首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Genomic imprinting is an epigenetic phenomenon whereby genetically identical alleles are differentially expressed dependent on their parent-of-origin. Genomic imprinting has independently evolved in flowering plants and mammals. In both organism classes, imprinting occurs in embryo-nourishing tissues, the placenta and the endosperm, respectively, and it has been proposed that imprinted genes regulate the transfer of nutrients to the developing progeny. Many imprinted genes are located in the vicinity of DNA-methylated transposon or repeat sequences, implying that transposon insertions are associated with the evolution of imprinted loci. The antagonistic action of DNA methylation and Polycomb group-mediated histone methylation seems important for the regulation of many imprinted plant genes, whereby the position of such epigenetic modifications can determine whether a gene will be mainly expressed from either the maternally or paternally inherited alleles. Furthermore, long non-coding RNAs seem to play an as yet underappreciated role for the regulation of imprinted plant genes. Imprinted expression of a number of genes is conserved between monocots and dicots, suggesting that long-term selection can maintain imprinted expression at some loci.  相似文献   

4.
Genomic imprinting is a mammalian developmental process that uses epigenetic mechanisms to induce monoallelic and parental-specific expression of particular autosomal genes. A crucial epigenetic event consists of DNA methylation of CpG-islands, which become differentially methylated regions (DMRs) on the maternal and paternal alleles during oogenesis or spermatogenesis (germline DMRs). By contrast, somatic DMRs are acquired after fertilization. While there are several studies referring to methylation acquisition within germline DMRs in the mouse and human, a comparable methylation analysis of orthologous sequences is still lacking in sheep. To identify germline DMRs, this study analysed the methylation status of the available CpG-islands of five ovine imprinted genes ( H19, IGF2R, DLK1, DIO3 and BEGAIN ) in mature spermatozoa and in female gametes at different stages of their follicle growth, including in vitro matured oocytes. The 5'-end CpG-island of H19 showed a full methylation in spermatozoa and an absent methylation in growing and fully grown oocytes. The intron 2 CpG-island of IGF2R was unmethylated in male gametes, while it showed a high level of methylation in early stages of oogenesis. The promoter CpG-islands of DLK1 and DIO3 were found to be unmethylated both in spermatozoa and oocytes. Finally, the exon 9 CpG-island of BEGAIN was hypermethylated in mature male gametes, while it showed an almost complete methylation only in late stages of oocyte development. Our findings suggest that DNA methylation establishment during early stages of sheep oogenesis and subsequent in vitro maturation is gene-specific and that, of the five genes investigated, only the CpG-islands of H19 and IGF2R might represent ovine germline DMRs.  相似文献   

5.
Key aspects of seed development in flowering plants are held to be under epigenetic control and to have evolved as a result of conflict between the interests of the male and female gametes (kinship theory). Attempts to identify the genes involved have focused on imprinted sequences, although imprinting is only one mechanism by which male or female parental alleles may be exclusively expressed immediately post-fertilization. We have studied the expression of a subset of endosperm gene classes immediately following interploidy crosses in maize and show that departure from the normal 2 : 1 ratio between female and male genomes exerts a dramatic effect on the timing of expression of some, but not all, genes investigated. Paternal genomic excess prolongs the expression of early genes and delays accumulation of reserves, while maternal genomic excess foreshortens the expression period of early genes and dramatically brings forward endosperm maturation. Our data point to a striking interdependence between the phases of endosperm development, and are consonant with previous work from maize showing progression from cell proliferation to endoreduplication is regulated by the balance between maternal and paternal genomes, and from Arabidopsis suggesting that this ‘phasing’ is regulated by maternally expressed imprinted genes. Our findings are discussed in context of the kinship theory.  相似文献   

6.
DNA methylation is an essential epigenetic mechanism involved in many essential cellular processes. During development epigenetic reprograming takes place during gametogenesis and then again in the pre-implantation embryo. These two reprograming windows ensure genome-wide removal of methylation in the primordial germ cells so that sex-specific signatures can be acquired in the sperm and oocyte. Following fertilization the majority of this epigenetic information is erased to give the developing embryo an epigenetic profile coherent with pluripotency. It is estimated that ∼65% of the genome is differentially methylated between the gametes, however following embryonic reprogramming only parent-of-origin methylation at known imprinted loci remains. This suggests that trans-acting factors such as Zfp57 can discriminate imprinted differentially methylated regions (DMRs) from the thousands of CpG rich regions that are differentially marked in the gametes. Recently transient imprinted DMRs have been identified suggesting that these loci are also protected from pre-implantation reprograming but succumb to de novo remethylation at the implantation stage. This highlights that “ubiquitous” imprinted loci are also resilient to gaining methylation by protecting their unmethylated alleles. In this review I examine the processes involved in epigenetic reprograming and the mechanisms that ensure allelic methylation at imprinted loci is retained throughout the life of the organism, discussing the critical differences between mouse and humans.This article is part of a Directed Issue entitled: Epigenetics Dynamics in development and disease.  相似文献   

7.
Findings from recent studies have suggested that the low survival rate of animals derived via somatic cell nuclear transfer (SCNT) may be in part due to epigenetic abnormalities brought about by this procedure. DNA methylation is an epigenetic modification of DNA that is implicated in the regulation of imprinted genes. Genes subject to genomic imprinting are expressed monoallelically in a parent of origin-dependent manner and are important for embryo growth, placental function, and neurobehavioral processes. The vast majority of imprinted genes have been studied in mice and humans. Herein, our objectives were to characterize the bovine SNRPN gene in gametes and to compare its methylation profile in in vivo-produced, in vitro-produced, and SCNT-derived Day 17 elongating embryos. A CpG island within the 5' region of SNRPN was identified and examined using bisulfite sequencing. SNRPN alleles were unmethylated in sperm, methylated in oocytes, and approximately 50% methylated in somatic samples. The examined SNRPN region appeared for the most part to be normally methylated in three in vivo-produced Day 17 embryos and in eight in vitro-produced Day 17 embryos examined, while alleles from Day 17 SCNT embryos were severely hypomethylated in seven of eight embryos. In this study, we showed that the SNRPN methylation profiles previously observed in mouse and human studies are also conserved in cattle. Moreover, SCNT-derived Day 17 elongating embryos were abnormally hypomethylated compared with in vivo-produced and in vitro-produced embryos, which in turn suggests that SCNT may lead to faulty reprogramming or maintenance of methylation imprints at this locus.  相似文献   

8.
Methylation dynamics of imprinted genes in mouse germ cells   总被引:20,自引:0,他引:20  
  相似文献   

9.
Ogawa H  Wu Q  Komiyama J  Obata Y  Kono T 《FEBS letters》2006,580(22):5377-5384
In mammals, imprinted genes show parental origin-dependent expression based on epigenetic modifications called genomic imprinting (GI), which are established independently during spermatogenesis or oogenesis. Due to GI, uniparental fetuses never develop to term. To determine whether such expression of imprinted genes is maintained in uniparental mouse fetuses, we analyzed the expression of 20 paternally and 11 maternally expressed genes in androgenetic and parthenogenetic fetuses. Four genes of each type were expressed in both groups of fetuses. Furthermore, quantitative analysis showed that expression levels deviated from the presumed levels for some imprinted genes. These results suggest that mechanisms acting in trans between paternal and maternal alleles are involved in the appropriate expression of some imprinted genes.  相似文献   

10.
Genomic imprinting is an epigenetic phenomenon leading to parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, genomic imprinting has mainly been observed in the endosperm, an ephemeral triploid tissue derived after fertilization of the diploid central cell with a haploid sperm cell. In an effort to identify novel imprinted genes in Arabidopsis thaliana, we generated deep sequencing RNA profiles of F1 hybrid seeds derived after reciprocal crosses of Arabidopsis Col-0 and Bur-0 accessions. Using polymorphic sites to quantify allele-specific expression levels, we could identify more than 60 genes with potential parent-of-origin specific expression. By analyzing the distribution of DNA methylation and epigenetic marks established by Polycomb group (PcG) proteins using publicly available datasets, we suggest that for maternally expressed genes (MEGs) repression of the paternally inherited alleles largely depends on DNA methylation or PcG-mediated repression, whereas repression of the maternal alleles of paternally expressed genes (PEGs) predominantly depends on PcG proteins. While maternal alleles of MEGs are also targeted by PcG proteins, such targeting does not cause complete repression. Candidate MEGs and PEGs are enriched for cis-proximal transposons, suggesting that transposons might be a driving force for the evolution of imprinted genes in Arabidopsis. In addition, we find that MEGs and PEGs are significantly faster evolving when compared to other genes in the genome. In contrast to the predominant location of mammalian imprinted genes in clusters, cluster formation was only detected for few MEGs and PEGs, suggesting that clustering is not a major requirement for imprinted gene regulation in Arabidopsis.  相似文献   

11.
Genomic imprinting is the process of epigenetic modification whereby genes are expressed in a parent-of-origin dependent manner; it plays an important role in normal growth and development. Parthenogenetic embryos contain only the maternal genome. Parthenogenetic embryonic stem cells could be useful for studying imprinted genes. In humans, mature cystic ovarian teratomas originate from parthenogenetic activation of oocytes; they are composed of highly differentiated mature tissues containing all three germ layers. To establish human parthenogenetic induced pluripotent stem cell lines (PgHiPSCs), we generated parthenogenetic fibroblasts from ovarian teratoma tissues. We compared global DNA methylation status of PgHiPSCs with that of biparental human induced pluripotent stem cells by using Illumina Infinium HumanMethylation450 BeadChip array. This analysis identified novel single imprinted CpG sites. We further tested DNA methylation patterns of two of these sites using bisulfite sequencing and described novel candidate imprinted CpG sites. These results confirm that PgHiPSCs are a powerful tool for identifying imprinted genes and investigating their roles in human development and diseases.  相似文献   

12.
Among animals, genomic imprinting is a uniquely mammalian phenomenon in which certain genes are monoallelically expressed according to their parent of origin. This silencing of certain alleles often involves differential methylation at regulatory regions associated with imprinted genes and must be recapitulated at every generation with the erasure and reapplication of these epigenetic marks in the germline. Imprinted genes encode regulatory proteins that play key roles in fetal growth and development, but they also exert wider effects on mammalian reproduction. Genetic knockout experiments have shown that certain paternally expressed imprinted genes regulate post-natal behavior in offspring as well as reproductive behaviors in males and females. These deficits involve changes in hypothalamic function affecting multiple areas and different neurochemical pathways. Paternally expressed genes are highly expressed in the hypothalamus which regulates growth, metabolism and reproduction and so are well placed to influence all aspects of reproduction from adults to the resultant offspring. Coadaptation between offspring and mother appears to have played an important role in the evolution of some paternally expressed genes, but the influence of these genes on male reproductive behavior also suggests that they have evolved to regulate their own transmission to successive generations via the male germline.  相似文献   

13.
Tandem repeats in the CpG islands of imprinted genes   总被引:4,自引:0,他引:4  
Hutter B  Helms V  Paulsen M 《Genomics》2006,88(3):323-332
  相似文献   

14.
Differential epigenetic modification by methylation of CpG dinucleotides is a candidate mechanism that may identify the alleles of imprinted genes and result in monoallelic expression of either the maternal or the paternal allele. Determination of the allelic methylation status of imprinted genes in the gametes and during early development is constrained by the limiting quantities of genomic DNA available from these early developmental stages. To circumvent this problem we have used bisulfite genomic sequencing to determine the allelic methylation status of the minimal promoter and a 1-kb region within theXistgene during preimplantation development. We find that the parentalXistalleles are not differentially methylated in these regions. Our findings are discussed in the context of previous conflicting data obtained using methylation-sensitive restriction enzyme digestion followed by PCR amplification to assay for methylation.  相似文献   

15.
Mechanisms of genomic imprinting   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

16.
AIM: To investigate the epigenetic states and expression of imprinted genes in five human embryonic stem cell (hESC) lines derived in Taiwan.METHODS: The heterozygous alleles of single nucleotide polymorphisms (SNPs) at imprinted genes were analyzed by sequencing genomic DNAs of hESC lines and the monoallelic expression of the imprinted genes were confirmed by sequencing the cDNAs. The expression profiles of 32 known imprinted genes of five hESC lines were determined using Affymetrix human genome U133 plus 2.0 DNA microarray.RESULTS: The heterozygous alleles of SNPs at seven imprinted genes, IPW, PEG10, NESP55, KCNQ1, ATP10A, TCEB3C and IGF2, were identified and the monoallelic expression of these imprinted genes except IGF2 were confirmed. The IGF2 gene was found to be imprinted in hESC line T2 but partially imprinted in line T3 and not imprinted in line T4 embryoid bodies. Ten imprinted genes, namely GRB10, PEG10, SGCE, MEST, SDHD, SNRPN, SNURF, NDN, IPW and NESP55, were found to be highly expressed in the undifferentiated hESC lines and down-regulated in differentiated derivatives. The UBE3A gene abundantly expressed in undifferentiated hESC lines and further up-regulated in differentiated tissues. The expression levels of other 21 imprinted genes were relatively low in undifferentiated hESC lines and five of these genes (TP73, COPG2, OSBPL5, IGF2 and ATP10A) were found to be up-regulated in differentiated tissues.CONCLUSION: The epigenetic states and expression of imprinted genes in hESC lines should be thoroughly studied after extended culture and upon differentiation in order to understand epigenetic stability in hESC lines before their clinical applications.  相似文献   

17.
We have investigated the DNA methylation patterns in genomically imprinted genes of the mouse. Both Igf2 and H19 are associated with clear-cut regions of allele-specific paternal modification in late embryonic and adult tissues. By using a sensitive PCR assay, it was possible to follow the methylation state of individual HpaII sites in these genes through gametogenesis and embryogenesis. Most of these CpG moieties are not differentially modified in the mature gametes and also become totally demethylated in the early embryo in a manner similar to non-imprinted endogenous genes. Thus, the overall allele-specific methylation pattern at these sites must be established later during embryogenesis after the blastula stage. In contrast, sites in an Igf2r gene intron and one CpG residue in the Igf2 upstream region have allele-specific modification patterns which are established either in the gametes or shortly after fertilization and are preserved throughout pre-implantation embryogenesis. These studies suggest that only a few DNA modifications at selective positions in imprinted genes may be candidates for playing a role in the maintenance of parental identity during development.  相似文献   

18.
X chromosome inactivation (XCI) is an epigenetic process that almost completely inactivates one of two X chromosomes in somatic cells of mammalian females. A few genes are known to escape XCI and the mechanism for this escape remains unclear. Here, using mouse trophoblast stem (TS) cells, we address whether particular chromosomal interactions facilitate escape from imprinted XCI. We demonstrate that promoters of genes escaping XCI do not congregate to any particular region of the genome in TS cells. Further, the escape status of a gene was uncorrelated with the types of genomic features and gene activity located in contacted regions. Our results suggest that genes escaping imprinted XCI do so by using the same regulatory sequences as their expressed alleles on the active X chromosome. We suggest a model where regulatory control of escape from imprinted XCI is mediated by genomic elements located in close linear proximity to escaping genes.  相似文献   

19.
Genomic imprinting affects a subset of genes in mammals and results in a monoallelic, parental-specific expression pattern. Most of these genes are located in clusters that are regulated through the use of insulators or long noncoding RNAs (lncRNAs). To distinguish the parental alleles, imprinted genes are epigenetically marked in gametes at imprinting control elements through the use of DNA methylation at the very least. Imprinted gene expression is subsequently conferred through lncRNAs, histone modifications, insulators, and higher-order chromatin structure. Such imprints are maintained after fertilization through these mechanisms despite extensive reprogramming of the mammalian genome. Genomic imprinting is an excellent model for understanding mammalian epigenetic regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号