首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During an investigation on actinomycetes from rhizospheric soils from Moroccan habitats, 131 streptomycetes were recovered, morphologically characterized and assessed for their antimicrobial activity. Eleven isolates were characterized by the absence of an aerial mycelium. According to the colour of aerial mycelium, the rest were grouped into seven main classes, namely, grey, yellow, cream, white, green, red and polymorphic colours (pink, orange or violet). The grey colour class dominated (40%) and the red one was found only in rhizospheric soil of the Moroccan endemic plant Argania spinosa. About one third of the isolates (34%) produced soluble pigments of various colours and 14% produced melanoid pigments. Most of the isolates (83%) were active against one or more of the organisms tested (one gram-negative bacterium, three gram-positive bacteria, three yeasts and two filamentous fungi). Most antibiotic-producing isolates possess red and white colour. Strong antibiosis was exhibited against Streptomyces scabies, Staphylococcus aureus and Bacillus subtilis (75, 68 and 60% respectively), while only 14 and 8% of isolates displayed an activity against Escherichia coli and Verticillium dahliae respectively.  相似文献   

2.
Antimicrobial activities of rhizome extracts of Cyperus rotundus were investigated on selected plant pathogenic bacteria and fungi. Ethyl acetate and hexane extracts showed antibacterial activity against three isolates of Clavibacter michiganensis subsp. michiganensis at concentrations of 900 and 1000 μg/ml. However, Gram-negative bacterial pathogens of tomato; Pseudomonas syringae pv. tomato and Ralstonia solanacearum were not inhibited from the extracts. Ethyl acetate extracts at 100 μg/ml inhibited mycelial growth and spore germination of the two strawberry isolates of Botrytis cinerea; however, no significant inhibition was found in tomato fungal pathogen, Fusarium oxysporum f. sp. radicis lycopersici. Minimum inhibitory concentrations were determined as 0.0625 and 0.125 mg/ml against C. michiganensis subsp. michiganensis for ethyl acetate and hexane extracts of rhizomes, respectively. This study shows the potentials of extracts of C. rotundus rhizomes as antimicrobial agents that are effective against the tested plant pathogenic bacteria and fungi.  相似文献   

3.
Studies on antagonistic marine actinomycetes from the Bay of Bengal   总被引:3,自引:0,他引:3  
Screening of 26 marine sediment samples near 9 islands of the Andaman Coast of the Bay of Bengal resulted in the isolation of 88 isolates of actinomycetes. On the basis of sporophore morphology and structure of the spore chain, 64 isolates were assigned to the genus Streptomyces, 8 isolates to the genus Micromonospora, 5 to the genus Nocardia, 7 to the genus Streptoverticilium and 4 to the genus Saccharopolyspora. Among 64 Streptomyces spp., 44 isolates showed antibacterial activity and 17 isolates showed antifungal activity. Three isolates showed very promising antagonistic activities against multi-drug resistant pathogens.  相似文献   

4.
A total of 161 different Streptomyces isolates were recovered from 5 soil samples representing the driest habitats of Jordan. These were then characterized and assessed for their antagonistic activity against four clinical multi-drug resistant Pseudomonas aeruginosa test pathogens. Results indicated that only 3 strains out of 139 and 6 out of 22 isolated at 27°C and 45°C, respectively, were active against at least three strains of pathogenic Pseudomonas. However, three Streptomyces strains (J2b, J4, and J12) that were isolated at 45°C inhibited all of the tested pathogens with an inhibition zone ranging between 5 and 16 mm in diameter. Data obtained from comparing the inhibition activity of these unique Streptomyces strains toward multi-resistant Pseudomonas pathogens with standard used antibiotics revealed that these isolates produce possible different inhibitory bioactive compounds other than the standard antibiotics.  相似文献   

5.
The aim of this study was to develop antagonistic strains specific for the coastal agricultural niche in Southern India. Indigenous Pseudomonas strains isolated from rhizosphere of rice cultivated in the coastal agri-ecosystem were screened for in vitro antibiosis against Xanthomonas oryzae pv. oryzaeand Rhizoctonia solani– the bacterial leaf blight (BB) and sheath blight (ShB) pathogens of rice (Oryza sativa) respectively. The strains exhibiting antibiosis were tested in the greenhouse under normal and saline soil conditions. The antagonists suppressed BB by 15 to 74% in an unamended soil. The efficient strains were tested under saline soil conditions and found to suppress disease by 46 to 82%. Similarly, incidence of ShB was also suppressed by 30 to 57% in the unamended soil by the efficient strains which, under saline soil conditions, were found to suppress ShB by 19 to 51%. Four strains of Pseudomonas tested suppressed both BB and ShB diseases in rice, of which three were efficient under both natural and saline soil conditions.  相似文献   

6.
Three isolates of Gliocladium virens (G1, G2 and G3) and two of Trichoderma longibrachiatum (T1 and T2) were screened against isolates of three soilborne plant pathogens namely Rhizoctonia solani, Sclerotium rolfsii and Pythium aphanidermatum. G. virens exhibited stronger hyperparasitism and wider biological spectrum than T. longibrachiatum. Further, similarities as well as variation was observed in the ability of the various isolates to invade the test pathogens in dual culture. For the hyperparasites, acidic pH range (5.0 to 5.5) favoured both growth and spore germination. The hyperparasites made direct contact with the pathogens followed by varied modes of attack invariably leading to cell disruption. Antagonists, G1 and G3 revealed strong antibiosis while T2 showed moderate effect. All the isolates produced enhanced levels of lytic enzymes adaptively and there were marked differences among them. However, no correlation was observed between these attributes and the hyperparasitic potential of the various isolates in dual culture. The relevance and the role of enzymes and toxic metabolite(s) in the antagonism of G. virens and T. longibrachiatum to these pathogens are discussed.  相似文献   

7.
A chromosomal DNA library of the bacterial pathogen of bean, Curtobacterium flaccumfaciens pv. flaccumfaciens NCPPB 559 was constructed in the plasmid pGEM-7Zf(+). Several clones were identified that hybridised to all Curtobacterium flaccumfaciens pathovars including: C. f. betae, C. f. flaccumfaciens, C. f. oortii, C. f. poinsettiae and, in addition, to some strains of Clavibacter michiganensis subsp. insidiosus and Clavibacter michiganensis subsp. One of these clones (pPMP-26), after subsequent digestion with restriction endonucleases EcoRI/SacI, yielded a fragment of approximately 0.2 Kb (pPMP-26D) that hybridised specifically to C. f. flaccumfaciens and not to any of the other plant pathogenic members of the order Actinomycetales or any of the other prokaryotic bean pathogens tested. This fragment was subcloned and sequenced, analysis of the resultant 198 bp sequence showed that no significant homology existed with any other sequence currently deposited in public databases. Further analysis of these data facilitated the design of PCR primers which were subsequently tested against a wide range of plant pathogenic actinomycetes and other prokaryotic bean pathogens. Results show that these primers are highly specific for all strains of C. f. flaccumfaciens with no cross-reaction to strains from any other bacterial taxa tested.  相似文献   

8.
The isolation of endophytic actinomycetes from surface-sterilized tissues of 36 plant species was made using humic acid–vitamin (HV) agar as a selection medium. Of the 330 isolates recovered, 212 were from roots, 97 from leaves and 21 isolates from stems with a prevalence of 3.9, 1.7 and 0.3%, respectively. Identification of endophytic actinomycetes was based on their morphology and the amino acid composition of the whole-cell extract. Most isolates were classified as Streptomyces sp. (n = 277); with the remainder belonging to Microbispora sp. (n = 14), Nocardia sp. (n = 8) and Micromonospora sp. (n = 4). Four isolates were unclassified and 23 were lost during subculture. The most prevalent group of isolates were the Streptomyces sp. occurring in 6.4% of the tissue samples of Zingiber officinale. Scanning electron microscopy investigation of this plant revealed that 7.5% of the root and 5% of the leaf samples contained endophytes. Three of the Streptomyces sp. isolates strongly inhibited Colletotrichum musae, five were very active against Fusarium oxysporum and two strongly inhibited growth of both test fungi.  相似文献   

9.
The fungitoxic effect of various medicinal plants belonging to different families was evaluated in vitro on Rhizoctonia solani, the rice sheath blight pathogen. Of the various plant extracts, the leaf extract of zimmu (Allium cepa × Allium sativum) showed the maximum antifungal activity against R. solani and recorded an inhibition zone of 12?mm. The leaf extract of zimmu was also effective in inhibiting the growth of other agronomically important fungal and bacterial pathogens viz., Aspergillus flavus, Curvularia lunata, Alternaria solani, Xanthomonas oryzae pv. oryzae, Xanthomonas campestris pv. malvacearum and Xanthomonas axonopodis pv. citri. The antimicrobial compound was dissoluble in methanol and the methanolic extract showed the absorption maxima at 210?nm and 230?nm. Phenolic compounds were present in greater amounts in methanol extract of zimmu. TLC analysis showed the appearance of two blue spots at R f ?=?0.65 and R f ?=?0.90. The compounds eluted at R f ?=?0.65 and R f ?=?0.90 by preparative TLC exhibited strong antifungal activity against R. solani.  相似文献   

10.
Two antifungal aliphatic compounds, SPM5C-1 and SPM5C-2 with a lactone and ketone carbonyl unit, respectively obtained from Streptomyces sp. PM5 were evaluated under in vitro and in vivo conditions against major rice pathogens, Pyricularia oryzae and Rhizoctonia solani. These compounds were dissolved in distilled water/medium to get the required concentrations. The well diffusion bioassay indicated that the of SPM5C-1 remarkably inhibited the mycelial growth of P. oryzae and R. solani in comparison to SPM5C-2. Though SPM5C-2 showed low antifungal activity against P. oryzae, it was not active against R. solani. Further, SPM5C-1 completely inhibited the growth of P. oryzae and R. solani at concentrations of 25, 50, 75 and 100 μg/ml. Greenhouse experiments revealed that spraying of SPM5C-1 at 500 μg/ml on rice significantly decreased blast and sheath blight development by 76.1% and 82.3%, respectively, as compared to the control with a corresponding increase in rice grain yield.  相似文献   

11.
A total of 288 marine samples were collected from different locations of the Bay of Bengal starting from Pulicat lake to Kanyakumari, and 208 isolates of marine actinomycetes were isolated using starch casein agar medium. The growth pattern, mycelial coloration, production of exopolysaccharides and diffusible pigment and abundance of Streptomyces spp. were documented. Among marine actinomycetes, Streptomyces spp. were present in large proportion (88%). Among 208 marine actinomycetes, 111 isolates exhibited antimicrobial activity against human pathogens, and 151 showed antifungal activity against two plant pathogens. Among 208 isolates, 183, 157, 116, 72 and 68 isolates produced lipase, caseinase, gelatinase, cellulase and amylase, respectively. The results of diversity, antimicrobial activity and enzymes production have increased the scope of finding industrially important marine actinomycetes from the Bay of Bengal and these organisms could be vital sources for the discovery of industrially useful molecules/enzymes.  相似文献   

12.
Detection and identification of members of the genus Streptomyces are of great value because they provide a rich source of antibiotics. Toward the goal of identifying additional novel antibiotics, a total of 292 different Streptomyces isolates were recovered from 54 soil samples collected from 28 different locations in Jordan. These were then characterized by conventional methods and assessed for their activity against two antibiotic-resistant Gram-negative isolates of Escherichia coli and Klebsiella pneumoniae. Results revealed that grey, white and yellow series isolates were the most abundant, with 15% of the Streptomyces isolates active against at least one of the test pathogens. Most of the active isolates exhibited activity against E. coli (96%), while less activity was exhibited against K. pneumoniae (18%). Overall screening revealed the characterization of six Streptomyces isolates (I7, AC32, G17, Z11, Bb36 and AQ16) which inhibited the growth of both pathogens. All were obtained from a region characterized by low-nutrient soils and harsh conditions. The unusual antibiotic profile of these isolates stressed their potential as a source of novel antibiotics.  相似文献   

13.
In this study, Pseudomonas species were isolated from the rhizospheres of two plant hosts: rice (Oryza sativa cultivar Pathum Thani 1) and maize (Zea mays cultivar DK888). The genotypic diversity of isolates was determined on basis of amplified rDNA restriction analysis (ARDRA). This analysis showed that both plant varieties selected for two distinct populations of Pseudomonas. The actual biocontrol and plant promotion abilities of these strains was confirmed by bioassays on fungal (Verticillum sp., Rhizoctonia solani and Fusarium sp.) and bacterial (Ralstonia solanacearum and Bacillus subtilis) plant pathogens, as well as indole-3-acetic acid (IAA) production and carbon source utilization. There was a significant difference between isolates from rice and maize rhizosphere in terms of biological control against R.  solanacearum and B.  subtilis. Interestingly, none of the pseudomonads isolated from maize rhizosphere showed antagonistic activity against R.  solanacearum. This study indicated that the percentage of pseudomonad isolates obtained from rice rhizosphere which showed the ability to produce fluorescent pigments was almost threefold higher than pseudomonad isolates obtained from maize rhizosphere. Furthermore, the biocontrol assay results indicated that pseudomonad isolated from rice showed a higher ability to control bacterial and fungal root pathogens than pseudomonad isolates obtained from maize. This work clearly identified a number of isolates with potential for use as plant growth-promoting and biocontrol agents on rice and maize.  相似文献   

14.
This investigation was designed to explore the potential of microbial antagonism in the control of some tomato diseases including bacterial, Fusarium and Verticillium wilts; early blight; bacterial canker. Three Streptomyces spp. were used: S. pulcher, S. canescens and S. citreofluorescens.The in vitro studies showed that an 80% concentration of the culture filtrate of either S. pulcher or S. canescens significantly inhibited spore germination, mycelial growth and spotulation of Fusarium oxysporum f.sp. lycopersici, Verticillium albo-atrum and Alternaria solani. The same concentration of filtrate of either S. pulcher or S. citreofluorescens was detrimental to the bacterial populations of Clavibacter michiganensis subsp. michiganensis and Pseudomonas solanacearum.The in vivo studies involved different treatments: soaking tomato seeds in filtrate of the antagonist prior to sowing, inoculation of the soil with the antagonist 7 days before sowing, and coating of tomato seeds with spores of the antagonist before sowing. The seed-coating treatment was the most effective in controlling all the pathogens at 42 and 63 days after sowing. Soil inoculation with the antagonist 7 days prior to sowing was less effective in controlling the tomato pathogens as compared to seed-coating. The seed-soaking treatment was the least effective in controlling the diseases concerned.The results also revealed that seed-coating with antagonistic Streptomyces spp. significantly improved tomato growth.  相似文献   

15.
Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen‐induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis.  相似文献   

16.
Rice leaves with bacterial blight or bacterial leaf streak symptoms were collected in southern China in 2007 and 2008. Five hundred and thirty‐four single‐colony isolates of Xanthomonas oryzae pv. oryzae and 827 single‐colony isolates of Xanthomonas oryzae pv. oryzicola were obtained and tested on plates for sensitivity to streptomycin. Four strains (0.75%) of X. oryzae pv. oryzae isolated from the same county of Province Yunnan were resistant to streptomycin, and the resistance factor (the ratio of the mean median effective concentration inhibiting growth of resistant isolates to that of sensitive isolates) was approximately 226. The resistant isolate also showed streptomycin resistance in vivo. In addition to resistant isolates, isolates of less sensitivity were also present in the population of X. oryzae pv. oryzae from Province Yunnan. However, no isolates with decreased streptomycin‐sensitivity were obtained from the population of X. oryzae pv. oryzicola. Mutations in the rpsL (encoding S12 protein) and rrs genes (encoding 16S rRNA) and the presence of the strA gene accounting for streptomycin resistance in other phytopathogens or animal and human pathogenic bacteria were examined on sensitive and resistant strains of X. oryzae pv. oryzae by polymerase chain reaction amplification and sequencing. Neither the presence of the strA gene nor mutations in the rpsL or rrs were found, suggesting that different resistance mechanisms are involved in the resistant isolates of X. oryzae pv. oryzae.  相似文献   

17.
Bacteria in the genus Streptomyces are ubiquitous in soil and are well‐known for their production of diverse secondary metabolites, including antibiotics that can inhibit soil‐borne plant pathogens and suppress disease. Pathogen‐suppressive soil bacteria have the potential to influence plant community composition and diversity, but remain relatively unexplored in tropical forest soils. To estimate the potential for disease suppression among Streptomyces communities in tropical dry forests, we cultured soil‐borne Streptomyces from plots in two forests in northwestern Costa Rica (Santa Rosa and Palo Verde) and quantified antibiotic‐mediated pathogen inhibition against three plant pathogens. The potential for pathogen inhibition and disease suppression by Streptomyces was highly variable across the landscape. Densities of pathogen‐suppressive Streptomyces varied by over ten‐fold and were correlated with soil nutrients across the plots. In particular, Streptomyces communities became more pathogen‐suppressive as labile soil P decreased. Inhibitor densities were significantly higher in Santa Rosa than Palo Verde, which may be related to differences in soil texture and/or plant community composition between the two forests. Our findings suggest potential differences in the degree and specificity of antibiotic‐mediated disease suppression in tropical dry forest soils of Costa Rica, and highlight the need for further studies on the drivers of pathogen‐suppressive phenotypes as well as the consequences of spatially variable pathogen inhibition for plant community composition in tropical forest ecosystems.  相似文献   

18.

Since the 19th century to date, the fungal pathogens have been involved in causing devastating diseases in plants. All types of fungal pathogens have been observed in important agricultural crops that lead to significant pre and postharvest losses. The application of synthetic fungicide against the fungal plant pathogens (FPP) is a traditional management practice but at the same time these fungicides kill other beneficial microbes, insects, animal, and humans and are harmful to environment. The antagonistic microorganism such as bacteria are being used as an alternate strategy to control the FPP. These antagonistic species are cost-effective and eco-friendly in nature. These biocontrol bacteria have a broad mechanism against fungal pathogens present in the phyllosphere and rhizosphere of the plant. The antagonistic bacteria have different strategies against the FPP, by producing siderophore, biofilm, volatile organic compounds (VOCs), through parasitism, antibiosis, competition for limited resources and induce systemic resistance (ISR) in the host plant by activating the immune systems. The commercial bio-products synthesized by the major bacterial species Pseudomonas syringae, Burkholderia cepacia, Streptomyces griseoviridis, Pseudomonas fluorescens and Bacillus subtilis are used to control Fusarium, Pythium, Rhizoctonia, Penicillium, Alternaria, and Geotrichum. The commercial bio-formulations of bacteria act as both antifungal and plant growth regulators. The Plant growth-promoting rhizobacteria (PGPR) played a significant role in improving plant health by nitrogen-fixing, phosphorus solubilization, phytohormones production, minimizing soil metal contamination, and by ACC deaminase antifungal activities. Different articles are available on the specific antifungal activity of bacteria in plant diseases. Therefore, this review article has summarized the information on biocontrol activity of bacteria against the FPP and the role of PGPR in plant growth promotion. This review also provided a complete picture of scattered information regarding antifungal activities of bacteria and the role of PGPR.

  相似文献   

19.
20.
Eighteen percent of 116 different isolates of Streptomyces recovered from soils of northern Jordan showed activity against Candida albicans. The recovered isolates were distributed into three groups according to the diameter of the inhibition zone on the agar plate: group 1 (5–10 mm, slightly active); group 2 (11–15 mm, moderately active); and group 3 (16–35 mm, highly active). Isolates of group 3 were further grouped into four sub-groups and were culturally and morphologically identified. The u.v. spectra of the fermentation broth for the isolates in sub-group 4 were determined, and showed absorbance peaks ranging between 230 and 300 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号