首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The amino acid composition and other properties of fructose 1,6-diphosphate aldolase from pupae of Drosophila melanogaster are reported and compared with those of other class I aldolases. Drosophila aldolase subunits contain only four residues of cysteine, five histidines, and two methionines. All four cysteine side chains react with 5,5′-dithiobis(2-nitrobenzoic acid) only in the presence of denaturating agent and are therefore thought to be buried within the molecule. With bromoacetate one carboxymethyl group is incorporated in the native enzyme with the loss of 90% of catalytic activity; inorganic phosphate is partially inhibiting this reaction. The near-uv absorption spectra of Drosophila and rabbit muscle aldolases are similar, the insect enzyme having higher absorbancies over the entire region corresponding to its higher tryptophan content. Circular dichroism-spectra of Drosophila aldolase indicate an α-helix content of 26%. Both the insect and vertebrate enzymes display marked tryptophan ellipticity bands between 290 and 300 nm.  相似文献   

2.
Submission of a rat liver homogenate made in 250 mM sucrose-1 mM EDTA to centrifugation between 9,500 times g for 10 min and 105,000 times g for 60 min results in the sedimentation of 60 to 70% of the total cellular fructose 1,6-bisphosphate aldolase (EC 4.1.2.13). Under these conditions only about one-quarter of the total triose phosphate dehydrogenase and phosphoglycerate kinase appears in the microsomal fraction. Ultrastructural immunologic localization techniques have demonstrated that the aldolase is associated with the endoplasmic reticulum, in situ. The binding of this enzyme to the membrane is sensitive to changes in pH with an optimum at 6.0, and to increasing concentrations of NaCl and fructose 1,6-bisphosphate, being about 100-fold more sensitive to the ester than to the inorganic salt.  相似文献   

3.
Three distinct lines of evidence suggest interaction and possible complex formation between fructose 1,6-biphosphate aldolase (EC 4.1.2.13) and fructose 1,6-biphosphatase (EC 3.1.3.11) from rabbit liver. (1) Fructose 1,6-biphosphatase, which does not contain tryptophan, causes changes in the fluorescence emission spectrum of tryptophan in rabbit liver aldolase. (2) Aldolase reduces the affinity of binding of Zn2+ to the two high-affinity sites of fructose 1,6-biphosphatase. (3) Gel penetration coefficients are decreased for both enzymes when they are tested together, as compared to the coefficients observed when each is tested separately. These interactions were not observed when either liver enzyme was replaced by the corresponding enzyme purified from rabbit muscle; this specificity for enzymes purified from the same tissue excludes effects attributable to the catalytic activities of the enzyme. Maximum interaction was observed in the pH range between 8.0 and 8.5 and appeared to require the presence of two fructose 1,6-biphosphatase tetramers per tetramer of aldolase. The change in fluorescence emission spectrum was also observed, to a smaller extent, when muscle fructose 1,6-biphosphatase was added to a solution of muscle aldolase.  相似文献   

4.
I A Rose  J V Warms 《Biochemistry》1985,24(15):3952-3957
Minimum values for the content of covalent intermediates in the equilibria of muscle aldolase with its cleavable substrates have been determined by acid denaturation/precipitation. Ribulose 1,5-bisphosphate, a nonsubstrate that binds well to aldolase in the native state, does not form a covalent complex that is acid precipitable. The insoluble protein complexes with substrates fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate, representing approximately 50% and approximately 60% of total bound substrate, are much more stable in acid and alkali than that with substrate 5-deoxyfructose 1,6-bisphosphate, suggesting that they have the form of protein-bound N-glycosides. Whether such complexes exist on the enzyme in the native state in addition to being formed subsequent to denaturation is unresolved. Both the acid-precipitable and nonprecipitable forms of fructose 1,6-bisphosphate are converted to triose phosphate products at the same rate, providing no kinetic evidence for a pool that is not on the main reaction path. Total fructose 1,6-bisphosphate liganded to enzyme returns to the free solution about 9 times for each net cleavage reaction. It is still not clear whether this is limited by the cleavage step or by release of glyceraldehyde phosphate.  相似文献   

5.
The structure of fructose-1,6-bisphosphate aldolase from Drosophila melanogaster has been determined by X-ray diffraction at 2.5 A resolution. The insect enzyme crystallizes in space group P2(1)2(1)2(1) with lattice replacement with rabbit muscle aldolase as a search model has been employed to solve the structure. To improve the initial phases real space averaging, including phase extension from 4.0 to 2.5 A, has been applied. Refinement of the atomic positions by molecular dynamics resulted in a crystallographic R-factor of 0.214. The tertiary structure resembles in most parts that of the vertebrate aldolase from rabbit muscle. Significant differences were found in surface loops and the N- and C-terminal regions of the protein. Here we present the first aldolase structure where the functionally important C-terminal arm is described completely.  相似文献   

6.
Human ceruloplasmin, which is usually cleaved by limited proteolysis into three major fragments during preparation (Mr ? 18,650, 50,000, and 70,000) was isolated in good yield as an undegraded single-chain protein (Mr ? 135,00). The cryosupernatant from fresh frozen plasma (100 liters) was fractionated with polyethylene glycol (PEG 4000) at + 5°C yielding a ceruloplasmin-enriched fraction in the 20% PEG supernatant. Three steps of chromatography on DEAE-Sephacel, hydroxyapatite, and Sephadex G-200 produced a homogeneous protein with maximal enzymatic activity and the A610A280 ratio of 0.046 corresponding to 98–100% purity. Two forms of ceruloplasmin having this absorbance ratio were obtained; Form I was predominant and was studied further. The procedure separated both forms from apoceruloplasmin and degraded ceruloplasmin. The single-chain ceruloplasmin (Form I) had an NH2-terminal sequence of Lys-Glu-Lys-His-Tyr-Tyr-Ile-, the same as for the 70,000 fragment, and is suitable for structural study by sequence analysis and physicochemical methods.  相似文献   

7.
The amino acid sequence of a 103 residue segment encompassing the substrate-binding active site lysyl residue of fructose 1,6-bisphosphate aldolase from Drosophila melanogaster is determined. The sequence is identical to more than 70% with the structure of rabbit muscle aldolase and with the known partial sequences of the sturgeon muscle, trout muscle, and ox liver enzymes. The homology of the insect enzyme with the vertebrate aldolases strongly implies a similar tertiary structure folding.  相似文献   

8.
9.
The fructose-1,6-bisphosphate aldolase gene of Drosophila melanogaster contains three divergent copies of an evolutionarily conserved 3' exon. Two mRNAs encoding aldolase contain three exons and differ only in the poly(A) site. The first exon is small and noncoding. The second encodes the first 332 amino acids, which form the catalytic domain, and is homologous to exons 2 through 8 of vertebrates. The third exon encodes the last 29 amino acids, thought to control substrate specificity, and is homologous to vertebrate exon 9. A third mRNA substitutes a different 3' exon (4a) for exon 3 and encodes a protein very similar to aldolase. A fourth mRNA begins at a different promoter and shares the second exon with the aldolase messages. However, two exons, 3a and 4a, together substitute for exon 3. Like exon 4a, exon 3a is homologous to terminal aldolase exons. The exon 3a-4a junction is such that exon 4a would be translated in a frame different from that which would produce a protein with similarity to aldolase. The putative proteins encoded by the third and fourth mRNAs are likely to be aldolases with altered substrate specificities, illustrating alternate use of duplicated and diverged exons as an evolutionary mechanism for adaptation of enzymatic activities.  相似文献   

10.
The Calvin cycle is the initial pathway of photosynthetic carbon fixation, and several of its reaction steps are suggested to exert rate-limiting influence on the growth of higher plants. Plastid fructose 1,6-bisphosphate aldolase (aldolase, EC 4.1.2.13) is one of the nonregulated enzymes comprising the Calvin cycle and is predicted to have the potential to control photosynthetic carbon flux through the cycle. In order to investigate the effect of overexpression of aldolase, this study generated transgenic tobacco (Nicotiana tabacum L. cv Xanthi) expressing Arabidopsis plastid aldolase. Resultant transgenic plants with 1.4-1.9-fold higher aldolase activities than those of wild-type plants showed enhanced growth, culminating in increased biomass, particularly under high CO? concentration (700 ppm) where the increase reached 2.2-fold relative to wild-type plants. This increase was associated with a 1.5-fold elevation of photosynthetic CO? fixation in the transgenic plants. The increased plastid aldolase resulted in a decrease in 3-phosphoglycerate and an increase in ribulose 1,5-bisphosphate and its immediate precursors in the Calvin cycle, but no significant changes in the activities of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) or other major enzymes of carbon assimilation. Taken together, these results suggest that aldolase overexpression stimulates ribulose 1,5-bisphosphate regeneration and promotes CO? fixation. It was concluded that increased photosynthetic rate was responsible for enhanced growth and biomass yields of aldolase-overexpressing plants.  相似文献   

11.
12.
13.
Summary A fructose 1,6-bisphosphate aldolase (E.C.4.1.2.13) from Staphylococcus carnosus DSM 20501 was purified for the first time. The enzymatic activity was insensitive to high levels of EDTA indicating that the enzyme is a class I aldolase. This enzyme exhibits good stability at high temperatures and extreme stability over a wide pH range. The K m for fructose 1,6-bisphosphate as substrate was 0.022 mm. The S. carnosus aldolase is a monomeric enzyme with a molecular mass of about 33 kDa. It exhibits a relatively broad pH optimum between pH 6.5 and 9.0. Furthermore, the aldolase accepts other aldehydes in place of its natural substrate, glyceraldehyde 3-phosphate, allowing the synthesis of various sugar phosphates. Offprint requests to: M. R. Kula  相似文献   

14.
15.
Fructose 1,6-bisphosphate aldolase catalyzes the reversible cleavage of fructose 1,6-bisphosphate and fructose 1-phosphate to dihydroxyacetone phosphate and either glyceraldehyde 3-phosphate or glyceraldehyde, respectively. Catalysis involves the formation of a Schiff's base intermediate formed at the epsilon-amino group of Lys229. The existing apo-enzyme structure was refined using the crystallographic free-R-factor and maximum likelihood methods that have been shown to give improved structural results that are less subject to model bias. Crystals were also soaked with the natural substrate (fructose 1,6-bisphosphate), and the crystal structure of this complex has been determined to 2.8 A. The apo structure differs from the previous Brookhaven-deposited structure (1ald) in the flexible C-terminal region. This is also the region where the native and complex structures exhibit differences. The conformational changes between native and complex structure are not large, but the observed complex does not involve the full formation of the Schiff's base intermediate, and suggests a preliminary hydrogen-bonded Michaelis complex before the formation of the covalent complex.  相似文献   

16.
Suicide inactivation of fructose-1,6-bisphosphate aldolase   总被引:1,自引:0,他引:1  
2-Keto-4,4,4-trifluorobutyl phosphate (HTFP) was prepared from 3,3,3-trifluoropropionic acid. HTFP acts as an irreversible inhibitor of rabbit muscle aldolase: the loss of activity was time dependent and the inactivation followed a pseudo-first-order process. Values of 1.4 mM for the dissociation constant and 2.3 X 10(-2) s-1 for the reaction rate constant were determined. The kinetic constants do not depend on the enzyme concentration. No effect of thiols on the inactivation rate was detected. Only 1-2 mol of fluoride ions was liberated per inactivated subunit, indicative of a low partition ratio. Dihydroxyacetone phosphate protected the enzyme against the inactivation in a competitive manner, and glyceraldehyde 3-phosphate protected as if it formed a condensation product with HTPF. 5,5'-Dithiobis(2-nitrobenzoic acid) thiol titration showed the loss of one very reactive thiol group per enzyme subunit after inactivation. All those observations seem to agree with a suicide substrate inactivation of aldolase by HTPF.  相似文献   

17.
Rapid quench kinetic experiments on fructose 1,6-bisphosphatase demonstrate a stereospecificity for the alpha anomer of fructose 1,6-bisphosphate relative to the beta configuration. The beta anomer is only utilized after mutarotation to the alpha form in a process that is not enzyme catalyzed. Studies employing analogues of the acyclic keto configuration indicate that the keto form is utilized at a rate less than 5% that of the alpha anomer, a finding also confirmed by computer simulation of the rapid quench data. Chemical trapping experiments of the keto analogue, xylulose 1,5-bisphosphate, and the normal substrate suggest that interconversion of the acyclic and anomeric configurations is retarded by their binding to the enzyme. A hypothesis is advanced attributing substrate inhibition of fructose 1,6-bisphosphatase to possible binding of the keto species.  相似文献   

18.
Structure of aldolase, its interaction with nucleotides, the path of enzyme reaction and the scheme of range of conformational changes of this enzyme are presented. Retrospectives and perspectives of aldolase topography investigations are included.  相似文献   

19.
Action of cathepsin D on fructose-1,6-bisphosphate aldolase.   总被引:4,自引:1,他引:3       下载免费PDF全文
Cathepsin D inactivated aldolase at pH values between 4.2 and 5.2; the chloride, sulphate or iodide, but not citrate or acetate, salts of sodium or potassium accelerated the rate of inactivation. Cathepsin D cleaved numerous peptide bonds in the C-terminus of aldolase, but the major site of cleavage in this region was Leu354-Phe355. The most prominent peptide products of hydrolysis were Phe-Ile-Ser-Asn-His-Ala-Tyr and Phe-Ile-Ser-Asn-His. Up to 20 amino acids were removed from the C-terminus of aldolase, but no further degradation of native aldolase was observed. By contrast, extensive degradation of the 40 000-Mr subunit was observed after aldolase was denatured. The cathepsin D-inactivated aldolase cross-reacted with antibodies prepared against native aldolase and had the same thermodynamic stability as native aldolase, demonstrated by differential scanning calorimetry and fluorescence quenching of tryptophan residues. Furthermore, the cathepsin-modified and native forms of aldolase were both resistant to extensive proteolysis by other purified cellular proteinases and lysosomal extracts at pH values of 4.8-8.0.  相似文献   

20.
It was recently established that fructose-1,6-bisphosphate (FBP) aldolase (FBA) and tagatose-1,6-bisphosphate (TBP) aldolase (TBA), two class II aldolases, are highly specific for the diastereoselective synthesis of FBP and TBP from glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP), respectively. In this paper, we report on a FBA from the thermophile Thermus caldophilus GK24 (Tca) that produces both FBP and TBP from C(3) substrates. Moreover, the FBP:TBP ratio could be adjusted by manipulating the concentrations of G3P and DHAP. This is the first native FBA known to show dual diastereoselectivity among the FBAs and TBAs characterized thus far. To explain the behavior of this enzyme, the X-ray crystal structure of the Tca FBA in complex with DHAP was determined at 2.2A resolution. It appears that as a result of alteration of five G3P binding residues, the substrate binding cavity of Tca FBA has a greater volume than those in the Escherichia coli FBA-phosphoglycolohydroxamate (PGH) and TBA-PGH complexes. We suggest that this steric difference underlies the difference in the diastereoselectivities of these class II aldolases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号