首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The killing efficiencies due to the decay of incorporated H3-thymidine, H3-uridine, and H3-histidine in E. coli 15T-L- have been determined. Decays from H3-thymidine are 2.0 times as effective in producing lethality as those from H3-uridine and 2.5 times as effective as those from H3-histidine. Therefore, it seems that the greater part of damage from H3-thymidine decays is due to chemical changes associated with nuclear transmutation.  相似文献   

2.
We have studied the differential mutation production by the decay of incorporated tritium compounds in E. coli (WWU) using DNA-seeking precursors (H3-thymidine), RNA-seeking precursors (H3-uracil, H3-uridine), and protein-seeking precursors (H3-histidine, H3-proline). In particular we have determined the reversion frequency of an arginine locus. The reversion frequency is measured in units of revertants/surviving bacteria/H3 decay, and has an average value of 1.84 × 10-8 for H3-uridine and H3-uracil, 0.67 × 10-8 for H3-thymidine, and 0.28 × 10-8 for H3-proline and H3-histidine. Thus, the revertants are produced most effectively by H3 decays when the label is introduced in the form of an RNA precursor. The macromolecular distribution of the label shows that 5 to 8 per cent of the H3-uridine or H3-uracil is incorporated into DNA.  相似文献   

3.
DNA SYNTHESIS IN THE OOPLASM OF DROSOPHILA MELANOGASTER   总被引:4,自引:3,他引:1       下载免费PDF全文
Tritiated thymidine was injected into 2-day-old Drosophila melanogaster females, and tissue sections were prepared from the ovary for radioautography with both the light and electron microscopes. Besides the expected incorporation of H3-thymidine into nuclei of nurse cells and follicle cells, there was a relatively high level of incorporation of label into ooplasmic DNA. The highest level of incorporation occurred at stage 12. At the same time, the 15 nurse cell nuclei also incorporate thymidine in spite of the fact that they are breaking down and degenerating. The label in the ooplasm is not removed by extraction with DNase (although this removes nuclear label) unless extraction is preceded by a treatment with protease. Electron microscopic radioautography revealed that 36% of the silver grains resulting from decay of H3-thymidine are found over mitochondria, with a further 28% being located within 0.25 µ of these organelles. The remaining 36% of the silver grains was not found to be associated with any organelles, and it probably represents synthesis in the cytoplasm by the "storage DNA" characteristic of many eggs. It is suggested that one mechanism acting throughout the egg chamber is responsible for the synchronous synthesis of DNA in the degenerating nurse cells, in the mitochondria of the egg, and in the "storage DNA" of the ooplasm.  相似文献   

4.
A study of the metabolic pathways of H3-thymidine utilization in buds of Lilium longiflorum and root tips of Vicia faba was undertaken in order to obtain information that might explain the binding of H3 from H3-thymidine in the cytoplasm of these plants. H3-thymidine was administered for various periods of time, the tissues were fixed and processed in the manner routinely used in preparation for sectioning and autoradiography, and the radioactivity removed in this way from the tissues was determined. It was found that the ethanol/acetic acid fixative contained the major portion of the radioactivity. Analysis of this extract by paper chromatography showed that the radioactivity was distributed among various degradation products of thymidine, principally β-ureidoisobutyric acid and β-aminoisobutyric acid. Time course experiments with Vicia showed that these degradation products rapidly appeared in the tissue during incubation with H3-thymidine, while H3-thymine appeared in the incubation medium. Preliminary studies indicated that Vicia root tips incubated with H3-dihydrothymine for 24 hours would bind a small amount of H3 non-specifically in the cells. It seems unlikely that utilization of degradation products of H3-thymidine is sufficient to explain labeling which is concentrated in the cytoplasm.  相似文献   

5.
The formation of a soluble H3-thymidine derivative pool has been examined in Tetrahymena pyriformis as a function of macronuclear DNA synthesis during the cell life cycle. An autoradiographic technique which allows the detection of water-soluble materials within a cell has shown that these cells do not take up and retain exogenous H3-thymidine during G1 or G2. Uptake of H3-thymidine is restricted to the S period of the cell cycle. Additional autoradiographic experiments show, however, that a soluble pool of H3-thymidine derivatives persists from the end of one DNA synthesis period to the beginning of the next synthesis period in the subsequent cell cycle. Since this persisting pool cannot be labeled with H3-thymidine, the pool does not turn over during non-S periods.  相似文献   

6.
Hydrogen sulfide (H2S) has proved to be a multifunctional signaling molecule in plants and animals. Here, we investigated the role of H2S in the decay of fresh-cut pears (Pyrus pyrifolia). H2S gas released by sodium hydrosulfide (NaHS) prolonged the shelf life of fresh-cut pear slices in a dose-dependent manner. Moreover, H2S maintained higher levels of reducing sugar and soluble protein in pear slices. H2S significantly reduced the accumulation of hydrogen peroxide (H2O2), superoxide radicals (•O2 ) and malondialdehyde (MDA). Further investigation showed that H2S fumigation up-regulated the activities of antioxidant enzymes ascorbate peroxidase (APX), catalase (CAT), and guaiacol peroxidase (POD), while it down-regulated those of lipoxygenase (LOX), phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO). Furthermore, H2S fumigation effectively inhibited the growth of two fungal pathogens of pear, Aspergillus niger and Penicillium expansum, suggesting that H2S can be developed as an effective fungicide for postharvest storage. The present study implies that H2S is involved in prolonging postharvest storage of pears by acting as an antioxidant and fungicide.  相似文献   

7.
At 10 mM, Cu+ was highly protective against killing of spores of Bacillus megaterium ATCC 19213 by H2O2, while at higher concentrations, from 15–100 mM, killing was augmented. In contrast, Cu2+, Fe2+, Fe3+, Co2+ or Co3+ ions acted only protectively. Cu+ itself was sporicidal in the absence of H2O2 or ascorbate, and its sporicidal action did not depend on generation of highly reactive oxygen species. It appeared that killing involved either inhibition of germination or copper toxicity to germinated cells in that Cu+-inactivated spores did not germinate readily but chemical decoating of the cells prior to plating on a solid medium resulted in reversal of the sporicidal effect. Received 12 July 1996/ Accepted in revised form 03 November 1996  相似文献   

8.
Killing of bacterial spores by H2O2 at elevated but sublethal temperatures and neutral pH occurred without lysis. However, with prolonged exposure or higher concentrations of the agent, secondary lytic processes caused major damage successively to the coat, cortex, and protoplast, as evidenced by electron and phase contrast microscopy. These processes were also reflected in changes in differential scanning calorimetric profiles for H2O2-treated spores. Endothermic transitions in the profiles occurred at lower temperatures than usual as a result of H2O2 damage. Thus, H2O2 sensitized the cells to heat damage. Longer exposure to H2O2 resulted in total disappearance of the transitions, indicative of major disruptions of cell structure. Spores but not vegetative cells were protected against the lethal action of H2O2 by the transition metal cations Cu+, Cu2+, Co2+, Co3+, Fe2+, Fe3+, Mn2+, Ti3+, and Ti4+. The metal chelator EDTA was also somewhat protective, while o-phenanthroline, citrate, deferoxamine, and ethanehydroxydiphosphonate were only marginally so. Superoxide dismutase and a variety of other free-radical scavengers were not protective. In contrast, reducing agents such as sulfhydryl compounds and ascorbate at concentrations of 20 to 50 mM were highly protective. Decoating or demineralization of the spores had only minor effects. The marked dependence of H2O2 sporicidal activity on moderately elevated temperature and the known low reactivity of H2O2 itself suggest that radicals are involved in its killing action. However, the protective effects of a variety of oxidized or reduced transition metal ions indicate that H2O2 killing of spores is markedly different from that of vegetative cells.  相似文献   

9.
Copper(I) complexes have been synthesized from the reaction of CuCl, monodentate tertiary phosphines PR3 (PR3 = P(C6H5)3; P(C6H5)2(4-C6H4COOH); P(C6H5)2(2-C6H4COOH); PTA, 1,3,5-triaza-7-phosphaadamantane; P(CH2OH)3, tris(hydroxymethyl)phosphine) and lithium bis(3,5-dimethylpyrazolyl)dithioacetate, Li[LCS2]. Mono-nuclear complexes of the type [LCS2]Cu[PR3] have been obtained and characterized by elemental analyses, FT-IR, ESI-MS and multinuclear (1H, 13C and 31P) NMR spectral data; in these complexes the ligand behaves as a κ3-N,N,S scorpionate system. One exception to this stoichiometry was observed in the complex [LCS2]Cu[P(CH2OH)3]2, where two phosphine co-ligands are coordinated to the copper(I) centre. The solid-state X-ray crystal structure of [LCS2]Cu[P(C6H5)3] has been determined. The [LCS2]Cu[P(C6H5)3] complex has a pseudo tetrahedral copper site where the bis(3,5-dimethylpyrazolyl)dithioacetate ligand acts as a κ3-N,N,S donor.  相似文献   

10.
《Inorganica chimica acta》1988,148(2):265-272
The magnetic and luminescence characteristics of trimorphic homodinuclear macrocyclic complexes of lanthanides and a 2:2 phenolate Schiff's base L, derived from 2,6-diformyl-p-cresol and triethylenetetramine were determined. The complexes of Pr3+ exhibit non-Curie-Weiss temperature dependent magnetic susceptibilities for which satisfactory fits to an axial relationship depends on crystal field splitting and a weak binuclear Pr3+Pr3+ antiferromagnetic interaction. The exchange interaction parameters are zJ′ = −2.2, −4.4 and −7.0 cm −1 for ‘off-white’ Pr2L(NO3)4·2H2O, ‘yellow’ Pr2L(NO3)4, and ‘orange’ Pr2L(NO3)2(OH)2, respectively. In contrast, magnetic susceptibilities of the Ln2L(NO3)3(OH) complexes (Ln = Dy, Ho) follow Curie-Weiss behavior over the entire temperature range (6 K to 300 K). The complexes of closed shell ions La3+, Lu3+, Y3+ and those of the half filled shell ion Gd3+ exhibit a strong ligand fluorescence in the 450 nm to 650 nm range with decay times at 77 K of 5–8 ns for Ln≠Gd or 2–4 ns for Ln = Gd. The complexes of Gd3+ also exhibit a phosphorescence at 600 nm (decay time ∼ 200 μs). The complexes containing Ce3+, Eu3+, Tb3+ and Er3+ show very weak ligand luminescence indicative of effective quenching processes. Sensitized emission from the lanthanide ion is observed only with the Eu3+ complexes (5Do7Fj transitions). The emission lifetimes are on the order of 250 μs in the pure Eu3+ complexes. The emission decay curves from dilute samples of Eu3+ in ‘off-white’ La2L(NO3)4nH2O show a noticeable rise time as well as a biphasic decay (fast component ∼ 400 μs; slow component ∼ 2500 μs). The luminescing states of L and Eu3+ have a common excitation spectrum which is similar to the electronic absorption spectrum of L indicating that ligand-to-metal ion energy transfer processes are dominant. Overall the result if this study suggest that the spectral properties of the complexes are determined by the coordination mode of the lanthanide ions to the Schiff base portion of macrocyclic ligand.  相似文献   

11.
The O-O-N-N-O-type pentadentate ligands H3ed3a, H3pd3a and H3pd3p (H3ed3a stands ethylenediamine-N,N,N′-triacetic acid; H3pd3a stands 1,3-propanediamine-N,N,N′-triacetic acid and H3pd3p stands 1,3-propanediamine-N,N,N′-tri-3-propionic acid) and the corresponding novel octahedral or square-planar/trigonal-bipyramidal copper(II) complexes have been prepared and characterized. H3ed3a, H3pd3a and H3pd3p ligands coordinate to copper(II) ion via five donor atoms (three deprotonated carboxylate atoms and two amine nitrogens) affording octahedral in case of ed3a3− and intermediate square-pyramidal/trigonal-bipyramidal structure in case of pd3a3− and pd3p3−. A six coordinate, octahedral geometry has been established crystallographically for the [Mg(H2O)6][Cu(ed3a)(H2O)]2 · 2H2O complex and five coordinate square-pyramidal for the [Mg(H2O)5Cu(pd3a)][Cu(pd3a)] · 2H2O. Structural data correlating similar chelate Cu(II) complexes have been used for the better understanding the pathway: octahedral → square-pyramidal ↔ trigonal- bipyramid geometry. An extensive configuration analysis is discussed in relation to information obtained for similar complexes. The infra-red and electronic absorption spectra of the complexes are discussed in comparison with related complexes of known geometries. Molecular mechanics and density functional theory (DFT) programs have been used to model the most stable geometric isomer yielding, at the same time, significant structural data. The results from density functional studies have been compared with X-ray data.  相似文献   

12.
Petronijevic T., Rogers W. P. and Sommerville R. I. 1985. Carbonic acid as the host signal for the development of parasitic stages of nematodes. International Journal for Parasitology15: 661–667. This paper gives results on which may be based an identification of the component of the system CO2 + H2O ai H2CO3 ai H+ HCO3? which acts as the stimulus from the animal host for some nematodes. Using infective juveniles of Nematospiroides dubius and Haemonchus contortus, the effects on exsheathment of (1) low pCO2 values, (2) the presence of carbonic anhydrase in the stimulating medium, and (3) the inhibition of carbonic anhydrase within the juveniles have been examined. The results lead to the suggestion that it is the “readily available” undissociated H2CO3, or H2CO3 + HCO3? which is the critical factor in the stimulus for development. The wide range of [H+]s over which “readily available” H2CO3 is present in physiological environments suggests that this host signal may be important for infection with many species.  相似文献   

13.
The mixed-ligand ruthenium(II) complexes [(phen)2Ru(pzbzimH3)](ClO4)2·3H2O (1), [(phen)2Ru(bzimH)2](ClO4)2·3H2O (2) and [(bpy)2Ru(bpybzimH2)](ClO4)2 (3), where phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine, pzbzimH3 = pyrazole-3,5-bis(benzimidazole), bzimH = benzimidazole and bpybzimH2 = 6,6′-bis(benzimidazole-2-yl)-2,2′-bipyridine have been synthesized and spectroscopically characterized. The X-ray structures of the three compounds have been determined which show that relative to the polypyridine ligands (phen or bpy) two donor nitrogens of the second ligand occupy cis position. In case of 3, bpybzimH2 ligand is coordinated in puckered form where its bpy unit acts in a monodentate fashion. The electrochemical properties, absorption and emission spectral characteristics and lifetimes of luminescence decay of the complexes have been compared. Deprotonation of the azole NH moieties of the complexes lead to substantial lowering of redox potentials of the RuII/RuIII couple as well as the MLCT and emission band energies. Spectrophotometric and spectrofluorometric titrations of complexes 1 and 3 have been carried out in 3:2 acetonitrile-water as a function of pH over the range 3.5-12.0 and the pK values have been determined. The kinetic parameters for the decay of the 3MLCT excited states of 1 at different pH at 298 K have been evaluated.  相似文献   

14.
The thermodynamic parameters, log β, ΔH and ΔS, for formation of lanthanide-1-hydroxy-4,7- disulfo-2-naphthoic acid complexes have been determined at 25 °C in 0.10 M NaClO4 solutions by potentiometric and calorimetric titrations. Under the experimental conditions, the data can be explained with the formation of LnL, LnL25− and LnHL complexes (H2L2− = 1-hydroxy-4,7-disulfo-2- naphthoic acid anion). At pH < 3 the LnHL complex is the major species, whereas by increasing pH the formation of LnLn3−4n complexes becomes more important. The data are compared to the comparable data for complexing by aromatic carboxylic acids.  相似文献   

15.
Three new o-thioetherphenol ligands have been synthesized: 1,2-bis(3,5-di-tert-butyl-2-hydroxyphenylsulfanyl)ethane (H2bse), 1,2-bis(3,5-di-tert-butyl-2-hydroxyphenylsulfanyl)benzene (H2bsb), and 4,6-di-tert-butyl-2-phenylsulfanylphenol (Hpsp). Their complexes with copper(II) were prepared and investigated by UV-Vis-, EPR-spectroscopy; their electro- and magnetochemistry have also been studied: [CuII(psp)2] (1), [CuII2(bse)2] (2), [CuII2(bsb)2] (3), [CuII(bsb)(py)2] (4). The crystal structures of the ligands H2bse, H2bsb, Hpsp and of the complexes 1, 2, 3, 4 have been determined by X-ray crystallography.  相似文献   

16.
New silver(I) complexes have been synthesised from the reaction of AgNO3, monodentate PR3 (PR3 = P(o-tolyl)3, P(m-tolyl)3, P(p-tolyl)3, P(p-C6H4F), SeP(C6H5)3) or bidentate tertiary (dppe = bis(diphenylphosphane)ethane, dppf = 1,1′-bis(diphenylphosphane)ferrocene) phosphanes and potassium dihydrobis(3-nitro-1,2,4-triazolyl)borate, K[H2B(tzNO2)2]. These compounds have been characterized by elemental analyses, FT-IR, ESI-MS and multinuclear (1H and 31P) NMR spectral data. The adduct {[H2B(tzNO2)2]Ag[P(m-tolyl)3]2} has been characterized by single crystal X-ray studies. In the former, the H2B(tzNO2)2 acts as a monodentate ligand utilizing the coordinating capability of only one of the additional (exo-) ring nitrogens to complete the coordination array about the silver atom.  相似文献   

17.
New complexes with the general formula [RE(TPC)3 · (H2O)2], where RE=Eu3+, Sm3+, Gd3+, Tb3+ and TPC=2-thiophenecarboxylate, have been prepared and investigated by photoluminescence spectroscopy. These compounds were characterized by complexometric titration, elemental analyses and infrared spectroscopy. The X-ray crystal structure has been determined for the [Eu(TPC)3 · (H2O)2] compound, indicating that this complex is in dimeric form bridged by two carboxylate ions with monoclinic crystal system and space group P21/n. The coordination polyhedron can be described as a distorted square antiprism, where six oxygen atoms belong to the TPC ligand and two oxygen atoms belong to the water molecules, with site symmetry close to C2v. The theoretical value of the intensity parameter , which is in agreement with the experimental one, indicates that the Eu3+ ion is in a highly polarizable chemical environment. Based on the luminescence spectra, the energy transfer from the ligand triplet state (T) of TPC to the excited levels of the Eu3+ ion is discussed. The emission quantum efficiency of the 5D0 emitting level of the Eu3+ ion was also determined. In the case of the Tb3+ ion, the photoluminescence data show the high emission intensity of the characteristic transitions 5D4 → 7FJ (J=0-6), indicating that the TPC ligand is a good sensitizer. It is also noticed that the complexes with the Eu3+ and Tb3+ ions are more luminescent than the complex with the Sm3+ ion.  相似文献   

18.
Treatment of 4N-monosubstituted bis(thiosemicarbazone) ligands of 3,5-diacetyl-1,2,4-triazol series with lithium tetrachloridopalladate gave the dinuclear complexes of general formula [Pd(μ-H3L1-5)]2, but using dichloridobistriphenylphosphinepalladium(II) salt, the first mononuclear bis(thiosemicarbazone)-palladium-triphenylphosphine complexes of the 3,5-diacetyl-1,2,4-triazol series, [Pd(H3L1-5)PPh3], have been obtained. All the compounds have been characterized by elemental analysis and by IR and NMR spectroscopy, and the crystal and molecular structures of dinuclear complexes [Pd(μ-H3L3)]2 and [Pd(μ-H3L5)]2 as well as mononuclear complexes [Pd(H3L1)PPh3], [Pd(H3L2)PPh3], [Pd(H3L3)PPh3] and [Pd(H3L4)PPh3] have been determined by X-ray crystallography. The new compounds synthesized have been evaluated for antiproliferative activity in vitro against NCI-H460, A2780 and A2780cisR human cancer cell lines. Subsequent toxicity study, on normal renal LLC-PK1 cells, shows that all compounds investigated exhibit very low toxicity on kidney cells with respect to cisplatin.  相似文献   

19.
[1+1] macrocyclic and [1+2] macroacyclic compartmental ligands (H2L), containing one N2O2, N3O2, N2O3, N4O2 or O2N2O2 Schiff base site and one O2On (n=3, 4) crown-ether like site, have been prepared by self-condensation of the appropriate formyl- and amine precursors. The template procedure in the presence of sodium ion afforded Na2(L) or Na(HL) · nH2O. When reacted with the appropriate transition metal acetate hydrate, H2L form M(L) · nH2O, M(HL)(CH3COO) · nH2O, M(H2L)(X)2 · nH2O (M=Cu2+, Co2+, Ni2+; X=CH3COO, Cl) or Mn(L)(CH3COO) · nH2O according to the experimental conditions used. The same complexes have been prepared by condensation of the appropriate precursors in the presence of the desired metal ion. The Schiff bases H2L have been reduced by NaBH4 to the related polyamine derivatives H2R, which form, when reacted with the appropriate metal ions, M(H2R)(X)2 (M= Co2+, Ni2+; X=CH3COO, Cl), Cu(R) · nH2O and Mn(R)(CH3COO) · nH2O. The prepared ligands and related complexes have been characterized by IR, NMR and mass spectrometry. The [1+1] cyclic nature of the macrocyclic polyamine systems and the site occupancy of sodium ion have been ascertained, at least for the sodium (I) complex with the macrocyclic ligand containing one N3O2 Schiff base and one O2O3 crown-ether like coordination chamber, by an X-ray structural determination. In this complex the asymmetric unit consists of one cyclic molecule of the ligand coordinated to a sodium ion by the five oxygen atoms of the ligand. The coordination geometry of the sodium ion can be described as a pentagonal pyramid with the metal ion occupying the vertex. In the mononuclear complexes with H2L or H2R the transition metal ion invariantly occupies the Schiff base site; the sodium ion, on the contrary, prefers the crown-ether like site. Accordingly, the heterodinuclear complexes [MNa(L)(CH3COO)x] (M=Cu2+, Co2+, Ni2, x=1; M=Mn3+, x=2) have been synthesised by reacting the appropriate formyl and amine precursors in the presence of M(CH3COO)n · nH2O and NaOH in a 1:1:1:2 molar ratio. The reaction of the mononuclear transition metal complexes with Na(CH3COO) · nH2O gives rise to the same heterodinuclear complexes. Similarly [MNa(R)(CH3COO)x] have been prepared by reaction of the appropriate polyamine ligand H2R with the desired metal acetate hydrate and NaOH in 1:1:2 molar ratio.  相似文献   

20.
The new enantiopure complexes [LnL](NO3)3 · nH2O (Ln = Dy+3, Ho+3, Er+3, Lu+3) and [LnL]Cl3 · nH2O (Ln = Nd+3, Sm+3, Gd+3, Tb+3, Dy+3, Ho+3, Er+3, Tm+3, Lu+3) of the chiral macrocycle L derived from (1R,2R)-1,2-diaminocyclohexane and 2,6-diformylpyridine have been synthesised. The preference of macrocycle L for the heavier lanthanide(III) ions has been established on the basis of competition reaction. The complexes have been characterised by NMR spectroscopy and mass spectrometry. 1H NMR signals of deuterated water solutions of the Ce+3, Nd+3 and Eu+3 complexes have been assigned on the basis of the COSY and HMQC spectra, and for the remaining lanthanide complexes the signals were assigned on the basis of linewidths analysis. The paramagnetic shifts of the series of lanthanide complexes [LnL](NO3)3 · nH2O and [LnL]Cl3 · nH2O have been analysed using both crystal-field dependent and independent methods in order to separate contact and dipolar contributions and establish isostructurality along the series of lanthanide complexes in solution. The data obtained for nitrate derivatives in organic solvent indicate rather irregular deviations from the plots based on those methods, while the plots obtained for water solutions show the characteristic brake in the middle of the lanthanide series, that is interpreted as a result of change of the number of axially coordinated water molecules. The apparent inconsistencies of results obtained on the basis of crystal-field independent method are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号