首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Influenza virus enters cells by endocytosis, and requires the low pH of the late endosome for successful infection. Here, we investigated the requirements for sorting into the multivesicular body pathway of endocytosis. We show that treatment of host cells with the proteasome inhibitors MG132 and lactacystin directly affects the early stages of virus replication. Unlike other viruses, such as retroviruses, influenza virus budding was not affected. The requirement for proteasome function was not shared by two other pH-dependent viruses: Semliki Forest virus and vesicular stomatitis virus. With MG132 treatment, incoming influenza viruses were retained in endosomes that partially colocalized with mannose 6-phosphate receptor, but not with classical markers of early or late endosomes. Colocalization was also observed with Rme-1, which is part of the recycling pathway of endocytosis. In addition, influenza virus entry was dependent on the vacuolar protein sorting pathway, as over-expression of dominant-negative hVPS4 caused arrest of viruses in endosome-like populations that partially colocalized with the hVPS4 protein. Overall, we conclude that influenza virus selectively requires the ubiquitin/vacuolar protein sorting pathway for entry into host cells, and that it must communicate with a specific cellular machinery for intracellular sorting during the initial phase of virus infection.  相似文献   

2.
3.
4.
The herpes simplex virus type 1 (HSV-1) ICP27 protein is an immediate-early or alpha protein which is essential for the optimal expression of late genes as well as the synthesis of viral DNA in cultures of Vero cells. Our specific goal was to characterize the replication of a virus incapable of synthesizing ICP27 in cultured human cells. We found that infection with an HSV-1 ICP27 deletion virus of at least three separate strains of human cells did not produce immediate-early or late proteins at the levels observed following wild-type virus infections. Cell morphology, chromatin condensation, and genomic DNA fragmentation measurements demonstrated that the human cells died by apoptosis after infection with the ICP27 deletion virus. These features of the apoptosis were identical to those which occur during wild-type infections of human cells when total protein synthesis has been inhibited. Vero cells infected with the ICP27 deletion virus did not exhibit any of the features of apoptosis. Based on these results, we conclude that while HSV-1 infection likely induced apoptosis in all cells, viral evasion of the response differed among the cells tested in this study.  相似文献   

5.
It has previously been shown that human cytomegalovirus (HCMV) can exert immunosuppressive effects, and it has been suggested that these may be mediated by monocytes, although the mechanism is unclear. We showed that infection of human monocytes with the AD169 strain of HCMV abrogates their production of interleukin 1 (IL-1) activity. This was associated with the release from infected monocytes of an inhibitor of IL-1 activity which was also released after HCMV infection of the U937 macrophage-like cell line. The inhibitor of IL-1 activity is a protein with an apparent molecular weight of ca. 95,000. This action of HCMV strain AD169 was virus specific and required infectious virus but occurred without virus replication or detectable expression of viral proteins. This effect may account, at least in part, for the previously observed immunosuppressive properties of HCMV.  相似文献   

6.
Indirect immunostaining of avian reovirus S1133-infected L-cell monolayers showed that most of the cells can support viral replication. However, the number of cells in which the virus was actually replicating depended on the multiplicity of virus infection. The presence of actinomycin D during infection increased viral protein synthesis, viral growth, and the number of actively infected cells at late infection times. The antibiotic elicited these effects by triggering viral replication in cells that already contained unproductive cytoplasmic virus but that would not get productively infected in the absence of the drug. From these results, we propose a model for the interaction between L cells and avian reovirus S1133 in which viral versus host mRNA competition for the translational machinery determines the fate of the virus infection.  相似文献   

7.
8.
As an enveloped virus, replication of human cytomegalovirus (HCMV) is dependent on interaction with cellular membrane systems. Its final envelopment occurs into intracellular membranes prior to its secretion. However the mechanisms underlying these processes are poorly understood. Here, we show that HCMV infection induces expression of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 3 (STX3), a component of the cellular machinery for membrane fusion. STX3 was located at the plasma membrane and at the assembly site where it was found associated with virus wrapping membranes by immunogold labelling. Depletion of STX3 using RNA interference reduced HCMV production, while expression of a STX3 construct resistant to RNAi inhibition enhanced virus production. Ultrastructural examination of the assembly site in HCMV-infected STX3-depleted cells showed fewer mature virions and more viruses undergoing final envelopment. In contrast, silencing of STX3 did not affect herpes simplex virus type 1 production. The mechanism through which STX3 affected HCMV morphogenesis likely involved late endosomes/lysosomes since STX3 depletion reduced the expression of lysosomal membrane glycoproteins. Our results demonstrate a function for STX3 in HCMV morphogenesis, and unravel a new role for this SNARE protein in late endosomes/lysosomes compartments.  相似文献   

9.
Gamma interferon (IFN-gamma)-induced nitric oxide synthase (iNOS) and nitric oxide (NO) production in the murine macrophage-like RAW 264.7 cells were previously shown to inhibit the replication of the poxviruses vaccinia virus (VV) and ectromelia virus and herpes simplex virus type 1. In the current study, we performed biochemical analyses to determine the stage in the viral life cycle blocked by IFN-gamma-induced NO. Antibodies specific for temporally expressed viral proteins, a VV-specific DNA probe, and transmission electron microscopy were used to show that the cytokine-induced NO inhibited late protein synthesis, DNA replication, and virus particle formation but not expression of the early proteins analyzed. Essentially similar results were obtained with hydroxyurea and cytosine arabinoside, inhibitors of DNA replication. Enzymatically active iNOS was detected in the lysates of IFN-gamma-treated but not in untreated RAW 264.7 cells. The IFN-gamma-treated RAW 264.7 cells which express iNOS not only were resistant to productive infection but also efficiently blocked the replication of VV in infected bystander cells of epithelial origin. This inhibition was arginine dependent, correlated with nitric production in cultures, and was reversible by the NOS inhibitor N omega-monomethyl-L-arginine.  相似文献   

10.
The gene encoding the 35-kDa protein (35k gene) located within the EcoRI-S genome fragment of Autographa californica nuclear polyhedrosis virus (AcMNPV) is transcribed early in infection. To examine its function(s) with respect to virus multiplication, we introduced specific mutations of this early gene into the AcMNPV genome. In Spodoptera frugiperda (SF21) culture, deletion of the 35K gene reduced yields of extracellular, budded virus from 200- to 15,000-fold, depending on input multiplicity. Mutant replication was characterized by dramatically diminished levels of late and very late (occlusion-specific) virus gene expression and premature cell lysis. In contrast, 35K gene inactivation had no effect on virus growth in cultured Trichoplusia ni (TN368) cells. Insertion of the 35K gene and its promoter at an alternate site (polyhedrin locus) restored virus replication to wild-type levels in SF21 culture. Subsequent insertion of 4 bp after codon 81 generated a frameshift mutant that exhibited a virus phenotype indistinguishable from that of 35K deletion mutants and demonstrated that the 35K gene product (p35) was required for wild-type replication in SF21 cells. Mutagenesis also indicated that the C terminus of p35, including the last 12 residues, was required for function. In complementation assays, wild-type virus bearing a functional 35K gene allele stimulated all aspects of 35K null mutant replication and suppressed early cell lysis. These findings indicated that p35 is a trans-dominant factor that facilitates AcMNPV growth in a cell line-specific manner.  相似文献   

11.
Herpes simplex virus (HSV) immediate-early (IE) gene expression is initiated via the recruitment of the structural protein VP16 onto specific sites upstream of each IE gene promoter in a multicomponent complex (TRF.C) that also includes the cellular proteins Oct-1 and HCF. In vitro results have shown that HCF binds directly to VP16 and stabilizes TRF.C. Results from transfection assays have also indicated that HCF is involved in the nuclear import of VP16. However, there have been no reports on the role or the fate of HCF during HSV type 1 (HSV-1) infection. Here we show that the intracellular distribution of HCF is dramatically altered during HSV-1 infection and that the protein interacts with and colocalizes with VP16. Moreover, viral protein synthesis and replication were significantly reduced after infection of a BHK-21-derived temperature-sensitive cell line (tsBN67) which contains a mutant HCF unable to associate with VP16 at the nonpermissive temperature. Intracellular distribution of HCF and of newly synthesized VP16 in tsBN67-infected cells was similar to that observed in Vero cells, suggesting that late in infection the trafficking of both proteins was not dependent on their association. We constructed a stable cell line (tsBN67r) in which the temperature-sensitive phenotype was rescued by using an epitope-tagged wild-type HCF. In HSV-1-infected tsBN67r cells at the nonpermissive temperature, direct binding of HCF to VP16 was observed, but virus protein synthesis and replication were not restored to levels observed at the permissive temperature or in wild-type BHK cells. Together these results indicate that the factors involved in compartmentalization of VP16 alter during infection and that late in infection, VP16 and HCF may have additional roles reflected in their colocalization in replication compartments.  相似文献   

12.
The RNA replication complexes of mammalian positive-stranded RNA viruses are generally associated with (modified) intracellular membranes, a feature thought to be important for creating an environment suitable for viral RNA synthesis, recruitment of host components, and possibly evasion of host defense mechanisms. Here, using a panel of replicase-specific antisera, we have analyzed the earlier stages of severe acute respiratory syndrome coronavirus (SARS-CoV) infection in Vero E6 cells, in particular focusing on the subcellular localization of the replicase and the ultrastructure of the associated membranes. Confocal immunofluorescence microscopy demonstrated the colocalization, throughout infection, of replicase cleavage products containing different key enzymes for SARS-CoV replication. Electron microscopy revealed the early formation and accumulation of typical double-membrane vesicles, which probably carry the viral replication complex. The vesicles appear to be fragile, and their preservation was significantly improved by using cryofixation protocols and freeze substitution methods. In immunoelectron microscopy, the virus-induced vesicles could be labeled with replicase-specific antibodies. Opposite to what was described for mouse hepatitis virus, we did not observe the late relocalization of specific replicase subunits to the presumed site of virus assembly, which was labeled using an antiserum against the viral membrane protein. This conclusion was further supported using organelle-specific marker proteins and electron microscopy. Similar morphological studies and labeling experiments argued against the previously proposed involvement of the autophagic pathway as the source for the vesicles with which the replicase is associated and instead suggested the endoplasmic reticulum to be the most likely donor of the membranes that carry the SARS-CoV replication complex.  相似文献   

13.
We compared the rates of synthesis of herpes simplex virus type 1 glycoproteins C and D and quantitated the accumulation of translatable mRNA for each glycoprotein at various times after infection. The rate of synthesis of gD increased sharply early in the infection, peaked by 4 to 6 h after infection, and declined late in the infection. In contrast, the rate of synthesis of gC increased steadily until at least 15 h after infection. The levels of mRNA for both of these glycoproteins, as detected by hybridization and by translation in vitro, continued to increase until at least 15 or 16 h after infection. Synthesis of both gC and gD and their respective mRNAs was found to be sensitive to inhibition of viral DNA replication with phosphonoacetic acid. The finding that reduced amounts of gD were synthesized late in the replicative cycle, whereas gD mRNA continued to accumulate in the cytoplasm, argues that the synthesis of gD is regulated, in part, at the level of translation.  相似文献   

14.
In order to assign specific functions to individual gene products encoded by adenovirus type 5 early region 4 (E4), we have constructed and analyzed a set of mutant viruses that express individual E4 open reading frames or combinations of open reading frames. The results of these analyses demonstrate that the gene products of E4 open reading frames 3 and 6 have redundant effects in viral lytic infection. These E4 products independently augment viral DNA replication, viral late protein synthesis, the shutoff of host cell protein synthesis, and the production of infectious virus. The product of open reading frame 6 is more efficient in the regulation of these processes than is the product of open reading frame 3. The regulation of viral DNA replication and the control of viral and cellular protein synthesis appear to be separable functions associated with both E4 gene products. The role of early region 4 in adeno-associated virus helper function, however, is mediated only by the product of open reading frame 6. Finally, we demonstrate that E4 mutant viruses display a multiplicity-leakiness phenotype which is consistent with the regulatory role that this region plays in viral infection.  相似文献   

15.

Background

Bunyamwera orthobunyavirus is both the prototype and study model of the Bunyaviridae family. The viral NSs protein seems to contribute to the different outcomes of infection in mammalian and mosquito cell lines. However, only limited information is available on the growth of Bunyamwera virus in cultured mosquito cells other than the Aedes albopictus C6/36 line.

Methodology and Principal Findings

To determine potential functions of the NSs protein in mosquito cells, replication of wild-type virus and a recombinant NSs deletion mutant was compared in Ae. albopictus C6/36, C7-10 and U4.4 cells, and in Ae. aegypti Ae cells by monitoring N protein production and virus yields at various times post infection. Both viruses established persistent infections, with the exception of NSs deletion mutant in U4.4 cells. The NSs protein was nonessential for growth in C6/36 and C7-10 cells, but was important for productive replication in U4.4 and Ae cells. Fluorescence microscopy studies using recombinant viruses expressing green fluorescent protein allowed observation of three stages of infection, early, acute and late, during which infected cells underwent morphological changes. In the absence of NSs, these changes were less pronounced. An RNAi response efficiently reduced virus replication in U4.4 cells transfected with virus specific dsRNA, but not in C6/36 or C7/10 cells. Lastly, Ae. aegypti mosquitoes were exposed to blood-meal containing either wild-type or NSs deletion virus, and at various times post-feeding, infection and disseminated infection rates were measured. Compared to wild-type virus, infection rates by the mutant virus were lower and more variable. If the NSs deletion virus was able to establish infection, it was detected in salivary glands at 6 days post-infection, 3 days later than wild-type virus.

Conclusions/Significance

Bunyamwera virus NSs is required for efficient replication in certain mosquito cell lines and in Ae. aegypti mosquitoes.  相似文献   

16.
Hepatitis C virus (HCV) infection is associated with chronic liver disease and currently affects about 3% of the world population. Although much has been learned about the function of individual viral proteins, the role of the HCV p7 protein in virus replication is not known. Recent data, however, suggest that it forms ion channels that may be targeted by antiviral compounds. Moreover, this protein was shown to be essential for infectivity in chimpanzee. Employing the novel HCV infection system and using a genetic approach to investigate the function of p7 in the viral replication cycle, we find that this protein is essential for efficient assembly and release of infectious virions across divergent virus strains. We show that p7 promotes virus particle production in a genotype-specific manner most likely due to interactions with other viral factors. Virus entry, on the other hand, is largely independent of p7, as the specific infectivity of released virions with a defect in p7 was not affected. Together, these observations indicate that p7 is primarily involved in the late phase of the HCV replication cycle. Finally, we note that p7 variants from different isolates deviate substantially in their capacity to promote virus production, suggesting that p7 is an important virulence factor that may modulate fitness and in turn virus persistence and pathogenesis.  相似文献   

17.
Acute infection of the central nervous system by the neurotropic JHM strain of mouse hepatitis virus (JHMV) induces nucleocapsid protein specific cytotoxic T lymphocytes (CTL) not found in the periphery (S. Stohlman, S. Kyuwa, J. Polo, D. Brady, M. Lai, and C. Bergmann, J. Virol. 67:7050-7059, 1993). Peripheral induction of CTL specific for the nucleocapsid protein of JHMV by vaccination with recombinant vaccinia viruses was unable to provide significant protection to a subsequent lethal virus challenge. By contrast, the transfer of nucleoprotein-specific CTL protected mice from a subsequent lethal challenge by reducing virus replication within the central nervous system, demonstrating the importance of the CTL response to this epitope in JHMV infection. Transfer of these CTL directly into the central nervous system was at least 10-fold more effective than peripheral transfer. Histological analysis indicated that the CTL reduced virus replication in ependymal cells, astrocytes, and microglia. Although the CTL were relatively ineffective at reducing virus replication in oligodendroglia, survivors showed minimal evidence of virus persistence within the central nervous system and no evidence of chronic ongoing demyelination.  相似文献   

18.
We have used an antisense RNA approach in the analysis of gene function in human cytomegalovirus (HCMV). An astrocytoma cell line (U373-MG) that is permissive for virus replication was permanently transfected with a construct bearing sequence from HCMV UL44 (coding for the major late DNA-binding protein, ppUL44, also known as pp52 or ICP36) in an antisense orientation and under the control of the immediate-early enhancer-promoter element. Upon HCMV infection at a high multiplicity, we found a marked reduction in UL44 protein products (the ICP36 family of proteins) in established cell transfectants and a strong inhibition of virus yield in infected-cell supernatants at two weeks postinfection, while herpes simplex virus replication was not affected. In infected cells, viral DNA replication was strongly inhibited. While gene products such as pUS22 and pUL32 were also inhibited, pUL123 and pUL82 accumulated in the infected cells over time. Our data suggest an essential role for the UL44 family of proteins in HCMV replication and represent a model of virus inhibition by virus-induced antisense RNA synthesis in genetically modified cells.  相似文献   

19.
已知丙型肝炎病毒(hepatitis C virus,HCV)可通过其蛋白酶NS3/4A切割线粒体抗病毒信号蛋白(mitochondrial antiviral signaling protein,MAVS)来逃逸天然免疫识别,但尚不清楚其切割动力学及切割在抑制干扰素中的作用。本研究旨在细胞模型中探讨HCV感染过程中病毒复制建立及病毒NS3/4A切割MAVS的动态过程,探究NS3/4A切割MAVS对病毒逃逸宿主天然免疫建立感染的贡献。首先构建基于绿色荧光蛋白(green fluorescent protein,GFP)的MAVS切割报告系统(GFP-NLS-MAVS-TM462),用 HCV Jc1-Gluc 感染Huh7.5/GFP-NLS-MAVS-TM462细胞。结果显示,病毒复制早期MAVS切割效率较低;NS3/4A高效切割MAVS发生于HCV复制晚期,且其切割效率与NS3蛋白水平相关。利用带有GFP ypet的HCV报告病毒Jc1-378-1感染Huh7.5/RFP-NLS-MAVS-TM462细胞,在单细胞水平观察HCV感染阳性细胞中MAVS被切割情况,发现HCV复制细胞中仅部分细胞MAVS被切割。进一步研究发现,不同基因型NS3/4A切割MAVS的效率仅与NS3表达水平相关。以上结果提示,HCV蛋白酶NS3/4A切割MAVS依赖NS3/4A蛋白在病毒复制过程中的累积,对在病毒复制早期逃逸宿主天然免疫建立感染可能无显著贡献。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号