首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Asp f 2, a 268 amino acid major allergen from Aspergillus fumigatus (Af) demonstrated nine linear IgE binding regions. It is not known whether any of these linear epitopes are also conformatory epitopes. Hence, we constructed deletion mutants of Asp f 2 devoid of one or more epitopes, and the IgE binding of these proteins with sera from patients with ABPA was compared with the full-length Asp f 2 expressed in E. coli and Pichia. The Pichia expressed protein reacted weakly with IgE, but strongly with IgG of ABPA sera compared to E. coli expressed Asp f 2. Weak IgE binding only was seen when the C-terminal or N-terminal was deleted, while depletion of both ends negated all reactivity. The monoclonal antibody IL-B8 and IgE and IgG of ABPA sera bound significantly to the Asp f 2 E-4 fragment indicating that the major B-cell epitope is located at the N-terminal end of Asp f 2.  相似文献   

2.
目的 预测与鉴定烟曲霉抗原Asp f16的HLA-A *0201限制性CD8+细胞毒性T细胞(CTL)抗原表位.方法 以国人常见的HLA-A*0201位点为靶点,依据生物信息学软件扫描烟曲霉特异性抗原Asp f16的全部427个氨基酸序列.使用HLA-A *0201转基因小鼠制备骨髓来源的树突状细胞(DC)和CTL.流式细胞仪技术检测DC表面MHC Ⅱ类抗原,CD80,CD86和CD11c的表达来验证其是否成熟.ELISPOT试验检测烟曲霉抗原多肽特异性CTL产生的细胞因子IFN-γ.四聚体(Tetramer)试验证实烟曲霉特异性CTL与抗原肽,HLA-A*0201分子复合体的亲和性.结果 根据与MHC I类分子结合的半衰期评分,选择了3个HLA-A*0201限制性抗原表位.流式细胞仪分析示成熟DC高表达HLA Ⅱ类抗原,CD80,CD86和CD11c.Tetramer试验证实烟曲霉特异性T细胞受体与抗原肽,HLA-A*0201分子复合体的高亲和性.ELISPOT实验结果 表明烟曲霉抗原肽体外可以活化CD8+CTL,被负载了抗原肽的DC刺激活化后可以产生IFN-γ.结论 本研究成功鉴定烟曲霉抗原Asp f16的HLA-A*0201限制性CD8+CTL表位,可作为疫苗设计的候选表位,为进一步研发新型抗烟曲霉疫苗提供参考.  相似文献   

3.
Asp f I is a major 18-kDa Aspergillus fumigatus allergen and a member of the mitogillin family of cytotoxins. The nucleotide sequence of the Asp f I gene was determined by sequencing polymerase chain reaction products amplified from A. fumigatus spore DNA. The entire 678-bp DNA includes an 81-bp leader sequence, preceding the N-terminal alanine codon, a 52-bp intron, and a 444-bp open reading frame, encoding a 149-amino acid protein (M(r) 16,899), which is 99% homologous to mitogillin from Aspergillus restrictus. A mAb-based ELISA was used to compare Asp f I levels in spores, mycelia, and culture filtrate, and to determine the kinetics of allergen production. Disrupted hyphae or spore extracts had a 1000-fold lower level of Asp f I than culture filtrate, suggesting that germination of spores and growth of the fungus are essential for allergen production. Asp f I levels in A. fumigatus and A. restrictus peaked at day 3 (0.87 to 12.1 micrograms/ml), however, the allergen was not detected in Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Aspergillus nidulans cultures (< 1.5 ng/ml) on either days 3 or 8. Northern analysis confirmed that Asp f I mRNA was detected only in A. fumigatus and A. restrictus, but not in the other four Aspergillus spp. Asp f I-specific DNA was generated after polymerase chain reaction amplification of genomic mycelial DNA obtained from A. fumigatus and A. restrictus, but not from the other Aspergillus spp. The results show that Asp f I is selectively expressed in A. fumigatus, and suggest that this cytotoxin could be a specific virulence factor for A. fumigatus.  相似文献   

4.

Background

As tumor antigen-specific CD4+ T cells can mediate strong therapeutic anti-tumor responses in melanoma patients we set out to establish a comprehensive screening strategy for the identification of tumor-specific CD4+ T cell epitopes suitable for detection, isolation and expansion of tumor-reactive T cells from patients.

Methods and Findings

To scan the human melanoma differentiation antigens TRP-1 and TRP-2 for HLA-DRB1*0301-restricted CD4+ T cell epitopes we applied the following methodology: Splenocytes of HLA-DRB1*0301-transgenic mice immunized with recombinant adenovirus encoding TRP-1 (Ad5.TRP-1) or TRP-2 (Ad5.TRP-2) were tested for their T cell reactivity against combinatorial TRP-1- and TRP-2-specific peptide libraries. CD4+ T cell epitopes thus identified were validated in the human system by stimulation of peripheral blood mononuclear cells (PBMC) from healthy donors and melanoma patients. Using this strategy we observed that recombinant Ad5 induced strong CD4+ T cell responses against the heterologous tumor antigens. In Ad5.TRP-2-immunized mice CD4+ T cell reactivity was detected against the known HLA-DRB1*0301-restricted TRP-260–74 epitope and against the new epitope TRP-2149–163. Importantly, human T cells specifically recognizing target cells loaded with the TRP-2149–163-containing library peptide or infected with Ad5.TRP-2 were obtained from healthy individuals, and short term in vitro stimulation of PBMC revealed the presence of epitope-reactive CD4+ T cells in melanoma patients. Similarly, immunization of mice with Ad5.TRP-1 induced CD4+ T cell responses against TRP-1-derived peptides that turned out to be recognized also by human T cells, resulting in the identification of TRP-1284–298 as a new HLA-DRB1*0301-restricted CD4+ T cell epitope.

Conclusions

Our screening approach identified new HLA-DRB1*0301-restricted CD4+ T cell epitopes derived from melanoma antigens. This strategy is generally applicable to target antigens of other tumor entities and to different HLA class II molecules even without prior characterization of their peptide binding motives.  相似文献   

5.
Myasthenia gravis (MG) is a T cell-regulated, antibody-mediated autoimmune disease. Immunization with two myasthenogenic peptides, p195-212 and p259-271, which are sequences of the human acetylcholine receptor, resulted in MG-associated immune responses. A dual altered peptide ligand (APL) composed of the two APLs of the myasthenogenic peptides inhibited, in vitro and in vivo, those responses. This study was aimed at understanding the mechanism(s) underlying the in vivo inhibitory properties of the dual APL. To this end, we analyzed T cells of mice that were immunized with p259-271 for their adhesiveness toward vascular cell adhesion molecule 1, for the activity of their secreted matrix metalloproteinases (MMPs), and for their intracellular phospholipase C (PLC) activity. Immunization with p259-271 triggered the above three activities and in vivo administration of the dual APL inhibited the latter. Thus, treatment of mice with the dual APL interferes with functions required for T cells to migrate and interact with the self-AChR. This is the first indication that very late antigen 4, MMP-9, and PLC are targets for immunomodulation of autoreactive T cells by altered peptide ligands.  相似文献   

6.

Background

Early in life, patients with cystic fibrosis (CF) are infected with microorganisms including bacteria and fungi, particularly Pseudomonas aeruginosa and Aspergillus fumigatus. Since recent research has identified the anti-inflammatory properties of statins (besides their lipid-lowering effects), we investigated the effect of fluvastatin on the production of the potent neutrophil chemoattractant chemokine, IL-8, in whole blood from CF patients, stimulated by Pseudomonas aeruginosa (LPS) and Aspergillus fumigatus (AFA) antigens.

Results

Whole blood from adult patients with CF and from healthy volunteers was collected at the Rennes University Hospital (France). Blood was pretreated for 1 h with fluvastatin (0–300 µM) and incubated for 24 h with LPS (10 µg/mL) and/or AFA (diluted 1/200). IL-8 protein levels, quantified by ELISA, were increased in a concentration-dependent manner when cells were stimulated by LPS or AFA. Fluvastatin strongly decreased the levels of IL-8, in a concentration-dependent manner, in whole blood from CF patients. However, its inhibitory effect was decreased or absent in whole blood from healthy subjects. Furthermore, the inhibition induced by fluvastatin in CF whole blood was reversed in the presence of intermediates within the cholesterol biosynthesis pathway, mevalonate, farnesyl pyprophosphate or geranylgeranyl pyrophosphate that activate small GTPases by isoprenylation.

Conclusions

For the first time, the inhibitory effects of fluvastatin on CF systemic inflammation may reveal the important therapeutic potential of statins in pathological conditions associated with the over-production of pro-inflammatory cytokines and chemokines as observed during the manifestation of CF. The anti-inflammatory effect could be related to the modulation of the prenylation of signalling proteins.  相似文献   

7.
Fungal keratitis causes devastating corneal ulcers which can result in significant visual impairment and even blindness. As a ligand that activates the non-canonical Wnt signaling pathways, Wnt5a triggers the production of important inflammatory chemokines and the chemotactic migration of neutrophils. In this study we aimed to characterize the role of Wnt5a production, in situ, in vivo and in vitro in response to fungal keratitis. Wnt5a expression in corneas of Aspergillus fumigatus (A. fumigatus) keratitis patients was determined by quantitative polymerase chain reaction (qRT-PCR) and immunofluorescence. In vivo and in vitro experiments were then performed in mouse models and THP-1 macrophages cell cultures infected with A. fumigatus, respectively. C57BL/6 mice were pretreated with siRNAs or neutralizing antibodies for dectin-1, LOX-1 and Wnt5a, or inhibitors of erk1/2 and JNK. Changes in Wnt5a expression were assessed by clinical evaluation, qRT-PCR, immunofluorescence, western blot and bioluminescence imaging system image acquisition. We confirmed that corneal Wnt5a expression increased with A. fumigatus keratitis in patients and a murine model. Wnt5a production was dependent on dectin-1 and LOX-1 expression with contributions by Erk1/2 and JNK pathways. Additionally, Wnt5a knockdown revealed decreased levels of MPO, lower neutrophil recruitment, and a higher fungal load in mouse models. Compared with controls, Wnt5a knockdown impaired pro-inflammatory cytokine IL-1β production in response to A. fumigatus exposure. Wnt5a also produces dectin-1 and LOX-1 induced inflammatory signature via effective neutrophil recruitment and inflammatory cytokine production in response to A. fumigatus keratitis. These findings demonstrate that Wnt5a is a critical component of the antifungal immune response.  相似文献   

8.

Background

As a potent CD8+ T cell activator, peptide vaccine has found its way in vaccine development against intracellular infections and cancer, but not against leishmaniasis. The first step toward a peptide vaccine is epitope mapping of different proteins according to the most frequent HLA types in a population.

Methods and Findings

Six Leishmania (L.) major-related candidate antigens (CPB,CPC,LmsTI-1,TSA,LeIF and LPG-3) were screened for potential CD8+ T cell activating 9-mer epitopes presented by HLA-A*0201 (the most frequent HLA-A allele). Online software including SYFPEITHI, BIMAS, EpiJen, Rankpep, nHLApred, NetCTL and Multipred were used. Peptides were selected only if predicted by almost all programs, according to their predictive scores. Pan-A2 presentation of selected peptides was confirmed by NetMHCPan1.1. Selected peptides were pooled in four peptide groups and the immunogenicity was evaluated by in vitro stimulation and intracellular cytokine assay of PBMCs from HLA-A2+ individuals recovered from L. major. HLA-A2 individuals recovered from L. major and HLA-A2+ healthy donors were included as control groups. Individual response of HLA-A2+ recovered volunteers as percent of CD8+/IFN-γ+ T cells after in vitro stimulation against peptide pools II and IV was notably higher than that of HLA-A2 recovered individuals. Based on cutoff scores calculated from the response of HLA-A2 recovered individuals, 31.6% and 13.3% of HLA-A2+ recovered persons responded above cutoff in pools II and IV, respectively. ELISpot and ELISA results confirmed flow cytometry analysis. The response of HLA-A2 recovered individuals against peptide pools I and III was detected similar and even higher than HLA-A2+ recovered individuals.

Conclusion

Using in silico prediction we demonstrated specific response to LmsTI-1 (pool II) and LPG-3- (pool IV) related peptides specifically presented in HLA-A*0201 context. This is among the very few reports mapping L. major epitopes for human HLA types. Studies like this will speed up polytope vaccine idea towards leishmaniasis.  相似文献   

9.
Lung surfactant protein A (SP-A) and D (SP-D) are innate immune molecules which are known to interact with allergens and immune cells and modulate cytokine and chemokine profiles during host hypersensitivity response. We have previously shown therapeutic effects of SP-A and SP-D using a murine model of lung hypersensitivity to Aspergillus fumigatus (Afu) allergens. In this study, we have examined the susceptibility of SP-A (AKO) or SP-D gene-deficient (DKO) mice to the Afu allergen challenge, as compared with the wild-type mice. Both AKO and DKO mice exhibited intrinsic hypereosinophilia and several-fold increase in levels of IL-5 and IL-13, and lowering of IFN-gamma to IL-4 ratio in the lungs, suggesting a Th2 bias of immune response. This Th2 bias was reversible by treating AKO or DKO mice with SP-A or SP-D, respectively. The AKO and DKO mice showed distinct immune responses to Afu sensitization. DKO mice were found more susceptible than wild-type mice to pulmonary hypersensitivity induced by Afu allergens. AKO mice were found to be nearly resistant to Afu sensitization. Intranasal treatment with SP-D or rhSP-D (a recombinant fragment of human SP-D containing trimeric C-type lectin domains) was effective in rescuing the Afu-sensitized DKO mice, while SP-A-treated Afu-sensitized AKO mice showed several-fold elevated levels of IL-13 and IL-5, resulting in increased pulmonary eosinophilia and damaged lung tissue. These data reaffirm an important role for SP-A and SP-D in offering resistance to pulmonary allergenic challenge.  相似文献   

10.
Mounting evidence from animal models has demonstrated that alterations in peptide-MHC interactions with the T cell receptor (TCR) can lead to dramatically different T cell outcomes. We have developed an altered peptide ligand of type II collagen, referred to as A9, which differentially regulates TCR signaling in murine T cells leading to suppression of arthritis in the experimental model of collagen-induced arthritis. This study delineates the T cell signaling pathway used by T cells stimulated by the A9·I-A(q) complex. We have found that T cells activated by A9 bypass the requirement for Zap-70 and CD3-ζ and signal via FcRγ and Syk. Using collagen-specific T cell hybridomas engineered to overexpress either Syk, Zap-70, TCR-FcRγ, or CD3-ζ, we demonstrate that A9·I-A(q) preferentially activates FcRγ/Syk but not CD3-ζ/Zap-70. Moreover, a genetic absence of Syk or FcRγ significantly reduces the altered peptide ligand induction of the nuclear factor GATA3. By dissecting the molecular mechanism of A9-induced T cell signaling we have defined a new alternate pathway that is dependent upon FcRγ and Syk to secrete immunoregulatory cytokines. Given the interest in using Syk inhibitors to treat patients with rheumatoid arthritis, understanding this pathway may be critical for the proper application of this therapy.  相似文献   

11.
Coxiella burnetii is an obligate intracellular gram-negative bacterium that causes acute Q fever and chronic infections in humans. A killed, whole cell vaccine is efficacious, but vaccination can result in severe local or systemic adverse reactions. Although T cell responses are considered pivotal for vaccine derived protective immunity, the epitope targets of CD4(+) T cell responses in C. burnetii vaccination have not been elucidated. Since mapping CD4(+) epitopes in a genome with over 2,000 ORFs is resource intensive, we focused on 7 antigens that were known to be targeted by antibody responses. 117 candidate peptides were selected from these antigens based on bioinformatics predictions of binding to the murine MHC class II molecule H-2 IA(b). We screened these peptides for recognition by IFN-γ producing CD4(+) T cell in phase I C. burnetii whole cell vaccine (PI-WCV) vaccinated C57BL/6 mice and identified 8 distinct epitopes from four different proteins. The identified epitope targets account for 8% of the total vaccination induced IFN-γ producing CD4(+) T cells. Given that less than 0.4% of the antigens contained in C. burnetii were screened, this suggests that prioritizing antigens targeted by antibody responses is an efficient strategy to identify at least a subset of CD4(+) targets in large pathogens. Finally, we examined the nature of linkage between CD4(+) T cell and antibody responses in PI-WCV vaccinated mice. We found a surprisingly non-uniform pattern in the help provided by epitope specific CD4(+) T cells for antibody production, which can be specific for the epitope source antigen as well as non-specific. This suggests that a complete map of CD4(+) response targets in PI-WCV vaccinated mice will likely include antigens against which no antibody responses are made.  相似文献   

12.
Bovine serum albumin (BSA) is the major beef allergen. Since IgE and T cell recognitions are central to the specific immune response to allergens, the identification and immunologic characterization of B and T cell epitopes of BSA represent important steps in the development of treatments for beef allergy. Prior to our experiments, we hypothesized that BSA-specific antibodies and T cells react primarily with sequential epitopes in which the amino acid sequences differ greatly between bovine and human albumin. To clarify this hypothesis, 16 peptides corresponding to such regions were synthesized as candidate epitopes. Among them, at least two regions, aa336-345 and aa451-459, were found to be B cell (IgE-binding) epitopes. In inhibition ELISA experiments, EYAV (aa338-341) and LILNR (aa453-457) bound to patient IgE antibodies and were found to be the cores of the IgE-binding epitopes. Three regions, DDSPDLPKLKPDPNTLC (aa107-123), PHACYTSVFDKLKHLVDEP (aa364-382), and LSLILNRLC (aa451-459), were found to induce T cell proliferation in more than half of the patients tested. Of interest was that these three regions were also recognized by B cells. Information concerning human B and T cells epitopes can contribute greatly to the elucidation of the etiology of beef allergy.  相似文献   

13.
14.
Schistosomiasis is caused by parasitic flatworms known as schistosomes and affects over 200 million people worldwide. Prevention of T cell exhaustion by blockade of PD-1 results in clinical benefits to cancer patients and clearance of viral infections, however it remains largely unknown whether loss of PD-1 could prevent or cure schistosomiasis in susceptible mice. In this study, we found that S. japonicum infection dramatically induced PD-1 expression in T cells of the liver where the parasites chronically inhabit and elicit deadly inflammation. Even in mice infected by non-egg-producing unisex parasites, we still observed potent induction of PD-1 in liver T cells of C57BL/6 mice following S. japonicum infection. To determine the function of PD-1 in schistosomiasis, we generated PD-1-deficient mice by CRISPR/Cas9 and found that loss of PD-1 markedly increased T cell count in the liver and spleen of infected mice. IL-4 secreting Th2 cells were significantly decreased in the infected PD-1-deficient mice whereas IFN-γ secreting CD4+ and CD8+ T cells were markedly increased. Surprisingly, such beneficial changes of T cell response did not result in eradication of parasites or in lowering the pathogen burden. In further experiments, we found that loss of PD-1 resulted in both beneficial T cell responses and amplification of regulatory T cells that prevented PD-1-deficient T cells from unleashing anti-parasite activity. Moreover, such PD-1-deficient Tregs exert excessive immunosuppression and express larger amounts of adenosine receptors CD39 and CD73 that are crucial for Treg-mediated immunosuppression. Our experimental results have elucidated the function of PD-1 in schistosomiasis and provide novel insights into prevention and treatment of schistosomiasis on the basis of modulating host adaptive immunity.  相似文献   

15.
Mugwort (Artemisia vulgaris) pollen allergens represent the main cause of pollinosis in late summer in Europe. At least 95% of sera from mugwort pollen-allergic patients contain IgE against a highly glycosylated 24- to 28-kDa glycoprotein. Recently, this major allergen, termed Art v 1, was characterized, cloned in Escherichia coli, and produced in recombinant form. In the present study we characterized and compared the T cell responses to natural (nArt v 1) and recombinant Art v 1 (rArt v 1). In vitro T cell responses to nArt v 1 and rArt v 1 were studied in PBMC, T cell lines (TCL), and T cell clones (TCC) established from PBMC of mugwort-allergic patients. Stimulation of PBMC or allergen-specific TCL with either nArt v 1 or rArt v 1 resulted in comparable proliferative T cell responses. Eighty-five percent of the TCC reactive with rArt v 1 cross-reacted with the natural protein. The majority of the CD4(+)CD8(-)TCR alphabeta(+) Art v 1-specific TCC, obtained from 10 different donors, belonged to the Th2 phenotype. Epitope mapping of TCL and TCC using overlapping peptides revealed a single immunodominant T cell epitope recognized by 81% of the patients. Inhibition experiments demonstrated that the presentation of this peptide is restricted by HLA-DR molecules. In conclusion, the T cell response to Art v 1 is characterized by one strong immunodominant epitope and evidently differs from the T cell responses to other common pollen allergens known to contain multiple T cell epitopes. Therefore, mugwort allergy may be an ideal candidate for a peptide-based immunotherapy approach.  相似文献   

16.
The effect of feeding xenoserum (xs) on cytolytic cell activity induced by parenteral injection was examined in C3H/N mice. Spleen cells were cultured with xs and then assayed for cytolytic activity against a panel of 51Cr-labeled YAC-1, AKR-A, or P815 target cells. Prior feeding resulted in significant suppression of responses stimulated by injection and culture. The induction of these responses was antigen specific for xs whereas the effector stage represented polyclonal activation of cytolytic cells. Some effector cells were lysed by either anti-Lyt 2 or anti-NK- 1.2 and complement and some were blocked by anti-Lyt 2 or anti-T200 in the cytotoxicity assay. Thus, both cytolytic T and NK-like cells were suppressed by antigen feeding. Activity of TH cell-derived factors which enhance cytolytic activity ("promoter" factor, interferon, and interleukin 2) also was diminished in culture supernatants of cells from mice fed soluble antigens. The conclusion that polyclonal cytolytic responses induced by soluble antigen can be regulated by prior enteric stimulation is made.  相似文献   

17.

Background  

Leptospira interrogans are bacterial pathogens of animal that cause zoonotic infections in human. Outer membrane proteins of leptospire are among the most effective antigens which can stimulate remarkable immune responses during the infection processes, and thus are currently considered leading candidate vaccine antigens. The objective of the present study is to predict and confirm major combined B and T cell epitopes of leptospiral outer membrane proteins OmpL1 and LipL41, as well as to evaluate their capacity in the induction of immune responses in BALB/c mice.  相似文献   

18.
Circulating antigen of Aspergillus fumigatus was demonstrated in the sera of experimentally infected, cortisone-treated mice and rabbits by enzyme-linked immunosorbent assay (micro-ELISA), confirming earlier results where fungal antigen had been detected by counter-immunoelectrophoresis (CIE). Peaks of detection of circulating antigen by CIE and micro-ELISA in mice were not simultaneous suggesting that the nature of the predominant antigens may have altered during the course of infection. CIE failed to detect fungal antigen in infected rabbits whereas micro-ELISA monitored antigenemia until death. Both CIE and micro-ELISA demonstrated the rapid clearance of intravenously inoculated Aspergillus-antigen from the rabbit circulation.  相似文献   

19.
B-1b cells play a key role in producing Abs against T cell-independent type 2 Ags. However, the factors regulating Ab production by this unique B cell subset are not well understood. In this study, a detailed analysis of the B cell response to 2,4,6-trinitrophenol (TNP)-Ficoll was performed using normal mice. TNP-Ficoll delivered i.p. or i.v. induced rapid Ag-specific B-1b cell activation, expansion, isotype switching, and plasmablast/plasma cell differentiation. Ag-specific B-1b cell numbers peaked at day 5 and then gradually declined in the spleen but remained elevated in the peritoneal cavity beyond 40 d postimmunization. In addition to expressing CD43, CD44, and CD86, Ag-activated B-1b cells transiently expressed programmed cell death 1 (PD-1), which functionally suppressed BCR-induced B-1b cell in vitro proliferation when additional costimulatory signals were lacking. Inhibiting PD-1:PD-1 ligand interactions during TNP-Ficoll immunization significantly enhanced Ag-specific B-1b cell expansion and the frequency of IgG isotype switching and plasmablast/plasma cell differentiation. Remarkably, PD-1 mAb blockade during the first week following immunization resulted in significantly increased numbers of both splenic and bone marrow Ag-specific IgG3-secreting cells, but not IgM-secreting cells, at both early (day 5) and late (week 6) time points. Moreover, Ag-specific serum IgG3 levels, as well as IgG2c, IgG2b, and IgA levels, remained significantly elevated in PD-1 mAb-treated mice relative to control Ab-treated mice for ≥6 wk postimmunization. Thus, PD-1:PD-1 ligand interactions occurring shortly after initial T cell-independent type 2 Ag encounter play a critical role in suppressing Ag-specific B-1b cell expansion and the development of long-term IgG-producing bone marrow and spleen cells.  相似文献   

20.
Survivin is a tumor-associated antigen (TAA) that has significant potential for use as a cancer vaccine target. To identify survivin epitopes that might serve as targets for CTL-mediated, anti-tumor responses, we evaluated a series of survivin peptides with predicted binding to mouse H2-Kb and human HLA-A*0201 antigens in peptide-loaded dendritic cell (DC) vaccines. H2-Kb-positive, C57BL/6 mice were vaccinated using syngeneic, peptide-loaded DC2.4 cells. Splenocytes from vaccinated mice were screened by flow cytometry for binding of dimeric H2-Kb:Ig to peptide-specific CD8+ T cells. Two survivin peptides (SVN57–64 and SVN82–89) generated specific CD8+ T cells. We chose to focus on the SVN57–64 peptide because that region of the molecule is 100% homologous to human survivin. A larger peptide (SVN53–67), containing multiple class I epitopes, and a potential class II ligand, was able to elicit both CD8+ CTL and CD4+ T cell help. We tested the SVN53–67 15-mer peptide in a therapeutic model using a peptide-loaded DC vaccine in C57BL/6 mice with survivin-expressing GL261 cerebral gliomas. This vaccine produced significant CTL responses and helper T cell-associated cytokine production, resulting in a significant prolongation of survival. The SVN53–67 vaccine was significantly more effective than the SVN57–64 core epitope as a cancer vaccine, emphasizing the potential benefit of incorporating multiple class I epitopes and associated cytokine support within a single peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号