首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
We have studied interactions between nucleocapsids and glycoproteins required for budding of alphaviruses, using Ross River virus-Sindbis virus chimeras in which the nucleocapsid protein is derived from one virus and the envelope glycoproteins are derived from the second virus. A virus containing the Ross River virus genome in which the capsid protein had been replaced with that from Sindbis virus was almost nonviable. Nucleocapsids formed in normal numbers in the infected cell, but very little virus was released from the cell. There are 11 amino acid differences between Ross River virus and Sindbis virus in their 33-residue E2 cytoplasmic domains. Site-specific mutagenesis was used to change 9 of these 11 amino acids in the chimera from the Ross River virus to the Sindbis virus sequence in an attempt to adapt the E2 of the chimera to the nucleocapsid. The resulting mutant chimera grew 4 orders of magnitude better than the parental chimeric virus. This finding provides direct evidence for a sequence-specific interaction between the nucleocapsid and the E2 cytoplasmic domain during virus budding. The mutated chimeric virus readily gave rise to large-plaque variants that grew almost as well as Ross River virus, suggesting that additional single amino acid substitutions in the structural proteins can further enhance the interactions between the disparate capsid and the glycoproteins. Unexpectedly, change of E2 residue 394 from lysine (Ross River virus) to glutamic acid (Sindbis virus) was deleterious for the chimera, suggesting that in addition to its role in nucleocapsid-E2 interactions, the N-terminal part of the E2 cytoplasmic domain may be involved in glycoprotein-glycoprotein interactions required to assemble the glycoprotein spikes. The reciprocal chimera, Sindbis virus containing the Ross River virus capsid, also grew poorly. Suppressor mutations arose readily in this chimera, producing a virus that grew moderately well and that formed larger plaques.  相似文献   

2.
The assembly and budding of Sindbis virus, a prototypic member of the alphavirus subgroup in the family Togaviridae, requires a specific interaction between the nucleocapsid core and the membrane-embedded glycoproteins E1 and E2. These glycoproteins are modified posttranslationally by the addition of palmitic acid, and inhibitors of acylation interfere with this budding process (M.J. Schlesinger and C. Malfer, J. Biol. Chem. 257:9887-9890, 1982). This report describes the use of site-directed mutagenesis to identify two of the acylation sites in the E2 glycoprotein as the cysteines near the carboxyl terminus of the protein which is oriented to the cytoplasmic domain of this type 1 transmembrane protein. Additional mutations were made at two prolines within a hydrophobic sequence of E2 that is highly conserved among several alphaviruses, and the mutant viruses were aberrant in assembly and particle formation. These data support earlier studies indicating that the native structure of the cytoplasmic domain of E2 is essential for proper assembly of this enveloped virus.  相似文献   

3.
There are 80 trimeric, glycoprotein spikes that cover the surface of an alphavirus particle. The spikes, which are composed of three E2 and E1 glycoprotein heterodimers, are responsible for receptor binding and mediating fusion between the viral and host-cell membranes during entry. In addition, the cytoplasmic domain of E2 interacts with the nucleocapsid core during the last stages of particle assembly, possibly to aid in particle stability. During assembly, the spikes are nonfusogenic until the E3 glycoprotein is cleaved from E2 in the trans-Golgi network. Thus, a mutation in E2 potentially has effects on virus entry, spike assembly, or spike maturation. E2 is a highly conserved, cysteine-rich transmembrane glycoprotein. We made single cysteine-to-serine mutations within two distinct regions of the E2 ectodomain in both Sindbis virus and Ross River virus. Each of the E2 Cys mutants produced fewer infectious particles than wild-type virus. Further characterization of the mutant viruses revealed differences in particle morphology, fusion activity, and polyprotein cleavage between Sindbis and Ross River virus mutants, despite the mutations being made at corresponding positions in E2. The nonconserved assembly defects suggest that E2 folding and function is species dependent, possibly due to interactions with a virus-specific chaperone.  相似文献   

4.
Fluorescence photobleaching recovery (FPR) measurements of virus glycoproteins on the surfaces of cells infected with vesicular stomatitis virus (VSV) and Sindbis virus showed that the VSV glycoprotein (G) remained mobile throughout the infectious cycle, whereas Sindbis virus glycoproteins (E1, E2) were partially mobile early after infection and immobile at later times when greater amounts of these proteins were on the cell surface. A highly mobile fraction of Sindbis virus glycoproteins was detected throughout the replication cycle of a temperature-sensitive mutant unable to form virus particles. Thus immobilization of E1 and E2 was the result of increasing surface glycoprotein concentrations and virus budding. Together with other data, which included the detection of E1 and E2 in particles as soon as these proteins were transported to the cell surface, the FPR results suggest that Sindbis virus assembly initiates on intracellular vesicles, where glycoproteins aggregate and bind nucleocapsids. In contrast, our FPR data on VSV support a model previously suggested by others, in which a small fraction of cell-surface G is immobilized into budding sites formed by interactions with virus matrix and nucleoproteins. FPR measurements also provide direct evidence for strong interactions between E1 and E2, as well as between E1 and PE2, the precursor form of E2.  相似文献   

5.
A Sindbis virus (SV) variant with a 6K gene partially deleted has been obtained. This SV Del6K virus is defective in the proteolytic processing of virus glycoprotein precursor, transport of glycoproteins to the plasma membrane, and plaque phenotype. A revertant virus (SV Del6K-revQ21L) containing a point mutation in the deleted 6K gene was isolated and characterized. SV Del6K-revQ21L has corrected the defects of proteolytic processing and transport of virus glycoproteins to the plasma membrane, but it still remains attenuated compared to wild-type (wt) SV, exhibiting defects in virus budding. Neither mutant nor revertant viruses are complemented by the coexpression in trans of a wt SV 6K gene.  相似文献   

6.
Non-histone proteins and long-range organization of HeLa interphase DNA   总被引:22,自引:0,他引:22  
We have studied the association of the Sindbis virus glycoproteins in mature virions and infected cells. The glycoproteins were cross-linked with bifunctional amino-reactive reagents (11 Å cross-linking distance), some of which could be subsequently cleaved by reduction. Using monospecific rabbit antisera against each viral envelope glycoprotein it was found that >90% of the cross-linked glycoprotein dimers from intact virions or virions solubilized with Triton X100 prior to cross-linking were heterodimers of E1 and E2. The pattern of cross-linked glycoproteins from intact virions as well as infected cells suggested that three E1-E2 dimers may be associated to form a hexameric subunit. Cross-linking of pulselabeled infected monolayers showed that PE2 was cross-linked to E1 less efficiently than was E2, suggesting that if PE2 and E1 are associated as a complex in infected cells then their conformation with respect to reactive amino groups is distinct from that of the mature virion glycoproteins. ts mutants of Sindbis virus in the complementation groups corresponding to E1 and PE2 fail to cleave PE2 at the non-permissive temperature (40 °C). In monolayers infected with these mutants or a heat-resistant variant of Sindbis virus, the glycoprotein precursors synthesized at the elevated temperature were readily cross-linked into large aggregates, indicating a temperature-sensitive tendency for the proteins to aggregate.  相似文献   

7.
J S Yao  E G Strauss    J H Strauss 《Journal of virology》1996,70(11):7910-7920
During the assembly of alphaviruses, a preassembled nucleocapsid buds through the cell plasma membrane to acquire an envelope containing two virally encoded glycoproteins, E2 and E1. Using two chimeric viruses, we have studied interactions between E1, E2, and a viral peptide called 6K, which are required for budding. A chimeric Sindbis virus (SIN) in which the 6K gene had been replaced with that from Ross River virus (RR) produced wild-type levels of nucleocapsids and abundant PE2/E1 heterodimers that were processed and transported to the cell surface. However, only about 10% as much chimeric virus as wild-type virus was assembled, demonstrating that there is a sequence-specific interaction between 6K and the glycoproteins required for efficient virus assembly. In addition, the conformation of E1 in the E2/E1 heterodimer on the cell surface was different for the chimeric virus from that for the wild type, suggesting that one function of 6K is to promote proper folding of E1 in the heterodimer. A second chimeric SIN, in which both the 6K and E1 genes, as well as the 3' nontranslated region, were replaced with the corresponding regions of RR also resulted in the production of large numbers of intracellular nucleocapsids and of PE2/E1 heterodimers that were cleaved and transported to the cell surface. Budding of this chimera was severely impaired, however, and the yield of the chimera was only approximately 10(-7) of the SIN yield in a parallel infection. The conformation of the SIN E2/RR E1 heterodimer on the cell surface was different from that of the SIN E2/SIN E1 heterodimer, and no interaction between viral glycoproteins and nucleocapsids at the cell plasma membrane could be detected in the electron microscope. We suggest that proper folding of the E2/E1 heterodimer must occur before the E2 tail is positioned properly in the cytoplasm for budding and before heterodimer trimerization can occur to drive virus budding.  相似文献   

8.
The structure of the lipid-enveloped Sindbis virus has been determined by fitting atomic resolution crystallographic structures of component proteins into an 11-A resolution cryoelectron microscopy map. The virus has T=4 quasisymmetry elements that are accurately maintained between the external glycoproteins, the transmembrane helical region, and the internal nucleocapsid core. The crystal structure of the E1 glycoprotein was fitted into the cryoelectron microscopy density, in part by using the known carbohydrate positions as restraints. A difference map showed that the E2 glycoprotein was shaped similarly to E1, suggesting a possible common evolutionary origin for these two glycoproteins. The structure shows that the E2 glycoprotein would have to move away from the center of the trimeric spike in order to expose enough viral membrane surface to permit fusion with the cellular membrane during the initial stages of host infection. The well-resolved E1-E2 transmembrane regions form alpha-helical coiled coils that were consistent with T=4 symmetry. The known structure of the capsid protein was fitted into the density corresponding to the nucleocapsid, revising the structure published earlier.  相似文献   

9.
Glycoprotein PE2 of Sindbis virus will form a heterodimer with glycoprotein E1 of Ross River virus that is cleaved to an E2/E1 heterodimer and transported to the cell plasma membrane, but this chimeric heterodimer fails to interact with Sindbis virus nucleocapsids, and very little budding to produce mature virus occurs upon infection with chimeric viruses. We have isolated in both Sindbis virus E2 and in Ross River virus E1 a series of suppressing mutations that adapt these two proteins to one another and allow increased levels of chimeric virus production. Two adaptive E1 changes in an ectodomain immediately adjacent to the membrane anchor and five adaptive E2 changes in a 12-residue ectodomain centered on Asp-242 have been identified. One change in Ross River virus E1 (Gln-411→Leu) and one change in Sindbis virus E2 (Asp-248→Tyr) were investigated in detail. Each change individually leads to about a 10-fold increase in virus production, and combined the two changes lead to a 100-fold increase in virus. During passage of a chimeric virus containing Ross River virus E1 and Sindbis virus E2, the E2 change was first selected, followed by the E1 change. Heterodimers containing these two adaptive mutations have a demonstrably increased degree of interaction with Sindbis virus nucleocapsids. In the parental chimera, no interaction between heterodimers and capsids was visible at the plasma membrane in electron microscopic studies, whereas alignment of nucleocapsids along the plasma membrane, indicating interaction of heterodimers with nucleocapsids, was readily seen in the adapted chimera. The significance of these findings in light of our current understanding of alphavirus budding is discussed.  相似文献   

10.
A late stage in assembly of alphaviruses within infected cells is thought to be directed by interactions between the nucleocapsid and the cytoplasmic domain of the E2 protein, a component of the viral E1/E2 glycoprotein complex that is embedded in the plasma membrane. Recognition between the nucleocapsid protein and the E2 protein was explored in solution using NMR spectroscopy, as well as in binding assays using a model phospholipid membrane system that incorporated a variety of Sindbis virus E2 cytoplasmic domain (cdE2) and capsid protein constructs. In these binding assays, synthetic cdE2 peptides were reconstituted into phospholipid vesicles to simulate the presentation of cdE2 on the inner leaflet of the plasma membrane. Results from these binding assays showed a direct interaction between a peptide containing the C-terminal 16 amino acids of the cdE2 sequence and a Sindbis virus capsid protein construct containing amino acids 19-264. Additional experiments that probed the sequence specificity of this cdE2-capsid interaction are also described. Further binding assays demonstrated an interaction between the 19-264 capsid protein and artificial vesicles containing neutral or negatively charged phospholipids, while capsid protein constructs with N-terminal truncations displayed either little or no affinity for such vesicles. The membrane-binding property of the capsid protein suggests that the membrane may play an active role in alphavirus assembly. The results are consistent with an assembly process involving an initial membrane association, whereby an association with E2 glycoprotein further enhances capsid binding to facilitate membrane envelopment of the nucleocapsid for budding. Collectively, these experiments elucidate certain requirements for the binding of Sindbis virus capsid protein to the cytoplasmic domain of the E2 glycoprotein, a critical event in the alphavirus maturation pathway.  相似文献   

11.
Protein-protein interactions in an alphavirus membrane.   总被引:21,自引:16,他引:5       下载免费PDF全文
Using homobifunctional chemical cross-linkers with various span distances, we have determined the near-neighbor associations and planar organization of the E1 and E2 envelope glycoproteins which compose the icosahedral surface of Sindbis virus. We have found that E1-E2 heterodimers, which form the virus protomeric units, exist in two conformationally distinct forms, reflecting their nonequivalent positions in the icosahedron. Three of these heterodimers form the trimeric morphologic units (capsomeres) which are held together by central E1-E1 interactions. In addition, we present data which suggest that E2-E2 interactions organize the capsomeres into pentameric and hexameric geometric units and that E1-E1 interactions between capsomeres maintain the icosahedral lattice in mature virions.  相似文献   

12.
Sindbis virus-infected baby hamster kidney cells were analyzed by thin section fracture-label. Specific immunolabel with antiviral glycoprotein antibodies or with conventional lectin label (wheat germ agglutinin) were used in conjunction with colloidal gold-conjugated protein A or ovomucoid, respectively. In addition, intact infected cells were analyzed with both labeling procedures. Experiments with Sindbis infected-chick embryo fibroblast cells were carried out as controls. Viral transmembrane glycoproteins appeared present in freeze-fractured inner and outer nuclear membrane, endoplasmic reticulum, Golgi stacks and vesicles, and plasma membranes; a clear preferential partition with the exoplasmic faces of all intracellular membranes was observed. By contrast, at the plasma membrane level, Sindbis glycoproteins were found to partition preferentially with the protoplasmic face. It seems likely that this protoplasmic partition is related to the binding with the nucleocapsid that takes place during the budding of the virus. At the cell surface, viral glycoproteins always appeared clustered and were predominantly associated with budding figures: moreover, large portions of the plasma membrane were devoid of both glycoproteins and budding viruses.  相似文献   

13.
Alphavirus budding from the plasma membrane occurs through the specific interaction of the nucleocapsid core with the cytoplasmic domain of the E2 glycoprotein (cdE2). Structural studies of the Sindbis virus capsid protein (CP) have suggested that these critical interactions are mediated by the binding of cdE2 into a hydrophobic pocket in the CP. Several molecular genetic studies have implicated amino acids Y400 and L402 in cdE2 as important for the budding of alphaviruses. In this study, we characterized the role of cdE2 residues in structural polyprotein processing, glycoprotein transport, and capsid interactions. Along with hydrophobic residues, charged residues in the N terminus of cdE2 were critical for the effective interaction of cores with cdE2, a process required for virus budding. Mutations in the C-terminal signal sequence region of cdE2 affected E2 protein transport to the plasma membrane, while nonbudding mutants that were defective in cdE2-CP interaction accumulated E2 on the plasma membrane. The interaction of cdE2 with cytoplasmic cores purified from infected cells and in vitro-assembled core-like particles suggests that cdE2 interacts with assembled cores to mediate budding. We hypothesize that these cdE2 interactions induce a change in the organization of the nucleocapsid core upon binding leading to particle budding and priming of the nucleocapsid cores for disassembly that is required for virus infection.  相似文献   

14.
The production of the alphavirus virion is a multistep event requiring the assembly of the nucleocapsid core in the cytoplasm and the maturation of the glycoproteins in the endoplasmic reticulum and the Golgi apparatus. These components associate during the budding process to produce the mature virion. The nucleocapsid proteins of Sindbis virus and Ross River virus have been produced in a T7-based Escherichia coli expression system and purified. In the presence of single-stranded but not double-stranded nucleic acid, the proteins oligomerize in vitro into core-like particles which resemble the native viral nucleocapsid cores. Despite their similarities, Sindbis virus and Ross River virus capsid proteins do not form mixed core-like particles. Truncated forms of the Sindbis capsid protein were used to establish amino acid requirements for assembly. A capsid protein starting at residue 19 [CP(19-264)] was fully competent for in vitro assembly, whereas proteins with further N-terminal truncations could not support assembly. However, a capsid protein starting at residue 32 or 81 was able to incorporate into particles in the presence of CP(19-264) or could inhibit assembly if its molar ratio relative to CP(19-264) was greater than 1:1. This system provides a basis for the molecular dissection of alphavirus core assembly.  相似文献   

15.
Temperature-sensitive mutations in proteins produced at or heated to a nonpermissive temperature render the proteins defective in some aspect of their maturation into functional entities. The characterization of temperature-sensitive mutations in model proteins, such as virus membrane proteins, has allowed the elucidation of critical events in the maturation of virus membranes as well as in the intracellular folding, processing, and transport of membrane proteins in general. We have used a transport-defective, temperature-sensitive mutant of Sindbis virus, ts23, which has two amino acid changes in the envelope protein E1, to further examine requirements placed upon the glycoproteins for their export to the plasma membrane. Pulse-chase experiments in which we utilized the transport inhibitors monensin and brefeldin A allowed us to synthesize and assemble the glycoproteins of ts23 into export-competent heterodimers at the permissive temperature while concurrently blocking their export to the cell surface. After removal of the inhibitors and a shift to the nonpermissive temperature, we assayed for protein transport, cell-cell fusion, and infectious-particle production. Taken together, the data show that the irreversible loss of the temperature-sensitive phenotype of ts23 can be correlated with the folding of E1 and the formation of export-competent PE2-E1 heterodimers in the endoplasmic reticulum. Furthermore, we have found that E1 pairs with PE2 to form the heterodimer prior to the completion of E1 folding.  相似文献   

16.
The Sindbis virus envelope protein spike is a hetero-oligomeric complex composed of a trimer of glycoprotein E1-E2 heterodimers. Spike assembly is a multistep process which occurs in the endoplasmic reticulum (ER) and is required for the export of E1 from the ER. PE2 (precursor to E2), however, can transit through the secretory pathway and be expressed at the cell surface in the absence of E1. Although oligomer formation does not appear to be required for the export of PE2, there is evidence that defects in E1 folding can affect PE2 transit from the ER. Temperature-sensitive mutant ts23 of Sindbis virus contains two amino acid substitutions in E1, while PE2 and capsid protein have the wild-type sequence; however, at the nonpermissive temperature, both E1 and PE2 are retained within the ER and can be isolated in protein aggregates with the molecular chaperone GRP78-BiP. We previously demonstrated that the temperature sensitivity for ts23 was lost as oligomer formation took place at the permissive temperature, suggesting that temperature sensitivity is initiated early in the process of viral spike assembly (M. Carleton and D. T. Brown, J. Virol. 70:952-959, 1996). Experiments described herein investigated the defects in envelope protein maturation that occur in ts23-infected cells and which result in retention of both envelope proteins in the ER. The data demonstrate that in ts23-infected cells incubated at the nonpermissive temperature, E1 folding is disrupted early after synthesis, resulting in the rapid incorporation of both E1 and PE2 into disulfide-stabilized aggregates. Furthermore, the aberrant E1 conformation which is responsible for induction of the ts phenotype requires the formation of intramolecular disulfide bridges formed prior to E1 association with PE2 and the completion of E1 folding.  相似文献   

17.
Procedures are described for the purification of the Sindbis virus structural proteins. The amino acid and carbohydrate compositions of the purified proteins are presented for virus grown in BHK-21/13 and chicken embryo cells. Glycoprotein E1 from virus grown in BHK cells is deficient in a mannose-rich glycopeptide found on that glycoprotein when virus is grown in chicken embryo cells. The complex glactose-containing glycopeptides appear similar for virus grown in both hosts. However, when virus is grown in BHK cells, both glycoproteins are enriched in those glycopeptides containing more sialic acid. Since the two viral glycoproteins are difficult to separate cleanly during purification, it is suggested that there may be strong, but noncovalent, interactions between glycoproteins E1 and E2. It is also suggested that there may be an interaction between glycoprotein E2 and a component of the nucleocapsid.  相似文献   

18.
Chimeric alphaviruses in which the 6K and glycoprotein E1 moieties of Sindbis virus are replaced with those of Ross River virus grow very poorly, but upon passage, adapted variants arise that grow >100 times better. We have sequenced the entire domain encoding the E2, 6K, and E1 proteins of a number of these adapted variants and found that most acquired two amino acid changes, which had cumulative effects. In three independent passage series, amino acid 380 of E2, which is in the transmembrane domain, was mutated from the original isoleucine to serine in two instances and to valine once. We have now changed this residue to seven others by site-directed mutagenesis and tested the effects of these mutations on the growth of both the chimera [SIN(RRE1)] and of parental Sindbis. These results indicate that the transmembrane domains of glycoproteins E2 and E1 of alphaviruses interact in a sequence-dependent manner and that this interaction is required for efficient budding and assembly of infectious virions.  相似文献   

19.
Semliki Forest virus, SFV, directs the synthesis of two membrane proteins, p62 and E1, which form a p62E1 heterodimer in the endoplasmic reticulum. After being transported to the plasma membrane (PM), they are incorporated into the virus membrane during the process of virus budding. Electronmicroscopic analyses of the envelope in matured virus show that the heterodimers are clustered into trimeric structures (spikes) which further form a regular surface lattice with T = 4. In this work we have used a genetic approach to study the importance of the trimerization event for virus budding. We have coexpressed a budding competent form of the virus heterodimer with another one which cannot be used for particle formation because of a defect in nucleocapsid (NC) binding. We show that the NC binding-deficient heterodimer is able to inhibit the budding of the competent one in a concentration-dependent manner and that the NC binding-competent heterodimers can rescue the incompetent ones into virus particles. This suggests that the heterodimers are complexed together, probably into the trimeric structures (spikes), at the PM to expose a multivalent binding site for the NC and thereby drive efficient virus budding.  相似文献   

20.
The quaternary structure of the membrane glycoproteins E1, E2 and E3 of Semliki Forest virus has been determined in intact virus and in the protein complexes obtained after Triton X100 solubilization. Intact and solubilized virus were treated with a cleavable cross-linking reagent and the covalently cross-linked glycoprotein complexes were isolated and characterized using antibodies specific for the E1 and E2 membrane glycoproteins. The isolation and characterization procedure was done in a low sodium dodecyl sulphate concentration which prevented non-covalent association between glycoprotein species, but did not abolish antigen-antibody binding.The major glycoprotein complex seen after cross-linking of either intact or Triton X100 solubilized virus was an approximately 100,000 molecular weight species composed of E1-E2 heterodimers only. These findings show that E1 and E2 form a complex in the virus and that this complex is retained after solubilization with Triton X100. The smallest membrane glycoprotein E3 was not cross-linked to the other proteins and was therefore lost in the isolation procedure. However, the presence of E3 together with E1 and E2 in complexes obtained after Triton X100 solubilization of intact virus suggests that an E1-E2-E3 trimer is present in the virus. It is likely that this trimer forms the spike-like structures seen on the surface of the virus.We have observed that antibody specific for one component of the virus glycoprotein complex can induce rearrangement of uncross-linked complexes in Triton X100 solubilized form. This fact should be considered when using specific antibody for characterization of protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号