共查询到20条相似文献,搜索用时 0 毫秒
1.
Schmidt-Arras DE Böhmer A Markova B Choudhary C Serve H Böhmer FD 《Molecular and cellular biology》2005,25(9):3690-3703
Constitutive activation of receptor tyrosine kinases (RTKs) is a frequent event in human cancer cells. Activating mutations in Fms-like tyrosine kinase 3 (FLT-3), notably, internal tandem duplications in the juxtamembrane domain (FLT-3 ITD), have been causally linked to acute myeloid leukemia. As we describe here, FLT-3 ITD exists predominantly in an immature, underglycosylated 130-kDa form, whereas wild-type FLT-3 is expressed predominantly as a mature, complex glycosylated 150-kDa molecule. Endogenous FLT-3 ITD, but little wild-type FLT-3, is detectable in the endoplasmic reticulum (ER) compartment. Conversely, cell surface expression of FLT-3 ITD is less efficient than that of wild-type FLT-3. Inhibition of FLT-3 ITD kinase by small molecules, inactivating point mutations, or coexpression with the protein-tyrosine phosphatases (PTPs) SHP-1, PTP1B, and PTP-PEST but not RPTPalpha promotes complex glycosylation and surface localization. However, PTP coexpression has no effect on the maturation of a surface glycoprotein of vesicular stomatitis virus. The maturation of wild-type FLT-3 is impaired by general PTP inhibition or by suppression of endogenous PTP1B. Enhanced complex formation of FLT-3 ITD with the ER-resident chaperone calnexin indicates that its retention in the ER is related to inefficient folding. The regulation of RTK maturation by tyrosine phosphorylation was observed with other RTKs as well, defines a possible role for ER-resident PTPs, and may be related to the altered signaling quality of constitutively active, transforming RTK mutants. 相似文献
2.
Purinergic Signalling - 相似文献
3.
beta2-Chimaerin, an intracellular receptor for the second messenger diacylglycerol and phorbol esters, is a GTPase-activating protein (GAP) specific for Rac. beta2-Chimaerin negatively controls many Rac-dependent pathophysiological events including tumor development. However, the regulatory mechanism of beta2-chimaerin remains largely unknown. Here we report that beta2-chimaerin is tyrosine-phosphorylated by Src-family kinases (SFKs) upon cell stimulation with epidermal growth factor (EGF). Mutational analysis identified Tyr-21 in the N-terminal regulatory region as a major phosphorylation site. Intriguingly, the addition of SFK inhibitor and the replacement of Tyr-21 with Phe (Y21F) markedly enhanced Rac-GAP activity of beta2-chimaerin in EGF-treated cells. Moreover, the Y21F mutant inhibited integrin-dependent cell spreading, in which Rac1 plays a critical role, more strongly than wild-type beta2-chimaerin. These results suggest Tyr-21 phosphorylation as a novel, SFK-dependent mechanism that negatively regulates beta2-chimaerin Rac-GAP activity. 相似文献
4.
This study was designed to explore the effect of P2X7 receptor (P2X7R) activation on the expression of p38 MAP kinase (p38 MAPK) enzyme in hippocampal slices of wild-type (WT) and P2X7R−/− mice using the Western blot technique and to clarify its role in P2X7 receptor mediated [3H]glutamate release. ATP (1 mM) and the P2X7R agonist BzATP (100 μM) significantly increased p38 MAPK phosphorylation in WT mice, and these effects were absent in the hippocampal slices of P2X7R−/− mice. Both ATP- and BzATP-induced p38 MAPK phosphorylations were sensitive to the p38 MAP kinase inhibitor, SB203580 (1 μM). ATP elicited [3H]glutamate release from hippocampal slices, which was significantly attenuated by SB203580 (1 μM) but not by the extracellular signal-regulated kinase (ERK1/2) inhibitor, PD098095 (10 μM). Consequently, we suggest that P2X7Rs and p38 MAPK are involved in the stimulatory effect of ATP on glutamate release in the hippocampal slices of WT mice. 相似文献
5.
P2X2 receptor channel, a homotrimer activated by the binding of extracellular adenosine triphosphate (ATP) to three intersubunit ATP-binding sites (each located ∼50 Å from the ion permeation pore), also shows voltage-dependent activation upon hyperpolarization. Here, we used tandem trimeric constructs (TTCs) harboring critical mutations at the ATP-binding, linker, and pore regions to investigate how the ATP activation signal is transmitted within the trimer and how signals generated by ATP and hyperpolarization converge. Analysis of voltage- and [ATP]-dependent gating in these TTCs showed that: (a) Voltage- and [ATP]-dependent gating of P2X2 requires binding of at least two ATP molecules. (b) D315A mutation in the β-14 strand of the linker region connecting the ATP-binding domains to the pore-forming helices induces two different gating modes; this requires the presence of the D315A mutation in at least two subunits. (c) The T339S mutation in the pore domains of all three subunits abolishes the voltage dependence of P2X2 gating in saturating [ATP], making P2X2 equally active at all membrane potentials. Increasing the number of T339S mutations in the TTC results in gradual changes in the voltage dependence of gating from that of the wild-type channel, suggesting equal and independent contributions of the subunits at the pore level. (d) Voltage- and [ATP]-dependent gating in TTCs differs depending on the location of one D315A relative to one K308A that blocks the ATP binding and downstream signal transmission. (e) Voltage- and [ATP]-dependent gating does not depend on where one T339S is located relative to K308A (or D315A). Our results suggest that each intersubunit ATP-binding signal is directly transmitted on the same subunit to the level of D315 via the domain that contributes K308 to the β-14 strand. The signal subsequently spreads equally to all three subunits at the level of the pore, resulting in symmetric and independent contributions of the three subunits to pore opening. 相似文献
6.
To explore the role of highly conserved tyrosine residues in the putative cytoplasmic domains of the seven-transmembrane G protein-coupled opioid receptors, we expressed the rat kappa-opioid receptor (KOR) in Xenopus oocytes and then activated the intrinsic insulin receptor tyrosine kinase. KOR activation by the agonist produced a strong increase in potassium current through coexpressed G protein-gated inwardly rectifying potassium channels (K(IR)3). Brief pretreatment with insulin caused a 60% potentiation of the KOR-activated response. The insulin-induced increase in kappa-opioid response was blocked by the tyrosine kinase inhibitor genistein. In contrast, insulin had no effect on the basal activity of K(IR)3, suggesting that KOR is the target of the tyrosine kinase cascade. Mutation of tyrosine residues to phenylalanines in either the first or second intracellular loop of KOR to produce KOR(Y87F) and KOR(Y157F) had no effect on either the potency or maximal effect of. However, neither KOR(Y87F)- nor KOR(Y157F)-mediated responses were potentiated by insulin treatment. Insulin pretreatment shifted the dose-response curve for activation of KOR by increasing the maximal response without changing the EC(50) value for. These results suggest that insulin increases the efficacy of KOR activation by phosphorylating two tyrosine residues in the first and second intracellular loops of the receptor. Thus, tyrosine phosphorylation may provide an important mechanism for modulation of G protein-coupled receptor signaling. 相似文献
7.
Purinergic Signalling - 相似文献
8.
Macrophages are unique innate immune cells that play an integral role in the defense of the host by virtue of their ability to recognize, engulf, and kill pathogens while sending out danger signals via cytokines to recruit and activate inflammatory cells. It is becoming increasingly clear that purinergic signaling events are essential components of the macrophage response to pathogen challenges and disorders such as sepsis may be, at least in part, regulated by these important sensors. The activation of the P2X7 receptor is a powerful event in the regulation of the caspase-1 inflammasome. We provide evidence that the inflammasome activation requires “priming” of macrophages prior to ATP activation of the P2X7R. Inhibition of the inflammasome activation by the tyrosine kinase inhibitor, AG126, suggests regulation by phosphorylation. Finally, the P2X7R may also be activated by other elements of the host response such as the antimicrobial peptide LL-37, which adds a new, physiologically relevant agonist to the P2X7R pathway. Therapeutic approaches to inflammation and sepsis will certainly be enhanced by an increased understanding of how purinergic receptors modulate the inflammasomes. 相似文献
9.
Sorge RE Trang T Dorfman R Smith SB Beggs S Ritchie J Austin JS Zaykin DV Vander Meulen H Costigan M Herbert TA Yarkoni-Abitbul M Tichauer D Livneh J Gershon E Zheng M Tan K John SL Slade GD Jordan J Woolf CJ Peltz G Maixner W Diatchenko L Seltzer Z Salter MW Mogil JS 《Nature medicine》2012,18(4):595-599
Chronic pain is highly variable between individuals, as is the response to analgesics. Although much of the variability in chronic pain and analgesic response is heritable, an understanding of the genetic determinants underlying this variability is rudimentary. Here we show that variation within the coding sequence of the gene encoding the P2X7 receptor (P2X7R) affects chronic pain sensitivity in both mice and humans. P2X7Rs, which are members of the family of ionotropic ATP-gated receptors, have two distinct modes of function: they can function through their intrinsic cationic channel or by forming nonselective pores that are permeable to molecules with a mass of up to 900 Da. Using genome-wide linkage analyses, we discovered an association between nerve-injury-induced pain behavior (mechanical allodynia) and the P451L mutation of the mouse P2rx7 gene, such that mice in which P2X7Rs have impaired pore formation as a result of this mutation showed less allodynia than mice with the pore-forming P2rx7 allele. Administration of a peptide corresponding to the P2X7R C-terminal domain, which blocked pore formation but not cation channel activity, selectively reduced nerve injury and inflammatory allodynia only in mice with the pore-forming P2rx7 allele. Moreover, in two independent human chronic pain cohorts, a cohort with pain after mastectomy and a cohort with osteoarthritis, we observed a genetic association between lower pain intensity and the hypofunctional His270 (rs7958311) allele of P2RX7. Our findings suggest that selectively targeting P2X7R pore formation may be a new strategy for individualizing the treatment of chronic pain. 相似文献
10.
Proteomic and functional evidence for a P2X7 receptor signalling complex. 总被引:16,自引:0,他引:16
下载免费PDF全文

P2X receptors are ATP-gated ion channels in the plasma membrane, but activation of the P2X7 receptor also leads to rapid cytoskeletal re-arrangements such as membrane blebbing. We identified 11 proteins in human embryonic kidney cells that interact with the rat P2X7 receptor, by affinity purification followed by mass spectroscopy and immunoblotting [laminin alpha3, integrin beta2, beta-actin, alpha-actinin, supervillin, MAGuK, three heat shock proteins, phosphatidylinositol 4-kinase and receptor protein tyrosine phosphatase-beta (RPTPbeta)]. Activation of the P2X7 receptor resulted in its dephosphorylation. Whole-cell recordings from cells expressing P2X7 receptors showed that this markedly reduced subsequent ionic currents and it also slowed membrane bleb formation. By mutagenesis, we identified Tyr(343) in the putative second transmembrane domain as the site of phosphorylation. Thus, we have identified a P2X7 receptor signalling complex, some members of which may initiate cytoskeletal rearrangements following receptor activation. Others, such as RPTPbeta, might exert feedback control of the channel itself through its dephosphorylation. 相似文献
11.
León D Sánchez-Nogueiro J Marín-García P Miras-Portugal MA 《Neurochemistry international》2008,52(6):1148-1159
The present work reports that activation of P2X7 receptor induces synaptic vesicle release in granule neurons and phosphorylation of synapsin-I by calcium-calmodulin-dependent protein kinase II (CaMKII), which in turn modulates secretory event. ATP, in absence of magnesium, induced a concentration-dependent glutamate release with an EC50 value of 1.95 microM. The involvement of P2X7 receptor was suggested when maximal secretory response was significantly reduced by the selective P2X7 antagonist Brilliant Blue G (BBG; 100 nM) and abolished by removing extracellular Ca2+. The involvement of P2X7 receptor on synaptic vesicle release was confirmed by measuring the release of FM 1-43 dye. In this case, pharmacological activation of P2X7 was achieved with the more selective agonist 2'-3'-o-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP; 100 microM) showing a significant FM 1-43 release that was blocked by BBG (100 nM), by Zn2+ ions (100 microM), both P2X7 blockers, but not by suramin (100 microM), antagonist of P2X1, P2X2, P2X3 and P2X5. In addition, BzATP, through P2X7 receptor activation, significantly increased the phosphorylation of synapsin-I, the main presynaptic target of CaMKII. Both effects mediated by BzATP were inhibited by the CaMKII inhibitors KN-62 (10 microM) and KN-93 (10 microM). These results suggest, therefore, that Ca2+ entrance mediated by P2X7 receptor induces glutamate release and in parallel synapsin-I phosphorylation. 相似文献
12.
Protein kinase C regulation of P2X3 receptors is unlikely to involve direct receptor phosphorylation
P2X receptors (P2XR) act as ligand-gated, cation-selective ion channels. A common characteristic of all seven P2X family members is a conserved consensus sequence for protein kinase C (PKC)-mediated phosphorylation in the intracellular N-terminus of the receptor. Activation of PKC has been shown to enhance currents through P2X(3)R, however the molecular mechanism of this potentiation has not been elucidated. In the present study we show that activation of PKC can enhance adenosine triphosphate (ATP)-mediated Ca(2+) signals approximately 2.5-fold in a DT-40 3KO cell culture system (P2 receptor null) transiently overexpressing P2X(3)R. ATP-activated cation currents were also directly studied using whole cell patch clamp techniques in HEK-293 cells, a null background for ionotropic P2XR. PKC activation resulted in a approximately 8.5-fold enhancement of ATP-activated current in HEK-293 cells transfected with P2X(3)R cDNA, but had no effect on currents through either P2X(4)R- or P2X(7)R-transfected cells. P2X(3)R-transfected HEK-293 cells were metabolically labeled with (32)PO(4)(-) and following treatment with phorbol-12-myristate-13-acetate (PMA) and subsequent immunoprecipitation, there was no incorporation of (32)PO(4)(-) in bands corresponding to P2X(3)R. Similarly, in vitro phosphorylation experiments, utilizing purified PKC catalytic subunits failed to establish phosphorylation of either P2X(3)R or P2X(3)R-EGFP. These data indicate that PKC activation can enhance both the Ca(2+) signal as well as the cation current through P2X(3)R, however it appears that the regulation is unlikely to be a result of direct phosphorylation of the receptor. 相似文献
13.
Stephen J. Fuller Leanne Stokes Kristen K. Skarratt Ben J. Gu James S. Wiley 《Purinergic signalling》2009,5(2):257-262
The P2RX7 gene is highly polymorphic, and many single nucleotide polymorphisms (SNPs) underlie the wide variation observed in P2X7 receptor responses. We review the discovery of those non-synonymous SNPs that affect receptor function and compare their frequencies in different ethnic populations. Analysis of pairwise linkage disequilibrium (LD) predicts a limited range of haplotypes. The strong LD between certain functional SNPs provides insight into published studies of the association between SNPs and human disease. 相似文献
14.
Figueroa C Tarras S Taylor J Vojtek AB 《The Journal of biological chemistry》2003,278(48):47922-47927
We demonstrate that POSH, a scaffold for the JNK signaling pathway, binds to Akt2. A POSH mutant that is unable to bind Akt2 (POSH W489A) exhibits enhanced-binding to MLK3, and this increase in binding is accompanied by increased activation of the JNK signaling pathway. In addition, we show that the association of MLK3 with POSH is increased upon inhibition of the endogenous phosphatidylinositol 3-kinase/Akt signaling pathway. Thus, the assembly of an active JNK signaling complex by POSH is negatively regulated by Akt2. Further, the level of Akt-phosphorylated MLK3 is reduced in cells expressing the Akt2 binding domain of POSH, which acts as a dominant interfering protein. Taken together, our results support a model in which Akt2 binds to a POSH-MLK-MKK-JNK complex and phosphorylates MLK3; phosphorylation of MLK3 by Akt2 results in the disassembly of the JNK complex bound to POSH and down-regulation of the JNK signaling pathway. 相似文献
15.
Purinergic Signalling - Chronic pain is caused by cellular damage with an obligatory inflammatory component. In response to noxious stimuli, high levels of ATP leave according to their... 相似文献
16.
Gunosewoyo H Guo JL Bennett MR Coster MJ Kassiou M 《Bioorganic & medicinal chemistry letters》2008,18(13):3720-3723
Polycyclic amides 2 and 5-9 were successfully synthesised and their lipophilicity profiles were evaluated using reverse-phase HPLC. All synthesised compounds possessed P2X7R antagonistic properties when tested on rat spinal cord microglia cells. Extensive screening for binding to other neuroreceptor subtypes demonstrated their P2X7 selectivity. 相似文献
17.
Synaptic P2X receptors 总被引:11,自引:0,他引:11
Over the past two years, ATP has clearly been shown to act as a co-transmitter with GABA, glycine and probably glutamate in the central nervous system. Our understanding of the ATP-gated P2X receptors is progressing rapidly, and the pharmacology, stoichiometry and subunit combinations of heteropolymeric P2X channels has been substantially elucidated. 相似文献
18.
Q Hao B Samten HL Ji ZJ Zhao H Tang 《American journal of physiology. Cell physiology》2012,303(5):C548-C553
Protein tyrosine phosphorylation is a fundamental mechanism for diverse physiological processes, which is regulated by protein tyrosine kinases and protein tyrosine phosphatases (PTPs). In this study, we searched for protein substrates of PTP-MEG2 (also called PTPN9), a nonreceptor PTP, and investigated its function in endothelial cells (ECs). By using a PTP-MEG2 substrate-trapping DA mutant, we found that a couple of tyrosine-phosphorylated proteins were associated with the DA mutant but not wild-type PTP-MEG2 and that the association was enhanced by vascular endothelial growth factor (VEGF) in ECs. We further found that VEGF receptor 2 (VEGFR2) was coimmunopricipitated with the DA mutant but not wild-type PTP-MEG2. The VEGF-induced phosphorylation of VEGFR2 on Tyr1175, a critical autophosphorylation site for VEGFR2 signaling, was inhibited 70% by overexpression of wild-type PTP-MEG2 but was enhanced (2.2-fold) by the DA mutant of PTP-MEG2. We also found that PTP-MEG2 DA mutant preferentially associated with Janus kinase 1 (JAK1) but not with other JAK kinases (Tyk2 and JAK2) present in ECs and regulated JAK1 tyrosine phosphorylation. Lastly, the VEGF-induced signal transduction and the production of interleukin (IL)-6 were significantly enhanced by PTP-MEG2 knockdown in ECs, whereas the VEGF-induced IL-6 production was inhibited 50% by PTP-MEG2 overexpression. Thus we have indentified VEGFR2 as a PTP-MEG2 substrate, and our findings indicate that PTP-MEG2 is a negative regulator of VEGFR2 signaling and function in ECs. 相似文献
19.
Background
The NAD+-dependent histone deacetylases, known as "sirtuins", participate in a variety of processes critical for single- and multi-cellular life. Recent studies have elucidated the importance of sirtuin activity in development, aging, and disease; yet, underlying mechanistic pathways are not well understood. Specific sirtuins influence chromatin structure and gene expression, but differences in their pathways as they relate to distinct chromatin functions are just beginning to emerge. To further define the range of global chromatin changes dependent on sirtuins, unique biological features of the ciliated protozoan Tetrahymena thermophila can be exploited. This system offers clear spatial and temporal separation of multiple whole genome restructuring events critical for the life cycle.Results
Inhibition with nicotinamide revealed that sirtuin deacetylase activity in Tetrahymena cells promotes chromatin condensation during meiotic prophase, differentiation of heterochromatin from euchromatin during development, and chromatin condensation/degradation during programmed nuclear death. We identified a class I sirtuin, called Thd14, that resides in mitochondria and nucleoli during vegetative growth, and forms a large sub-nuclear aggregate in response to prolonged cell starvation that may be peripherally associated with nucleoli. During sexual conjugation and development Thd14 selectively concentrates in the parental nucleus prior to its apoptotic-like degradation.Conclusions
Sirtuin activity is important for several functionally distinct events requiring global chromatin condensation. Our findings suggest a novel role for sirtuins in promoting programmed pycnosis by acting on chromatin destined for degradation. The sirtuin Thd14, which displays physiological-dependent differential localization within the nucleus, is a candidate for a chromatin condensation enzyme that is coupled to nuclear degradation. 相似文献20.
Kawamura H Aswad F Minagawa M Govindarajan S Dennert G 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(4):2152-2160
Adenine nucleotides induce danger signals in T cells via purinergic receptors, raising the question whether they exert similar effects on innate immunity. Here we show that micromolar concentrations of nicotinamide adenine dinucleotide (NAD) induce a rapid increase of annexin V staining in NKT cells in vitro, a response that requires expression of P2X(7)Rs. Consistent with this result, treatment of mice with NAD causes a temporary decrease of NKT cells in the liver and protects from Con A- and alpha-galactosylceramide-induced hepatitis, both of which require functional NKT cells. Resistance to liver injury is associated with decreased cytokine production by NKT cells in NAD-treated mice. In contrast, when NAD is injected into Con A- or alpha-galactosylceramide-primed mice, liver injury is exacerbated and cytokine production by NKT cells is increased. This effect is caused by P2X(7)R-mediated stimulation of activated NKT cells. In agreement, mice lacking P2X(7)Rs on lymphocytes suffer reduced liver injury, and animals lacking ADP-ribosyltransferase, the enzyme that uses NAD to attach ADP-ribosyl groups to cell surfaces, are also resistant to Con A-induced hepatitis. These results prompt the conclusion that engagement of P2X(7)Rs on NKT cells inhibits naive, while stimulating activated cells, resulting in suppression or stimulation of autoimmune hepatitis. 相似文献