首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used micromanipulation to study the attachment of chromosomes to the spindle and the mechanical properties of the chromosomal spindle fibers. Individual chromosomes can be displaced about the periphery of the spindle, in the plane of the metaphase plate, without altering the structure of the spindle or the positions of the nonmanipulated chromosomes. From mid-prometaphase through the onset of anaphase, chromosomes resist displacement toward either spindle pole, or beyond the spindle periphery. In anaphase a chromosome can be displaced either toward its spindle pole or laterally, beyond the periphery of the spindle; however, the chromosome resists displacement away from the spindle pole. When an anaphase half-bivalent is displaced toward its spindle pole, it stops migrating until the nonmanipulated half-bivalents reach a similar distance from the pole. The manipulated half-bivalent then resumes its poleward migration at the normal anaphase rate. No evidence was found for mechanical attachments between separating half-bivalents in anaphase. Our observations demonstrate that chromosomes are individually anchored to the spindle by fibers which connect the kinetochores of the chromosomes to the spindle poles. These fibers are flexible, much less extensible than the chromosomes, and are to pivot about their attachment points. While the fibers are able to support a tensile force sufficient to stretch a chromosome, they buckle when subjected to a compressive force. Preliminary evidence suggests that the mechanical attachment fibers detected with micromanipulation correspond to the birefringent chromosomal spindle fibers observed with polarization microscopy.  相似文献   

2.
The degree of mechanical coupling of chromosomes to the spindles of Nephrotoma and Trimeratropis primary spermatocytes varies with the stage of meiosis and the birefringent retardation of the chromosomal fibers. In early prometaphase, before birefringent chromosomal fibers have formed, a bivalent can be displaced toward a spindle pole by a single, continuous pull with a microneedle. Resistance to poleward displacement increases with increased development of the chromosomal fibers, reaching a maximum at metaphase. At this stage kinetochores cannot be displaced greater than 1 micrometer toward either spindle pole, even by a force which is sufficient to displace the entire spindle within the cell. The abolition of birefringence with either colcemid or vinblastine results in the loss of chromosome-spindle attachment. In the absence of birefringent fibers a chromosome can be displaced anywhere within the cell. The photochemical inactivation of colcemid by irradiation with 366-nm light results in the reformation of birefringent chromosomal fibers and the concomitant re-establishment of chromosome attachment to the spindle. These results support the hypothesis that the birefringent chromosomal fibers anchor the chromosomes to the spindle and transmit the force for anaphase chromosome movement.  相似文献   

3.
Jin F  Liu H  Li P  Yu HG  Wang Y 《PLoS genetics》2012,8(2):e1002492
The attachment of sister kinetochores by microtubules emanating from opposite spindle poles establishes chromosome bipolar attachment, which generates tension on chromosomes and is essential for sister-chromatid segregation. Syntelic attachment occurs when both sister kinetochores are attached by microtubules from the same spindle pole and this attachment is unable to generate tension on chromosomes, but a reliable method to induce syntelic attachments is not available in budding yeast. The spindle checkpoint can sense the lack of tension on chromosomes as well as detached kinetochores to prevent anaphase onset. In budding yeast Saccharomyces cerevisiae, tension checkpoint proteins Aurora/Ipl1 kinase and centromere-localized Sgo1 are required to sense the absence of tension but are dispensable for the checkpoint response to detached kinetochores. We have found that the loss of function of a motor protein complex Cik1/Kar3 in budding yeast leads to syntelic attachments. Inactivation of either the spindle or tension checkpoint enables premature anaphase entry in cells with dysfunctional Cik1/Kar3, resulting in co-segregation of sister chromatids. Moreover, the abolished Kar3-kinetochore interaction in cik1 mutants suggests that the Cik1/Kar3 complex mediates chromosome movement along microtubules, which could facilitate bipolar attachment. Therefore, we can induce syntelic attachments in budding yeast by inactivating the Cik1/Kar3 complex, and this approach will be very useful to study the checkpoint response to syntelic attachments.  相似文献   

4.
We have examined the rates of chromosome and pole motion during anaphase in HeLa cells using differential interference contrast and polarization optics. In early anaphase both chromosomes and poles move apart. When the chromosomes are separated by a distance about equal to the metaphase spindle length, both chromosomes and poles slow but continue to move at a reduced rate. Throughout anaphase, the chromosomes move faster than the poles, so the chromosome-to-pole distance decreases. Treatment of the cells with about 5 × 10?8 M colchicine up to 45 min before observation tends to block normal formation of metaphase spindles, but more than half of the cells in metaphase go on through anaphase. In these cells, both chromosome and pole motions are essentially normal until the chromosomes are separated by a distance equal to the length of the metaphase spindle. After that time, chromosome motion is supressed and the poles move slowly toward one another. These data suggest that the mechanism of anaphase motion changes character when the chromosomes become spaced by the metaphase spindle length. We call anaphase before and after that time phase 1 and phase 2, respectively. The results are discussed in the light of a sliding tubule model for chromosome motion.  相似文献   

5.
Two types of unusual motion within the spindle have heen studied in a grasshopper (Melanoplus differentialis) spermatocyte. The first is the motion of granules placed by micromanipulation within the normally granule-free spindle. The most specific motions are poleward, approximate the speed of the chromosomes in anaphase, and occur in the area between the kinetochores and the nearer pole during both metaphase and anaphase. Exactly the same transport properties were earlier observed by Bajer inHaemanthus endosperm spindles. The absence of significant motion in the interzone between the separating chromosomes at anaphase has been unequivocally demonstrated inMelanoplus spermatocytes. Thus very specific motion of non-kinetochoric materials is probably a general spindle capability which would much restrict admissible models of mitotic force production,if the same forces move both granules and chromosomes. The second unusual motion is seen following chromosome detachment from the spindle by micromanipulation during anaphase. These tend to move toNearer pole rather than to the pole the chromosome's kinetochoresFace. The latter preference was earlier demonstrated after detachment during prometaphase or metaphase and has been confirmed without exception in the present studies. The apparent preference for motion to the nearer pole in anaphase provides the first evidence for poleward forces within each half-spindle which cannot be entirely specified by the chromosomal spindle fibers. Almost certainly these would be the usual forces responsible for chromosome motion since they act specifically at the kinetochores of detached chromosomes. This evidence requires interpretation, however because additional factors influence chromosome motion following detachment at anaphase. On thesimplest interpretation, certain current models of mitosis clearly are not satisfactory and others are favored.  相似文献   

6.
INTRODUCTION: During anaphase B in mitosis, polymerization and sliding of overlapping spindle microtubules (MTs) contribute to the outward movement the spindle pole bodies (SPBs). To probe the mechanism of spindle elongation, we combine fluorescence microscopy, photobleaching, and laser microsurgery in the fission yeast Schizosaccharomyces pombe. RESULTS: We demonstrate that a green laser cuts intracellular structures in yeast cells with high spatial specificity. By using laser microsurgery, we cut mitotic spindles labeled with GFP-tubulin at various stages of anaphase B. Although cutting generally caused early anaphase spindles to disassemble, midanaphase spindle fragments continued to elongate. In particular, when the spindle was cut near a SPB, the larger spindle fragment continued to elongate in the direction of the cut. Photobleach marks showed that sliding of overlapping midzone MTs was responsible for the elongation of the spindle fragment. Spindle midzone fragments not connected to either of the two spindle poles also elongated. Equatorial microtubule organizing center (eMTOC) activity was not affected in cells with one detached pole but was delayed or absent in cells with two detached poles. CONCLUSIONS: These studies reveal that the spindle midzone is necessary and sufficient for the stabilization of MT ends and for spindle elongation. By contrast, SPBs are not required for elongation, but they contribute to the attachment of the nuclear envelope and chromosomes to the spindle, and to cell cycle progression. Laser microsurgery provides a means by which to dissect the mechanics of the spindle in yeast.  相似文献   

7.
Metabolic inhibitors block anaphase A in vivo   总被引:4,自引:3,他引:1       下载免费PDF全文
Anaphase in dividing guard mother cells of Allium cepa and stamen hair cells of Tradescantia virginiana consists almost entirely of chromosome-to-pole motion, or anaphase A. Little or no separation of the poles (anaphase B) occurs. Anaphase is reversibly blocked at any point by azide or dinitrophenol, with chromosome motion ceasing 1-10 min after application of the drugs. Motion can be stopped and restarted several times in the same cell. Prometaphase, metaphase, and cytoplasmic streaming are also arrested. Carbonyl cyanide m-chlorophenyl hydrazone also stops anaphase, but its effects are not reversible. Whereas the spindle collapses in the presence of colchicine, the chromosomes seem to "freeze" in place when cells are exposed to respiratory inhibitors. Electron microscope examination of dividing guard mother cells fixed during azide and dinitrophenol treatment reveals that spindle microtubules are still present. Our results show that chromosome-to-pole motion in these cells is sensitive to proton ionophores and electron transport inhibitors. They therefore disagree with recent reports that anaphase A does not require a continuous supply of energy. It is possible, however, that anaphase does not directly use ATP but instead depends on the energy of chemical and/or electrical gradients generated by cellular membranes.  相似文献   

8.
Metaphase and anaphase spindles in cultured newt and PtK1 cells were irradiated with a UV microbeam (285 nM), creating areas of reduced birefringence (ARBs) in 3 s that selectively either severed a few fibers or cut across the half spindle. In either case, the birefringence at the polewards edge of the ARB rapidly faded polewards, while it remained fairly constant at the other, kinetochore edge. Shorter astral fibers, however, remained present in the enlarged ARB; presumably these had not been cut by the irradiation. After this enlargement of the ARB, metaphase spindles recovered rapidly as the detached pole moved back towards the chromosomes, reestablishing spindle fibers as the ARB closed; this happened when the ARB cut a few fibers or across the entire half spindle. We never detected elongation of the cut kinetochore fibers. Rather, astral fibers growing from the pole appeared to bridge and then close the ARB, just before the movement of the pole toward the chromosomes. When a second irradiation was directed into the closing ARB, the polewards movement again stopped before it restarted. In all metaphase cells, once the pole had reestablished connection with the chromosomes, the unirradiated half spindle then also shortened to create a smaller symmetrical spindle capable of normal anaphase later. Anaphase cells did not recover this way; the severed pole remained detached but the chromosomes continued a modified form of movement, clumping into a telophase-like group. The results are discussed in terms of controls operating on spindle microtubule stability and mechanisms of mitotic force generation.  相似文献   

9.
Merotelic kinetochore orientation is a kinetochore misattachment in which a single kinetochore is attached to microtubules from both spindle poles instead of just one. It can be favored in specific circumstances, is not detected by the mitotic checkpoint, and induces lagging chromosomes in anaphase. In mammalian cells, it occurs at high frequency in early mitosis, but few anaphase cells show lagging chromosomes. We developed live-cell imaging methods to determine whether and how the mitotic spindle prevents merotelic kinetochores from producing lagging chromosomes. We found that merotelic kinetochores entering anaphase never lost attachment to the spindle poles; they remained attached to both microtubule bundles, but this did not prevent them from segregating correctly. The two microtubule bundles usually showed different fluorescence intensities, the brighter bundle connecting the merotelic kinetochore to the correct pole. During anaphase, the dimmer bundle lengthened much more than the brighter bundle as spindle elongation occurred. This resulted in correct segregation of the merotelically oriented chromosome. We propose a model based on the ratios of microtubules to the correct versus incorrect pole for how anaphase spindle dynamics and microtubule polymerization at kinetochores prevent potential segregation errors deriving from merotelic kinetochore orientation.  相似文献   

10.
Chromosome biorientation, the attachment of sister kinetochores to sister spindle poles, is vitally important for accurate chromosome segregation. We have studied this process by following the congression of pole-proximal kinetochores and their subsequent anaphase segregation in fission yeast cells that carry deletions in any or all of this organism's minus end-directed, microtubule-dependent motors: two related kinesin 14s (Pkl1p and Klp2p) and dynein. None of these deletions abolished biorientation, but fewer chromosomes segregated normally without Pkl1p, and to a lesser degree without dynein, than in wild-type cells. In the absence of Pkl1p, which normally localizes to the spindle and its poles, the checkpoint that monitors chromosome biorientation was defective, leading to frequent precocious anaphase. Ultrastructural analysis of mutant mitotic spindles suggests that Pkl1p contributes to error-free biorientation by promoting normal spindle pole organization, whereas dynein helps to anchor a focused bundle of spindle microtubules at the pole.  相似文献   

11.
In crane fly spermatocyte meiosis 3 autosome half-bivalents normally move to each spindle pole in anaphase while the 2 amphitelic sex-chromosome univalents remain at the equator. The sex-chromosome univalents move to opposite poles after the autosomes reach the poles. — We used micromanipulation to detach half-bivalents in anaphase. When re-attached half-bivalents were syntelically oriented to the original pole, sex-chromosome segregation was usually not altered. When re-attached half-bivalents were amphitelically oriented, sex-chromosome segregation was usually altered: usually the amphitelic autosome segregated against one sex-chromosome while the other sex-chromosome remained at the equator. When re-attached half-bivalents were syntelically oriented to the opposite pole, sex-chromosome segregation was often altered: often one sex-chromosome moved normally to the spindle pole with 2 autosomal half-bivalents, while the other sex-chromosome did not move to the spindle pole with 4 autosomal half-bivalents, but remained at the equator. — The direction of motion of a sex-chromosome could be altered even after sex-chromosome segregation had begun, by suitable micromanipulation of the other sex-chromosome. — Amphitelic chromosomes that were not on the equator at the start of anaphase segregated predominantly to the closer spindle pole. Detached half-bivalents showed no preference for the closer pole when they re-attached with syntelic orientation. — We discuss some possible hypotheses for non-independent movements, and some implications of the results.  相似文献   

12.
The proper segregation of sister chromatids in mitosis depends on bipolar attachment of all chromosomes to the mitotic spindle. We have identified the small molecule Hesperadin as an inhibitor of chromosome alignment and segregation. Our data imply that Hesperadin causes this phenotype by inhibiting the function of the mitotic kinase Aurora B. Mammalian cells treated with Hesperadin enter anaphase in the presence of numerous monooriented chromosomes, many of which may have both sister kinetochores attached to one spindle pole (syntelic attachment). Hesperadin also causes cells arrested by taxol or monastrol to enter anaphase within <1 h, whereas cells in nocodazole stay arrested for 3-5 h. Together, our data suggest that Aurora B is required to generate unattached kinetochores on monooriented chromosomes, which in turn could promote bipolar attachment as well as maintain checkpoint signaling.  相似文献   

13.
Louis F. Marek 《Chromosoma》1978,68(4):367-398
The influence of the mitotic organizing centers, the kinetochores and the polar organizers, in controlling the dynamic spindle form and function has been investigated in the primary spermatocytes of two grasshoppers, Arphia xanthoptera and Melanoplus differentialis. A new measure of the total birefringent material in the spindle is introduced—volume-birefringence. This measure avoids many of the problems associated with the traditional retardation measurements of spindle organization.—The number of chromosomes (and their kinetochores) in a spindle can be altered with a piezoelectric micromanipulator in three ways: 1) chromosomes can be removed permanently from the cell, 2) chromosomes can be detached from the spindle and allowed to reenter the spindle at a later time, and 3) chromosomes can be transferred from one spindle to another in cells containing two spindles. Such operations show the volume-birefringence of the spindle is proportional to the number of chromosomes in the spindle. A residual volume-birefringence is seen and attributed to the contribution of the polar organizers to spindle structure. The relative polar contribution differs in the two species. Chromosome motion and spindle elongation in anaphase are unaffected by the number of chromosomes in the spindle. The proportion of volume-birefringence associated with a kinetochore is used to estimate the number of microtubules one might expect to see if the birefringence of the spindle is of microtubular origin. These calculations predict about twice the number of microtubules per kinetochore than seen with the electron microscope. Reasons are suggested to explain this discrepancy.— It is argued that chromosome detachment releases spindle component subunits into the total subunit pool, but that these excess subunits do not influence the metaphase form nor the anaphase function of the spindle; therefore, spindle dynamics are under the direct control of the kinetochores and the polar organizing centers.  相似文献   

14.
In males of the flea beetle, Alagoasa bicolor L., spermatocytes have two achiasmate sex chromosomes, X and Y, each of which is approximately five times larger than the ten pairs of chiasmate autosomes. At metaphase I, these univalent sex chromosomes are located on a spindle domain separated from the autosomal spindle domain by a sheath of mitochondria. A single centriole pair is located at each pole of the spindle. In prometaphase I, each sex chromosome appears to maintain an attachment to both spindle poles via kinetochore microtubules (i.e., amphitelic orientation). Before anaphase I, this orientation changes to the syntelic orientation (both sister kinetochores connected to the same pole), perhaps by the release of microtubule attachments from the more distant pole by each of the chromosomes. The syntelic orientation just prior to anaphase I leaves each sex chromosome attached to the nearest pole via kinetochore microtubules, ensuring nonrandom segregation. As the sex chromosomes reorient, the autosomes follow in a sequential manner, starting with the bivalent closest to the sex spindle domain. We report here data that shed new light on the mechanism of this exceptional meiotic chromosome behavior.  相似文献   

15.
In a typical cell division, chromosomes align at the metaphase plate before anaphase commences. This is not the case in Mesostoma spermatocytes. Throughout prometaphase, the three bivalents persistently oscillate towards and away from either pole, at average speeds of 5–6 μm/min, without ever aligning at a metaphase plate. In our experiments, nocodazole (NOC) was added to prometaphase spermatocytes to depolymerize the microtubules. Traditional theories state that microtubules are the producers of force in the spindle, either by tubulin depolymerizing at the kinetochore (PacMan) or at the pole (Flux). Accordingly, if microtubules are quickly depolymerized, the chromosomes should arrest at the metaphase plate and not move. However, in 57/59 cells, at least one chromosome moved to a pole after NOC treatment, and in 52 of these cells, all three bivalents moved to the same pole. Thus, the movements are not random to one pole or other. After treatment with NOC, chromosome movement followed a consistent pattern. Bivalents stretched out towards both poles, paused, detached at one pole, and then the detached kinetochores quickly moved towards the other pole, reaching initial speeds up to more than 200 μm/min, much greater than anything previously recorded in this cell. As the NOC concentration increased, the average speeds increased and the microtubules disappeared faster. As the kinetochores approached the pole, they slowed down and eventually stopped. Similar results were obtained with colcemid treatment. Confocal immunofluorescence microscopy confirms that microtubules are not associated with moving chromosomes. Thus, these rapid chromosome movements may be due to non-microtubule spindle components such as actin-myosin or the spindle matrix.  相似文献   

16.
Successful mitosis requires that anaphase chromosomes sustain a commitment to move to their assigned spindle poles. This requires stable spindle attachment of anaphase kinetochores. Prior to anaphase, stable spindle attachment depends on tension created by opposing forces on sister kinetochores [1]. Because tension is lost when kinetochores disjoin, stable attachment in anaphase must have a different basis. After expression of nondegradable cyclin B (CYC-B(S)) in Drosophila embryos, sister chromosomes disjoined normally but their anaphase behavior was abnormal [2]. Chromosomes exhibited cycles of reorientation from one pole to the other. Additionally, the unpaired kinetochores accumulated attachments to both poles (merotelic attachments), congressed (again) to a pseudometaphase plate, and reacquired associations with checkpoint proteins more characteristic of prometaphase kinetochores. Unpaired prometaphase kinetochores, which occurred in a mutant entering mitosis with unreplicated (unpaired) chromosomes, behaved just like the anaphase kinetochores at the CYC-B(S) arrest. Finally, the normal anaphase release of AuroraB/INCENP from kinetochores was blocked by CYC-B(S) expression and, reciprocally, was advanced in a CycB mutant. Given its established role in destabilizing kinetochore-microtubule interactions [3], Aurora B dissociation is likely to be key to the change in kinetochore behavior. These findings show that, in addition to loss of sister chromosome cohesion, successful anaphase requires a kinetochore behavioral transition triggered by CYC-B destruction.  相似文献   

17.
Chromosome micromanipulation   总被引:16,自引:0,他引:16  
The relationship of kinetochore orientation and reorientation to orderly chromosome distribution in anaphase has been studied experimentally by micromanipulation of living grasshopper spermatocytes. Bivalents or the X chromosome at prometaphase or metaphase I can be detached from the spindle with a microneedle and moved to any desired location within the cell. Following a pause of variable duration the detached chromosome invariably moved, kinetochores foremost, back to the spindle, reassumed its characteristic metaphase position, and, with one exception, segregated normally at anaphase I. Detachment from the spindle is demonstrated unequivocally (1) by manipulation evidence for the absence of the firm spindle connections seen both before detachment and after reattachment and (2) by a functional criterion: a given kinetochore, oriented to one pole before detachment, often orients to the opposite pole after detachment. The segregation in anaphase was always as expected from the final, post-operation, orientation. Reorientation and prometaphase and anaphase movement after detachment cannot be distinguished from their counterparts in control cells. Kinetochore position after detachment is the primary determinant of the pole to which that kinetochore will orient. Therefore, since the experimenter determines kinetochore position, he can cause any given half-bivalent to segregate to a predetermined pole at anaphase I. Similarly, orientation of both half-bivalents to the same pole can be induced. These mal-oriented bivalents invariably reorient and normal anaphase segregation ensues. Non-disjunction can, however, be produced directly in late anaphase. These experiments are based upon current views of orderly chromosome distribution; their success confirms our understanding of the fundamental orientation process.  相似文献   

18.
The chiasma is a structure that forms between a pair of homologous chromosomes by crossover recombination and physically links the homologous chromosomes during meiosis. Chiasmata are essential for the attachment of the homologous chromosomes to opposite spindle poles (bipolar attachment) and their subsequent segregation to the opposite poles during meiosis I. However, the overall function of chiasmata during meiosis is not fully understood. Here, we show that chiasmata also play a crucial role in the attachment of sister chromatids to the same spindle pole and in their co-segregation during meiosis I in fission yeast. Analysis of cells lacking chiasmata and the cohesin protector Sgo1 showed that loss of chiasmata causes frequent bipolar attachment of sister chromatids during anaphase. Furthermore, high time-resolution analysis of centromere dynamics in various types of chiasmate and achiasmate cells, including those lacking the DNA replication checkpoint factor Mrc1 or the meiotic centromere protein Moa1, showed the following three outcomes: (i) during the pre-anaphase stage, the bipolar attachment of sister chromatids occurs irrespective of chiasma formation; (ii) the chiasma contributes to the elimination of the pre-anaphase bipolar attachment; and (iii) when the bipolar attachment remains during anaphase, the chiasmata generate a bias toward the proper pole during poleward chromosome pulling that results in appropriate chromosome segregation. Based on these results, we propose that chiasmata play a pivotal role in the selection of proper attachments and provide a backup mechanism that promotes correct chromosome segregation when improper attachments remain during anaphase I.  相似文献   

19.
Tanaka TU 《The EMBO journal》2010,29(24):4070-4082
Eukaryotic cells segregate their chromosomes accurately to opposite poles during mitosis, which is necessary for maintenance of their genetic integrity. This process mainly relies on the forces generated by kinetochore-microtubule (KT-MT) attachment. During prometaphase, the KT initially interacts with a single MT extending from a spindle pole and then moves towards a spindle pole. Subsequently, MTs from the other spindle pole also interact with the KT. Eventually, one sister KT becomes attached to MTs from one pole while the other sister to those from the other pole (sister KT bi-orientation). If sister KTs interact with MTs with aberrant orientation, this must be corrected to attain proper bi-orientation (error correction) before the anaphase is initiated. Here, I discuss how KTs initially interact with MTs and how this interaction develops into bi-orientation; both processes are fundamentally crucial for proper chromosome segregation in the subsequent anaphase.  相似文献   

20.
Vertebrate oocyte maturation is an extreme form of asymmetric cell division, producing a mature egg alongside a diminutive polar body. Critical to this process is the attachment of one spindle pole to the oocyte cortex prior to anaphase. We report here that asymmetric spindle pole attachment and anaphase initiation are required for localized cortical activation of Cdc42, which in turn defines the surface of the impending polar body. The Cdc42 activity zone overlaps with dynamic F-actin and is circumscribed by a RhoA-based actomyosin contractile ring. During cytokinesis, constriction of the RhoA contractile ring is accompanied by Cdc42-mediated membrane outpocketing such that one spindle pole and one set of chromosomes are pulled into the Cdc42 enclosure. Unexpectedly, the guanine nucleotide exchange factor Ect2, which is necessary for contractile ring formation, does not colocalize with active RhoA. Polar body emission thus requires a classical RhoA contractile ring and Cdc42-mediated membrane protrusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号