,以内皮素-1 (endothelin-1,ET-1)处理原代培养的新生大鼠心肌细胞,诱导心肌细胞肥大;再用血管紧张素Ⅱ(angiotensin II,Ang II)作为细胞凋亡诱导因子,采用鬼笔环肽(phalloidin)荧光染色与细胞面积测量两种方法检测心肌肥大,Hoechst 33258荧光染色检测细胞凋亡。结果显示:(1)1与10 nmol/L ET-1作用48h,心肌细胞肌原纤维排列整齐、染色增浓,随ET-1浓度增加而愈加明显,心肌细胞表面积分别增加42.5%和67.3%,以此作为轻度和中度心肌细胞肥大模型。(2)正常、轻度肥大与中度肥大心肌细胞受1nmol/L AngⅡ处理24h后,凋亡率分别为(15.54±1.32)%、(20.65±1.40)%与(29.33±3.52)%,三组之间有显著差异(P<0.05)。(3)受AngⅡ刺激后,PKCδ特异性抑制剂rottlerin不影响正常心肌细胞的凋亡率,却有效抑制了轻度和中度肥大心肌细胞的凋亡。肥大心肌细胞凋亡易感性明显高于正常心肌细胞,抑制PKCδ可以抑制肥大心肌细胞凋亡,提示PKCδ参与肥大心肌细胞凋亡过程。  相似文献   

2.
活性氧介导内皮素-1诱导的培养新生大鼠心肌细胞肥大   总被引:4,自引:0,他引:4  
Wang YZ  Luo JD 《生理学报》2004,56(3):403-406
实验在原代培养的新生大鼠心肌细胞中进行,检测内皮素-1(endothelin-1,ET-1)及其他药物对心肌细胞活性氧(reactiveoxygen species,ROS)产生和心肌细胞肥大的作用,以探讨ROS在ET-1诱导的心肌细胞肥大信号通路中的作用及ROS与蛋白激酶C(protein kinase C,PKC)活化的关系。细胞内ROS水平用ROS敏感的荧光探针2,7-dichlorofluorescin dictate(DCF-DA)反映,心肌细胞肥大通过细胞内RNA含量、细胞内蛋白质含量、细胞表面积大小来确定。实验结果如下:单独使用ET-1后,心肌细胞内反应ROS含量的DCF-DA荧光值比对照组增加77%,反应心肌肥大的PI荧光值、细胞内蛋白质含量、细胞表面积也分别比对照组增加128%、87%和151%。ET-1合用内皮素受体A亚型(ET_A)受体拮抗剂ABT-627、PKC抑制剂CC或过氧化氢酶后,DCF-DA的增加分别减弱62%、60%和51%,同时心肌细胞肥大也被抑制,单独使用PKC激动剂佛波醇脂(PMA)也能使DCF-DA的产生比对照组增加74%。因此,在ET-1诱导心肌细胞肥大的过程中,ET-1能够使心肌细胞产生ROS和诱导ROS依赖的心肌细胞肥大,这一作用依赖于ET_A受体的激活和PKC的活化,·ROS在ET-1诱导心肌细胞肥大中起信号传递的作用。  相似文献   

3.
本文观察了溶血磷脂酸(LPA)对心肌细胞内蛋白激酶C(PKC)分布的影响。在离体家猫心脏灌流LPA(10-8mol/L)后差速离心分别制备心肌细胞胞浆、核及肌膜,测定各部分PKC活性。结果显示:与对照组比较,LPA组心肌总PKC活性增加9.8%(P<0.05),但胞浆PKC活性降低10.3%(P<0.05),膜与核的活性分别增加38.8%和77.6%(P<0.01)。结论:LPA刺激心肌细胞PKC活性增强,并可能使PKC从胞浆向胞核和肌膜部分转移  相似文献   

4.
Wu B  Wang TH  Pan JY  Zhu XN  Zhan CY 《生理学报》1998,50(1):87-93
内皮系-1(ET-1)是一种强的生长因子,并诱导心肌细胞肥大反应。在本实验中,我们探讨了G蛋白、蛋白激酶C(PKC)和Na+-H+交换在ET-1诱导的培养新生大鼠心肌细胞肥大反应中的作用。ET-1(10-10~10-7mol/L)促进3H-亮氨酸掺入,增加细胞蛋白质的含量和心肌细胞的表面积,且呈剂量依赖性,它们的EC50分别为5.2×10-10,5.2×10-10和7.3×10-10mol/L。用蛋白激酶C(PKC)抑制剂,Staurosporin(2nmol/L)预处理心肌细胞,可完全阻断ET-1诱导的心肌细胞的这些肥大反应,而蛋白激酶C激动剂,佛波酸酯(PMA)(10-8~10-6mol/L)呈剂量依赖性促进心肌细胞的肥大反应。用Na+-H+交换抑制剂,氨氯毗咪(10-4mol/L)预处理心肌细胞,可抑制ET-1诱导的心肌细胞肥大反应,但不影响PMA诱导的心肌细胞肥大反应。百日咳毒素(150ng/ml)预处理心肌细胞,可明显抑制ET-1诱导的心肌细胞肥大反应。这些结果提示,ET-1诱导的培养新生大鼠心肌细胞肥大反应是与百日咳毒素敏感的G蛋白相耦联,蛋白激酶C和Na+.H+交换可能在ET-1诱导的心肌细胞肥大反应中是重要的细胞内信使转导途径。  相似文献   

5.
缺氧预处理对乳鼠心肌细胞蛋白激酶C活性的影响   总被引:14,自引:1,他引:14  
刘秀华  庞永政 《生理学报》1997,49(4):427-432
在培养的乳鼠心肌细胞缺氧/复氧模型上,观察了缺氧预处理的细胞保护作用及其对细胞蛋白激酶C活性和蛋白磷酸化的影响。结果表明,APC可减轻心肌细胞的H/R损伤;提高细胞存活率,减少细胞脂质过氧化产物生成及细胞内乳酸脱氢酶和蛋白质漏出。模拟APC的短暂缺氧显著激活PKC,使心肌细胞内分子量为66kD和31kD的蛋白条带^32P掺入增加;PKC抑制剂H7完全消除APC对心肌细胞的保护作用,并抑制了短暂缺氧  相似文献   

6.
蛋白激酶C对酪氨酸蛋白激酶系统的调节   总被引:1,自引:0,他引:1  
本文论述了蛋白激酶C(PKC)对生长因子受体激活的Ras/MAPK途径的多种调节,其中,有直接的也有间接的,有激活也有抑制。这些不同水平不同性质的调节使细胞对外来刺激作出相应的反应。由于PKC和Ca^2+是肌醇磷脂系统中十分重要的两个组分,本文所论述的也是目前所知的肌醇磷脂系统对酪氨酸蛋白激酶系统调节的主要过程。  相似文献   

7.
目的 :研究蛋白激酶A和蛋白激酶C对豚鼠心室肌细胞延迟整流钾电流 (Ik)的影响。方法 :采用电极内液浓度差扩散法进行细胞内给药 ,利用全细胞膜片箝技术测定单细胞Ik。结果 :cAMP15 0 μmol/L使Ik及Ik ,tail(pA/pF)从 13.7± 2 .1和 6 .1± 0 .3增至 18.5± 3.3和 6 .4± 2 .1(P <0 .0 1,n =6 ) ;8 CPT cAMP15 0 μmol/L使电流 (pA/pF)从 11.4± 1.8及 5 .3± 0 .6增至 17.9± 4 .0和 6 .2± 1.3,PKA的选择性抑制剂 6 2 2 1.0 μmol/L的可逆转二者的作用。cAMP使Ik的激活曲线左移 ,半激活电压 (V1/ 2 )从 2 3.3mV移至 18.7mV ,激活曲线斜率 (k)在用药前后变化较小。 10 μmol/LPMA可以分别使Ik和Ik ,tial(pA/pF)从 12 .9± 1.8和 5 .0± 1.7升至 2 3.7± 2 .8和 7.5±1.1。PMA使I V曲线幅值增加 ,并随去极化电压的升高其作用加强 ,同时PMA使通道的激活曲线k从 15 .3mV升到 2 5 .6mV ,但对V1/ 2 基本无影响。结论 :蛋白激酶A和蛋白激酶C均可增加豚鼠心肌细胞Ik,但二者作用特点有所不同  相似文献   

8.
甲状腺素对大鼠心脏细胞蛋白激酶C信号途径的影响   总被引:9,自引:0,他引:9  
目的 :探讨甲状腺素对新生大鼠心脏细胞中蛋白激酶C(proteinkinaseC ,PKC)信号途径的影响。 方法 :培养新生大鼠心肌细胞及成纤维细胞 ,用 1%血清培养基或血管紧张素Ⅱ(angiotensinⅡ ,AngⅡ)处理细胞 2 4h后 ,加入甲状腺素(三碘甲状腺素原氨酸 ,triiodothyronine,T3 )继续培养 4 8h后 ,用PKC活性检测试剂盒检测细胞中PKC活性 ,用West ernblot的方法检测细胞中PKCα及PKCε的表达。结果 :在 1%血清培养基中 ,T3 能明显抑制心肌细胞中PKC活性 ,使心肌细胞中PKCε表达下降 ,对PKCα的表达却没有显著的影响 ;在心肌成纤维细胞中 ,无论是PKC活性还是PKCα及PKCε的表达均未观察到T3 的调控作用。预先用AngⅡ处理 2 4h后 ,心肌细胞及心肌成纤维细胞中PKC活性明显增加 ,PKCε的表达显著增加 ,随后用T3 处理后 ,心肌细胞中PKC活性及PKCε的表达明显降低 ;而心肌成纤维细胞中PKC活性没有发生显著性的变化。结论 :甲状腺素能明显抑制心肌细胞中PKC活性及PKCε亚型的表达 ,其对心肌细胞中PKC信号途径的调控作用可能在心肌的多种病理生理过程中起着重要的作用。  相似文献   

9.
内皮素-1(ET-1)是一种强的生长因子,并诱导心肌细胞肥大反应.在本实验中,我们探讨了G蛋白、蛋白激酶C(PKC)和Na+-H+交换在ET-1诱导的培养新生大鼠心肌细胞肥大反应中的作用.ET-1(10-10~10-7 mol/L)促进3H-亮氨酸掺入,增加细胞蛋白质的含量和心肌细胞的表面积,且呈剂量依赖性,它们的EC50分别为5.2×10-10,5.2×10-10和7.3×10-10mol/L.用蛋白激酶C(PKC)抑制剂,Staurosporin(2 nmol/L)预处理心肌细胞,可完全阻断ET-1诱导的心肌细胞的这些肥大反应,而蛋白激酶C激动剂,佛波醇酯(PMA)(10-8~10-6mol/L)呈剂量依赖性促进心肌细胞的肥大反应.用Na+-H+交换抑制剂,氨氯吡咪(10-4mol/L)预处理心肌细胞,可抑制ET-1诱导的心肌细胞肥大反应,但不影响PMA诱导的心肌细胞肥大反应.百日咳毒素(150ng/ml)预处理心肌细胞,可明显抑制ET-1诱导的心肌细胞肥大反应.这些结果提示,ET-1诱导的培养新生大鼠心肌细胞肥大反应是与百日咳毒素敏感的G蛋白相耦联,蛋白激酶C和Na+-H+交换可能在ET-1诱导的心肌细胞肥大反应中是重要的细胞内信使转导途径.  相似文献   

10.
Fu SG  Liu PQ  Lu W  Gong SZ  Pan JY 《生理学报》2000,52(4):318-322
实验用硝酸还原酶法测定培养新生大鼠内肌细胞亚硝酸盐(NO2)和硝酸盐(NO3)总量(NO2/NO3),反映心肌细胞一氧化氮(NO)生成情况,观察血管紧张素Ⅱ(AngⅡ)对凡肌细胞NO生成的及其蛋白激酶C(PKC)在该效应中的作用。结果显示:AngⅡ可减少心肌细胞NO的含量,并具有明显的剂量-效应关系;AngⅡ受体拮抗剂saralasin可明显抵制AngⅡ对NO生成的影响;L-精氨酸(L-Arg)明  相似文献   

11.
Protein kinase C isoforms comprise a family of structurally related serine/threonine kinases that are activated by second messenger molecules formed via receptor-dependent activation of phospholipase C. Cardiomyocytes co-express multiple protein kinase C isoforms which play key roles in a spectrum of adaptive and maladaptive cardiac responses. This chapter focuses on the structural features, modes of activation, and distinct cellular actions of individual PKC isoforms in the heart. Particular emphasis is placed on progress that comes from studies in molecular models of PKC isoform overexpression or gene deletion in mice. Recent studies that distinguish the functional properties of novel PKC isoforms (PKC and PKC) from each other, and from the actions of the conventional PKC isoforms, and suggest that these proteins may play a particularly significant role in pathways leading to cardiac growth and/or cardioprotection also are considered.  相似文献   

12.
It has been suggested that phosphorylation of myelin basic protein (MBP) in CNS is catalyzed by protein kinase C (PKC). In order to demonstrate that PKC in the myelin phosphorylates MBP, PKC was partially purified from rat CNS myelin by solubilization with Triton X-100 followed by a DEAE-cellulose column. MBP and histone III-S were phosphorylated in the presence of Ca2+ and phospholipid by rat myelin PKC. High voltage electrophoresis revealed that the phosphoamino acids in MBP by this kinase was serine residue, which is known to be the amino acid phosphorylated by PKC. The activity of PKC extracted from myelin was inhibited by the addition of psychosine to the incubation mixture. To confirm the presence of PKC molecule and to identify the isoform of PKC in the myelin, the solubilized myelin fraction was applied on SDS-PAGE, transferred to a nitrocellulose sheet and stained with anti-PKC monoclonal antibodies. Rat CNS myelin contained the PKC of about 80 kDa (intact PKC), and no proteolytic fragments were observed. PKC isozymes in myelin were type II and III. A developmental study from 14 to 42 postnatal days showed that PKC activity in CNS myelin seemed to parallel the deposition of myelin protein.  相似文献   

13.
Members of the protein kinase C (PKC) isozyme family are important signal transducers in virtually every mammalian cell type. Within the heart, PKC isozymes are thought to participate in a signaling network that programs developmental and pathological cardiomyocyte hypertrophic growth. To investigate the function of PKC signaling in regulating cardiomyocyte growth, adenoviral-mediated gene transfer of wild-type and dominant negative mutants of PKC alpha, beta II, delta, and epsilon (only wild-type zeta) was performed in cultured neonatal rat cardiomyocytes. Overexpression of wild-type PKC alpha, beta II, delta, and epsilon revealed distinct subcellular localizations upon activation suggesting unique functions of each isozyme in cardiomyocytes. Indeed, overexpression of wild-type PKC alpha, but not betaI I, delta, epsilon, or zeta induced hypertrophic growth of cardiomyocytes characterized by increased cell surface area, increased [(3)H]-leucine incorporation, and increased expression of the hypertrophic marker gene atrial natriuretic factor. In contrast, expression of dominant negative PKC alpha, beta II, delta, and epsilon revealed a necessary role for PKC alpha as a mediator of agonist-induced cardiomyocyte hypertrophy, whereas dominant negative PKC epsilon reduced cellular viability. A mechanism whereby PKC alpha might regulate hypertrophy was suggested by the observations that wild-type PKC alpha induced extracellular signal-regulated kinase1/2 (ERK1/2), that dominant negative PKC alpha inhibited PMA-induced ERK1/2 activation, and that dominant negative MEK1 (up-stream of ERK1/2) inhibited wild-type PKC alpha-induced hypertrophic growth. These results implicate PKC alpha as a necessary mediator of cardiomyocyte hypertrophic growth, in part, through a ERK1/2-dependent signaling pathway.  相似文献   

14.
Chronic hypertension results in cardiac hypertrophy and may lead to congestive heart failure. The protein kinase C (PKC) family has been identified as a signaling component promoting cardiac hypertrophy. We hypothesized that PKC activation may play a role mediating hypertrophy in the spontaneously hypertensive heart failure (SHHF) rat heart. Six-month-old SHHF and normotensive control Wistar Furth (WF) rats were used. Hypertension and cardiac hypertrophy were confirmed in SHHF rats. PKC expression and activation were analyzed by Western blots using isozyme-specific antibodies. Compared to WF, untreated SHHF rats had increased phospho-active (10-fold), (4-fold), and (3-fold) isozyme expression. Furthermore, we analyzed the effect of an angiotensin II type 1 receptor blocker (ARB) and hydralazine (Hy) on PKC regulation in SHHF rat left ventricle (LV). Both the ARB and Hy normalized LV blood pressure, but only the ARB reduced heart mass. Neither treatment affected PKC expression or activity. Our data show differential activation of PKC in the hypertensive, hypertrophic SHHF rat heart. Regression of hypertrophy elicited by an ARB in this model occurred independently of changes in the expression and activity of the PKC isoforms examined. (Mol Cell Biochem 270: 63–69, 2005)  相似文献   

15.
Jin X  Xia L  Wang LS  Shi JZ  Zheng Y  Chen WL  Zhang L  Liu ZG  Chen GQ  Fang NY 《Proteomics》2006,6(6):1948-1956
Although cardiac hypertrophy in hypertension has been well recognized, the molecular mechanisms for the development of hypertrophy are still largely unknown. In this study, the protein expression profiles of left ventricular myocardia in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats at different ages were analyzed using 2-DE in combination with MALDI-TOF/TOF MS/MS. The results showed that 20 proteins were modulated in the hypertrophic myocardium. Out of these modulated proteins, 13 proteins presented significant changes in SHR at an early stage prior to the development of sustained hypertension, while the changes of the other 7 protein expressions occurred only at a late stage in SHR when the blood pressure was significantly elevated, and were largely reversible by treatment with rennin-angiotensin-aldosterone system inhibitors losartan or enalapril. These data demonstrate that the changes in energy metabolism in the hypertrophied heart favor an increase in glycolysis and a decrease in oxidation of fatty acid and glucose, which occur at an early stage in SHR without hypertension. Our results also provide evidence to support the hypothesis that oxidative stress plays an important role in the development of hypertensive cardiac hypertrophy.  相似文献   

16.
Protein kinase Cs (PKCs) constitute a family of serine/threonine kinases, which has distinguished and specific roles in regulating cardiac responses, including those associated with heart failure. We found that the PKCθ isoform is expressed at considerable levels in the cardiac muscle in mouse, and that it is rapidly activated after pressure overload. To investigate the role of PKCθ in cardiac remodeling, we used PKCθ−/− mice. In vivo analyses of PKCθ−/− hearts showed that the lack of PKCθ expression leads to left ventricular dilation and reduced function. Histological analyses showed a reduction in the number of cardiomyocytes, combined with hypertrophy of the remaining cardiomyocytes, cardiac fibrosis, myofibroblast hyper-proliferation and matrix deposition. We also observed p38 and JunK activation, known to promote cell death in response to stress, combined with upregulation of the fetal pattern of gene expression, considered to be a feature of the hemodynamically or metabolically stressed heart. In keeping with these observations, cultured PKCθ−/− cardiomyocytes were less viable than wild-type cardiomyocytes, and, unlike wild-type cardiomyocytes, underwent programmed cell death upon stimulation with α1-adrenergic agonists and hypoxia. Taken together, these results show that PKCθ maintains the correct structure and function of the heart by preventing cardiomyocyte cell death in response to work demand and to neuro-hormonal signals, to which heart cells are continuously exposed.  相似文献   

17.
D-serine is a co-agonist of NMDA receptor (NMDAR) and plays important roles in synaptic plasticity mechanisms. Serine racemase (SR) is a brain-enriched enzyme that converts L-serine to D-serine. SR interacts with the protein interacting with C-kinase 1 (PICK1), which is known to direct protein kinase C (PKC) to its targets in cells. Here, we investigated whether PKC activity regulates SR activity and D-serine availability in the brain. In vitro, PKC phosphorylated SR and decreased its activity. PKC activation increased SR phosphorylation in serine residues and reduced D-serine levels in astrocyte and neuronal cultures. Conversely, PKC inhibition decreased basal SR phosphorylation and increased cellular D-serine levels. In vivo modulation of PKC activity regulated both SR phosphorylation and D-serine levels in rat frontal cortex. Finally, rats that completed an object recognition task showed decreased SR phosphorylation and increased D-serine/total serine ratios, which was markedly correlated with decreased PKC activity in both cortex and hippocampus. Results indicate that PKC phosphorylates SR in serine residues and regulates D-serine availability in the brain. This interaction may be relevant for the regulation of physiological and pathological mechanisms linked to NMDAR function.  相似文献   

18.
Effects of protein kinase C on protein stability and activity of rat AANAT were investigated in vitro and in vivo. When COS-7 cells transfected with AANAT cDNA were treated with phorbol 12-myristate 13-acetate (PMA), both the activity and protein level of AANAT were increased. These effects of PMA were blocked by GF109203X, a specific inhibitor of PKC. Moreover, PMA increased the phosphorylation of AANAT and induced the formation of AANAT/14-3-3zeta complex. PMA did not affect the basal level of cAMP and did not involve the potentiation of the cAMP production by forskolin, indicating that PKC-dependent activation of adenylyl cyclase was excluded in transfected COS-7 cells. To identify which amino acids were phosphorylated by PKC, several conserved Thr and Ser residues in AANAT were targeted for site-directed mutagenesis. Mutations of Thr29 and Ser203 prevented the increase of enzymatic activity and protein level mediated by PMA. To explore the nature of AANAT phosphorylation, purified rat AANAT was subjected to in vitro PKC kinase assay. PKC directly phosphorylated the rat recombinant AANAT. The phosphopeptides identified by mass spectrometric analysis, and western blotting indicated that Thr29 was one of target sites for PKC. To confirm the effects of the physiological activation of PKC, rat pineal glands were treated with alpha(1)-adrenergic specific agonist phenylephrine. Phenylephrine caused the phosphorylation of endogenous AANAT whereas GF109203X or prazosin, an alpha(1)-adrenergic-specific antagonist, markedly inhibited it. These results suggest that AANAT was phosphorylated at Thr29 by PKC activation through the alpha(1)-adrenergic receptor in rat pineal glands, and that its phosphorylation might contribute to the stability and the activity of AANAT.  相似文献   

19.
Hypertension causes cardiac hypertrophy and leads to heart failure. Apoptotic cells are common in hypertensive hearts. Ca2+/calmodulin‐dependent protein kinase II (CaMKII) is associated with apoptosis. We recently demonstrated that gallic acid reduces nitric oxide synthase inhibition‐induced hypertension. Gallic acid is a trihydroxybenzoic acid and has been shown to have beneficial effects, such as anti‐cancer, anti‐calcification and anti‐oxidant activity. The purpose of this study was to determine whether gallic acid regulates cardiac hypertrophy and apoptosis in essential hypertension. Gallic acid significantly lowered systolic and diastolic blood pressure in spontaneously hypertensive rats (SHRs). Wheat germ agglutinin (WGA) and H&E staining revealed that gallic acid reduced cardiac enlargement in SHRs. Gallic acid treatment decreased cardiac hypertrophy marker genes, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), in SHRs. The four isoforms, α, β, δ and γ, of CaMKII were increased in SHRs and were significantly reduced by gallic acid administration. Gallic acid reduced cleaved caspase‐3 protein as well as bax, p53 and p300 mRNA levels in SHRs. CaMKII δ overexpression induced bax and p53 expression, which was attenuated by gallic acid treatment in H9c2 cells. Gallic acid treatment reduced DNA fragmentation and the TUNEL positive cells induced by angiotensin II. Taken together, gallic acid could be a novel therapeutic for the treatment of hypertension through suppression of CaMKII δ‐induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号