首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of ribosomal subunits to endoplasmic reticulum membranes   总被引:11,自引:6,他引:5       下载免费PDF全文
The binding of ribosomes and ribosomal subunits to endoplasmic reticulum preparations of mouse liver was studied. (1) Membranes prepared from rough endoplasmic reticulum by preincubation with 0.5m-KCl and puromycin bound 60-80% of added 60S subunits and 10-15% of added 40S subunits. Membranes prepared with pyrophosphate and citrate showed less clear specificity for 60S subunits particularly when assayed at low ionic strengths. (2) Ribosomal 40S subunits bound efficiently to membranes only in the presence of 60S subunits. The reconstituted membrane-60S subunit-40S subunit complex was active in synthesis of peptide bonds. (3) No differences in binding to membranes were seen between subunits derived from free and from membrane-bound ribosomes. (4) It is concluded that the binding of ribosomes to membranes does not require that they be translating a messenger RNA, and that the mechanism whereby bound and free ribosomes synthesize different groups of proteins does not depend on two groups of ribosomes that differ in their ability to bind to endoplasmic reticulum.  相似文献   

2.
Previous studies showed that the glycoprotein (G) of vesicular stomatitis virus is synthesized in association with the endoplasmic reticulum (ER) membrane and that all G mRNA co-fractionates with ER membrane. Here, we show that treatment of infected cells with puromycin results in dissociation of G mRNA, and presumably the associated ribosomes, from the ER membrane. Even it extracts from treated cells are kept at low ionic strength (0.01 M KCl), over 80% of G mRNA is found unattached to membranes. There is no evidence for direct interaction of GmRNA with membranes; rather, the linkage apparently is mediated by the nascent G polypeptide.  相似文献   

3.
Wolfram syndrome is an autosomal recessive neuro-degenerative disorder associated with juvenile onset non-autoimmune diabetes mellitus and progressive optic atrophy. The disease has been attributed to mutations in the WFS1 gene, which codes for a protein predicted to possess 9-10 transmembrane segments. Little is known concerning the function of the WFS1 protein (wolframin). Endoglycosidase H digestion, immunocytochemistry, and subcellular fractionation studies all indicated that wolframin is localized to the endoplasmic reticulum in rat brain hippocampus and rat pancreatic islet beta-cells, and after ectopic expression in Xenopus oocytes. Reconstitution of wolframin from oocyte membranes into planar lipid bilayers demonstrated that the protein induced a large cation-selective ion channel that was blocked by Mg2+ or Ca2+. Inositol triphosphate was capable of activating channels in the fused bilayers that were similar to channel components induced by wolframin expression. Expression of wolframin also increased cytosolic calcium levels in oocytes. Wolframin thus appears to be important in the regulation of intracellular Ca2+ homeostasis. Disruption of this function may place cells at risk to suffer inappropriate death decisions, thus accounting for the progressive beta-cell loss and neuronal degeneration associated with the disease.  相似文献   

4.
5.
The effects of freezing of microsomes in liquid nitrogen and those of storage of microsomal suspensions at 2-4 degrees C and -3 - -5 degrees C for 24 hrs, on the enzymatic activities and hydrophobicity of membranes were studied. The hydrophobicity was determined by fluorescence of bound 1,8-anilino-naphthalene sulfonate. Rapid freezing of the microsomal suspension in liquid nitrogen followed by rapid warming did not change the hydrophobicity of the membranes, the rate of enzymatic lipid peroxidation, the level of cytochrome P-450 and the activity of NADH- and NADPH-cytochrome c reductase. A considerable decrease in the rate of enzymatic lipid peroxidation and membrane hydrophobicity was observed in the microsomes stored for 24 hrs at 2-4 degrees C. The 24-hr storage at -3 - -5 degrees C with subsequent thawing resulted in a rapid aggregation of the microsomes.  相似文献   

6.
7.
8.
Summary The interactions of various preparations of endoplasmic reticulum membranes and polysomes have been studied by means of a sandwich sucrose gradient that clearly isolates free ribosomes, smooth endoplasmic reticulum (S.E.R.) and rough endoplasmic reticulum (R.E.R.) from the microsomal fraction of rat liver homogenates. Reconstructed rough membranes separate well from the native R.E.R. but occupy the same position along the gradients as the S.E.R. and the rough membranes, stripped of their ribosomes by means of LiCl. Native R.E.R. and S.E.R. do not bind any added labeled polysomes at 0°C; previous treatment with LiCl does not modify the behavior of S.E>R. The presence of cell sap during the binding reaction does not increase polysome fixation by stripped-rough membranes but protects in some way the polysomes and preserves all their original functional capacity of amino acid incorporation into protein.  相似文献   

9.
10.
《Experimental mycology》1987,11(3):197-205
We have determined the carbohydrate and lipid contents of vacuolar membranes fromNeurospora crassa, and have compared them to mitochondrial membranes, endoplasmic reticulum, and plasma membranes. These four membrane fractions were clearly distinct from each other in polypeptide composition, as judged by polyacrylamide gel electrophoresis. The vacuolar membranes proved unusual in two respects: the contained very high amounts of carbohydrate and were the only membranes with significant levels of phosphatidylserine. As in other eucaryotic cells, the mitochondrial membranes were unique in having high amounts of cardiolipin but virtually no sterol. Although the endoplasmic reticulum and plasma membranes were qualitatively similar to each other, the plasma membranes could be distinguished by a higher carbohydrate content, whereas the endoplasmic reticulum had a characteristically high ratio of phosphatidylcholine to phosphatidylethanolamine. The fatty acid compositions of all four membranes were similar, except that mitochondrial membranes contained about half as much saturated fatty acids as the other three fractions.  相似文献   

11.
Intracellular trafficking is not mediated exclusively by vesicles. Additional, non-vesicular mechanisms transport material, in particular small molecules such as lipids and Ca(2+) ions, from one organelle to another. This transport occurs at narrow cytoplasmic gaps called membrane contact sites (MCSs), at which two organelles come into close apposition. Despite the conservation of these structures throughout evolution, little is known about this transport, largely because of a lack of knowledge of almost all molecular components of MCSs. Recently, this situation has started to change because the structural proteins that bridge an MCS are now known in a single case, and proteins implicated in lipid trafficking have been localized to MCSs. In the light of these advances, I hypothesize that the endoplasmic reticulum has a central role in the trafficking of lipids and ions by forming a network of MCSs with most other intracellular organelles.  相似文献   

12.
The endoplasmic reticulum from Neurospora crassa was identified by monitoring the activity of the putative enzyme marker phosphatidylcholine glyceride transferase. After differential centrifugation of a cell homogenate, phosphatidylcholine glyceride transferase activity initially copurified with plasma membrane H+-ATPase. However, isopycnic centrifugation of the whole-cell homogenate on a linear sucrose gradient separated the two enzyme activities into different fractions. The lighter membrane fraction exhibited characteristics that have been associated with the endoplasmic reticulum in other organisms: (i) the inclusion of magnesium caused this light membrane fraction to shift to a higher density on the gradient; (ii) it was highly enriched in cytochrome c reductase, an endoplasmic reticulum marker in other systems; and (iii) the morphology of the light fraction with and without added magnesium was clearly distinguishable from that of the plasma membrane fraction by electron microscopy. A reinvestigation of the location of chitin synthetase confirmed its association with the plasma membrane fraction even after separation of the lighter fractions.  相似文献   

13.
The transbilayer movement of short-chain spin-labeled and fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) phospholipid analogs in rat liver microsomes is measured by stopped-flow mixing of labeled microsomes with bovine serum albumin (BSA) solution. Extraction of analogs from the outer leaflet of microsomes to BSA can be directly monitored in conjunction with electron paramagnetic resonance or fluorescence spectroscopy by taking advantage of the fact that the signal of spin-labeled or fluorescent analogs bound to BSA is different from that of the analogs inserted into membranes. From the signal kinetics, the transbilayer movement and the distribution of analogs in microsomal membranes can be derived provided the extraction of analogs by BSA is much faster in comparison to the transbilayer movement of analogs. Half-times of the back-exchange for spin-labeled and fluorescent analogs were <3.5 and <9.5 s, respectively. The unprecedented time resolution of the assay revealed that the transbilayer movement of spin-labeled analogs is much faster than previously reported. The half-time of the movement was about 16 s or even less at room temperature. Transmembrane movement of NBD-labeled analogs was six- to eightfold slower than that of spin-labeled analogs.  相似文献   

14.
15.
The effect of pro-oxidant (ions of iron) and antioxidants (alpha-tocopherol, propylgallate) on hydroxylation of polycyclic hydrocarbon benz(a)-pyrene and the effect of hydroxylation process on lipid peroxidation have been studied. The role of allyl radicals formed in the fatty acid chains is discussed. The binding of oxygen radicals (formation of peroxy radicals) is regarded only as on of the possible reactions of the radical utilization. It is assumed that other reactions involving lipid (allyl) radicals, in particular, hydroxylation of benz(alpha)pyrene may occur in microsomal membranes.  相似文献   

16.
The fluidity and lipid composition of microsomal membranes have been studied at the earliest stage of liver regeneration in the rat (16 h after partial hepatectomy). The physical properties of the membranes have been measured by electron paramagnetic resonance analysis of freedom of motion of lipid and protein analogue probes. The fluidity of the hydrophobic core and of the microenvironment surrounding membrane proteins appeared to be modified, while no modifications were detectable in the fluidity at the surface or in bulk biochemical composition. The kinetic parameters of two enzymes of the endoplasmic reticulum (3-hydroxy-3-methyl glutaryl coenzyme A reductase and glucose-6-phosphatase) which are differentially localized within the membrane bilayer, were also measured. The temperature dependence of both enzymes was modified in the proliferating system, but these modifications were not consistent with the changes detectable in their specific activity. A model to explain the changes that occur in this proliferating membrane system is presented.  相似文献   

17.
The transbilayer movement of glycosphingolipids has been characterized in Golgi, ER, plasma, and model membranes using spin-labeled and fluorescent analogues of the monohexosylsphingolipids glucosylceramide and galactosylceramide and of the dihexosylsphingolipid lactosylceramide. In large unilamellar lipid vesicles, monohexosylsphingolipids underwent a slow transbilayer diffusion (half-time between 2 and 5 h at 20 degrees C). Similarly, the inward redistribution of these sphingolipids in the plasma membrane of the hepatocyte-like cell line HepG2 and of erythrocytes was slow. However, in rat liver ER and Golgi membranes, we found a rapid transbilayer movement of spin-labeled monohexosylsphingolipids (half-time of approximately 3 min at 20 degrees C), which suggests the existence of a monohexosylsphingolipid flippase. The transbilayer movement of glucosylceramide in the Golgi and the ER displayed a saturable behavior, was inhibited by proteolysis, did not require Mg-ATP, and occurs in both directions. Treatment with DIDS inhibited the flip-flop of glucosylceramide but not that of phosphatidylcholine. These data suggest that the transbilayer movement of monoglucosylceramide in the ER and in the Golgi involves a protein that could be distinct from that previously evidenced for glycerophospholipids in the ER. In vivo, transbilayer diffusion should promote a symmetric distribution of monohexosylsphingolipids which are synthesized in the cytosolic leaflet. This should allow glucosylceramide rapid access to the lumenal leaflet where it is converted to lactosylceramide. No significant transbilayer movement of lactosylceramide occurred in both artificial and natural membranes over 1 h. Thus, lactosylceramide, in turn, is unable to diffuse to the cytosolic leaflet and remains at the lumenal leaflet where it undergoes the subsequent glycosylations.  相似文献   

18.
The endoplasmic reticulum (ER) and Golgi have robust bidirectional traffic between them and yet form distinct membrane compartments. Membrane tubules are pulled from large aggregates of ER or Golgi by microtubule motors to form ER tubulovesicular networks or Golgi tubules both in vivo and in vitro. The physical properties of membranes are critical for membrane traffic and organelle morphology. For example, tension applied to membranes can create tethers, drive membrane flow, and set the diameter of the tubules. Here, we formed ER and Golgi membrane networks in vitro and used optical tweezers to measure directly, for the first time, the membrane tensions of these organelles to clarify the possible role of tension in membrane flow. We report that higher forces are needed to form tethers from ER (18.6 +/- 2.8 pN) than from Golgi (11.4 +/- 1.4 pN) membrane tubules in vitro. Since ER tubules are smaller in diameter than Golgi tubules, it follows that Golgi networks have a lower tension than ER. The lower tension of the ER could be an explanation of how Golgi tubules can be rapidly drawn into the ER by tension-driven flow after fusion, as is observed in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号