首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with positive electrospray ionisation (ESI(+)) and multiple reaction monitoring (MRM) for the selective and sensitive bioanalytical determination of amisulpride, a substituted benzamide derivative, in human plasma is described. Plasma was cleaned up using a liquid-liquid extraction (diisopropylether:dichloromethane=1:1 (v/v)) procedure. The chemically related drug sulpiride was used as internal standard (ISTD) and a primary calibration function was established in the concentration range of 0.50-500.52 ng/ml for amisulpride in plasma by triple analysis of the corresponding calibration standards. A linear relationship between concentration and signal intensity (given as peak area ratio analyte/ISTD) was obtained (linear regression: r=0.9999). A lower limit of quantification (LLQ) of 0.50 ng/ml was used during measurement of study plasma samples. Satisfying results of within-day precision (CV=0.79 to 1.98%) and accuracy (mean relative deviation: -1.68 to 3.58%) and between-day precision (CV=1.34 to 4.62%) and accuracy (mean relative deviation: -1.73 to -3.77%) as well as of recovery (amisulpride: 81.74 to 84.83%; sulpiride: 58.65%) and selectivity investigations confirmed the high reliability of this established LC-MS/MS method. Sufficient stability of amisulpride in plasma was achieved during freeze-thaw-cycles, for storage periods of 24h at room temperature and 20 days at <-20 degrees C as well as in extracts (storage conditions: <-20 degrees C, 6 days and 7 degrees C, 6 days) with mean relative deviations between - 2.83 and 2.91%. An example of a pharmacokinetic profile determined after administration of an amisulpride 200mg dose in a pilot study is given in this paper. A peak plasma concentration (C(max)) of 522.58 ng/ml was achieved after 3.55 h (t(max)). Corresponding values of areas under the plasma concentration-time curve (AUC) of 3405.35 ngh/ml (AUC(0-infinity)) and 3306.54 ngh/ml (AUC(0-tlast)) were obtained. The terminal plasma elimination half-life (t(1/2)) was 10.36 h.  相似文献   

2.
Olanzapine is a commonly used atypical antipsychotic medication for which therapeutic drug monitoring has been proposed as clinically useful. A sensitive method was developed for the determination of olanzapine concentrations in plasma and urine by high-performance liquid chromatography with low-wavelength ultraviolet absorption detection (214 nm). A single-step liquid–liquid extraction procedure using heptane-iso-amyl alcohol (97.5:2.5 v/v) was employed to recover olanzapine and the internal standard (a 2-ethylated olanzapine derivative) from the biological matrices which were adjusted to pH 10 with 1 M carbonate buffer. Detector response was linear from 1–5000 ng (r2>0.98). The limit of detection of the assay (signal:noise=3:1) and the lower limit of quantitation were 0.75 ng and 1 ng/ml of olanzapine, respectively. Interday variation for olanzapine 50 ng/ml in plasma and urine was 5.2% and 7.1% (n=5), respectively, and 9.5 and 12.3% at 1 ng/ml (n=5). Intraday variation for olanzapine 50 ng/ml in plasma and urine was 8.1% and 9.6% (n=15), respectively, and 14.2 and 17.1% at 1 ng/ml (n=15). The recoveries of olanzapine (50 ng/ml) and the internal standard were 83±6 and 92±6% in plasma, respectively, and 79±7 and 89±7% in urine, respectively. Accuracy was 96% and 93% at 50 and 1 ng/ml, respectively. The applicability of the assay was demonstrated by determining plasma concentrations of olanzapine in a healthy male volunteer for 48 h following a single oral dose of 5 mg olanzapine. This method is suitable for studying olanzapine disposition in single or multiple-dose pharmacokinetic studies.  相似文献   

3.
A sensitive and rapid high-performance liquid chromatography (HPLC) method with solid-phase extraction (SPE) to simultaneously determine albiflorin and paeoniflorin in rat serum was described. Serum samples were pretreated with solid-phase extraction using Extract-Clean cartridges, and the extracts were analyzed by HPLC on a reversed-phase C(18) column and a mobile phase of acetonitrile-0.03% formic acid (17:83 (v/v)) with ultraviolet detection at 230 nm. Pentoxifylline was used as the internal standard (IS). The linear ranges of the calibration curves were 29-1450 ng/ml for albiflorin and 10-2000 ng/ml for paeoniflorin. The intra- and inter-day precisions (R.S.D.) were 相似文献   

4.
A rapid and sensitive HPLC method was developed for the determination of ampicillin residues in muscle tissues of beef, pork, chicken and catfish. Muscle tissues were blended with a food processor into paste. A 5-g aliquot of the blended tissues was homogenized with 14 ml of 0.01 M phosphate buffer (pH 4.5) using a tissue homogenizer. Proteins were precipitated with the addition of 1 ml trichloroacetic acid (75%, w/v) followed by centrifugation. After filtration, 1 ml of the supernatant was reacted with formaldehyde under acidic and heating conditions. The ampicillin fluorescent derivative was then analyzed by reverse phase HPLC with fluorescence detection. Recoveries of spiked ampicillin at 5, 10 and 20 ng/g were >85%, with coefficients of variation <5%. The limit of detection and limit of quantitation for ampicillin in the tissues were 0.6 ng/g and 1.5 ng/g, respectively. The method is also applicable to the analysis of ampicillin residue in dry milk powder.  相似文献   

5.
Mirtazapine is a new centrally acting noradrenergic and specific serotonin antidepressant, with an active demethyl metabolite. For toxicological purposes, a specific and accurate RP-HPLC assay was developed for the simultaneous plasma determination of these compounds. A linear response was observed over the concentration range 50-500 ng/ml. A good accuracy (bias <10%) was achieved for all quality controls, with intra-day and inter-day variation coefficients less than 8.3%. The lower limit of quantification was 20 ng/ml, without interferences with endogenous or exogenous components. This rapid method (run time <12 min) was used to manage three intoxications involving mirtazapine.  相似文献   

6.
A rapid, sensitive, and specific reversed-phase high-performance liquid chromatography assay was developed for the determination of 1,3,4-triphenylpyrazole-5-acetic acid (isofezolac) in plasma and urine. The assay involves extraction into diethyl ether from plasma buffered at pH 4.4. The organic phase is evaporated and the residue, dissolved in the mobile phase [acetonitrile—water—0.2 M phosphate buffer (pH 3) (65 : 15 : 20)] is chromatographed at a flow-rate of 1.5 ml/min. The drug is detected by its UV absorption (detection limit 100 ng/ml) or its very intense fluorescence (detection limit 10 ng/ml). Absolute analytical recoveries for isofezolac varied from 92.9 to 100.4%. The accuracy is ca. 1%. Each separation requires about 6 min. This method was applied successfully to the determination of isofezolac in humans for pharmacokinetic studies.  相似文献   

7.
A rapid, accurate and reproducible assay utilising high performance liquid chromatography-mass spectrometry (LC-MS) has been developed and validated for determining testosterone concentrations in saliva and blow of bottlenose dolphins. Sample preparation used solid phase extraction with specific preconditioning of cartridges. Analytes were eluted with 100% acetonitrile, dried under nitrogen and stored at -80 degrees C. Samples were reconstituted in 60% acetonitrile for LC-MS analysis. Chromatographic separation was achieved with an Alltech Macrosphere C8 stainless steel analytical column (2.1 mm x 150 mm i.d., 5 microm particle size, 300 angstroms pore size) using a 55% mobile phase B isocratic method (mobile phase A = 0.5% acetic acid; mobile phase B = 0.5% acetic acid, 90% acetonitrile). Samples were analysed in SIM at m/z 289.20 (testosterone mw 288.40) and a positive ion ESI. The limit of quantification was 0.5 ng/ml with a limit of detection of 0.2 ng/ml. The concentration curve was linear from 0.5 to 50 ng/ml (y = 0.01x + 0.0045, r(2) = 0.959, r = 0.979, p < 0.001). The R.S.D.s of intra- and inter-batch precision were less than 15% for saliva and 11% blow. Recovery of the assay for saliva was 93.0 +/- 7.9% (50 ng/ml) and 91.5 +/- 3.72% (1 ng/ml), and for blow was 83.3 +/- 6.8% (50 ng/ml) and 85.8 +/- 4.6% (1 ng/ml). Recovery of the internal standard in saliva was 73.0 +/- 14.2% and in blow was 78.63 +/- 4.29. The described assay was used to determine the presence of endogenous testosterone in saliva (9.73-23 ng/ml, n = 10) and blow (14.71-86.20 ng/ml, n = 11) samples of captive bottlenose dolphins.  相似文献   

8.
A simple, rapid and cost-effective method for the determination of tenoxicam in human plasma is described, using ketorolac as the internal standard. The extraction procedure utilised 5% zinc sulphate and methanol. A nucleosil C18 column and 35:65 acetonitrile-water phosphate buffered mobile phase (pH 2.8) were used, with ultraviolet detection at 355 nm. The assay was linear in the range 40 ng/ml-10 μg/ml, with recovery of extraction ranging from 87 to 102%. The intra- and inter-assay reproducibility had coefficients of variation of 3.9–7.7 and 1.6% respectively. The limit of detection for this method was 40 ng/ml.  相似文献   

9.
A new rapid and sensitive high-performance liquid chromatographic method for analysis of docetaxel (Taxotere) in human plasma was developed and validated. After adding an internal standard (paclitaxel, Taxol), plasma was extracted following a simple liquid–liquid extraction with diethyl ether. Extraction efficiency averaged 95% for docetaxel. Separation was performed using a Nucleosil (C18) 5 μm column, monitored at 227 nm. The isocratic mobile phase consisted of acetonitrile–acetate buffer, pH 5–tetrahydrofuran (45:50:5, v/v) pumped at a flow-rate of 1.8 ml/min. The limit of quantification for docetaxel in plasma was 12.5 ng/ml. Retention times for docetaxel and paclitaxel were 7.7 and 9 min, respectively. Standard curves were linear over a range of 25–1000 ng/ml. This new method is rapid since it does not require time-consuming extraction procedures, or complex chromatographic conditions. This rapidity, along with the lack of chromatographic interferences with various other drugs likely to be administered to the cancer patients (pain killers, corticoids, antiemetics drugs) make this method suitable for daily routine analysis of Taxotere, a major anticancer drug extensively used in clinical oncology.  相似文献   

10.
For toxicological purposes, a HPLC assay was developed for the simultaneous determination of risperidone and 9-hydroxyrisperidone in human plasma. After a single-step liquid-liquid extraction, both compounds were separated on a C(18) column and measured at 280 nm. A good inter-assay accuracy (<116%) was achieved with inter-assay precision less than 12%. Quantification limits were 10 ng/ml. This rapid method (run time <5 min) is currently used for poison management.  相似文献   

11.
A rapid, sensitive and reproducible high-performance liquid chromatographic assay for busulfan in human plasma was developed. After extraction of plasma samples with acetonitrile and methylene chloride, busulfan and the internal standard [1,5-bis(methanesulfonyloxy)pentane] were derivatized with 8-mercaptoquinoline to yield fluorescent compounds which were detected with a fluorescence detector equipped with filters of 360 nm (excitation) and 425 nm (emission). Calibration graphs showed a linear correlation (r>0.9990) over the concentration range of 20–2000 ng/ml. The recovery of busulfan from plasma standards was 70±5%. The detection and quantification limits for busulfan in plasma samples were established at 9 ng/ml and 20 ng/ml, respectively. The intra- and inter-assay variations were lower than 8% and 10%, respectively. The applicability of the method was verified by analyzing the plasma concentrations of busulfan in a patient to whom it was administered orally on two different days.  相似文献   

12.
An ultra-violet high-performance liquid chromatographic method was developed for the determination of sertindole, an atypical antipsychotic drug and its main metabolites dehydrosertindole and norsertindole, in human plasma. With a small sample volume, after a single-step liquid-liquid extraction, the compounds were separated on a reversed-phase XTerra RP(18) column, eluted with 45% of acetonitrile and 55% of ammonium acetate buffer (0.05 M, adjusted pH 8) and detected at 256 nm within 11 min. This method shows a good linearity for plasma concentration between 5-100 ng/ml and 100-1000 ng/ml, a good precision (inter and intra day CV < 11%) and a good inter-assay accuracy (bias < 11%). The limit of quantification concentration was 5 ng/ml. The absolute recovery of sertindole was higher than 99%. This rapid and sensitive method could be used for therapeutic drug monitoring as well as for overdose management.  相似文献   

13.
A high-performance liquid chromatographic method for the measurement of bumetamide in plasma and urine is described. Following precipitation of proteins with acetonitrile, bumetanide was extracted from plasma or urine on a 1-ml bonded-phase C18 column and eluted with acetonitrile. Piretanide dissolved in methanol was used as the internal standard. A C18 Radial Pak column and fluorescence detection (excitation wavelength 228 nm; emission wavelength 418 nm) were used. The mobile phase consisted of methanol—water—glacial acetic acid (66:34:1, v/v) delivered isocratically at a flow-rate of 1.2 ml/min. The lower limit of detection for this method was 5 ng/ml using 0.2 ml of plasma or urine. Nafcillin, but not other semi-synthetic penicillins, was the only commonly used drug that interfered with this assay. No interference from endogenous compounds was detected. For plasma, the inter-assay coefficients of variation of the method were 7.6 and 4.4% for samples containing 10 and 250 ng/ml bumetanide, respectively. The inter-assay coefficients of variation for urine samples containing 10 and 2000 ng/ml were 8.1 and 5.7%, respectively. The calibration curve was linear over the range 5–2000 ng/ml.  相似文献   

14.
Exposure of BALB/c-3T3 cells (clone A31) to platelet-derived growth factor (PDGF) results in a rapid time- and dose-dependent alteration in the distribution of vinculin and actin. PDGF treatment (6-50 ng/ml) causes vinculin to disappear from adhesion plaques (within 2.5 min after PDGF exposure) and is followed by an accumulation of vinculin in punctate spots in the perinuclear region of the cell. This alteration in vinculin distribution is followed by a disruption of actin-containing stress fibers (within 5 to 10 min after PDGF exposure). Vinculin reappears in adhesion plaques by 60 min after PDGF addition while stress fiber staining is nondetectable at this time. PDGF treatment had no effect on talin, vimentin, or microtubule distribution in BALB/c-3T3 cells; in addition, exposure of cells to 5% platelet-poor plasma (PPP), 0.1% PPP, 30 ng/ml epidermal growth factor (EGF), 30 ng/ml somatomedin C, or 10 microM insulin also had no effect on vinculin or actin distribution. Other competence-inducing factors (fibroblast growth factor, calcium phosphate, and choleragen) and tumor growth factor produced similar alterations in vinculin and actin distribution as did PDGF, though not to the same extent. PDGF treatment of cells for 60 min followed by exposure to EGF (0.1-30 ng/ml for as long as 8 h after PDGF removal), or 5% PPP resulted in the nontransient disappearance of vinculin staining within 10 min after EGF or PPP additions; PDGF followed by 0.1% PPP or 10 microM insulin had no effect. Treatment of cells with low doses of PDGF (3.25 ng/ml), which did not affect vinculin or actin organization in cells, followed by EGF (10 ng/ml), resulted in the disappearance of vinculin staining in adhesion plaques, thus demonstrating the synergistic nature of PDGF and EGF. These data suggest that PDGF-induced competence and stimulation of cell growth in quiescent fibroblasts are associated with specific rapid alterations in the cellular organization of vinculin and actin.  相似文献   

15.
A sensitive and rapid method was developed to measure the mineralization of 14C-labeled organic compounds at picogram-per-milliliter or lower levels in samples of natural waters and sewage. Mineralization was considered to be equivalent to the loss of radioactivity from solutions. From 93 to 98% of benzoate, benzylamine, aniline, phenol, and 2,4-dichlorophenoxyacetate at one or more concentrations below 300 ng/ml was mineralized in samples of lake waters and sewage, indicating little or no incorporation of carbon into microbial cells. Assimilation of 14C by the cells mineralizing benzylamine in lake water was not detected. Mineralization in lake waters was linear with time for aniline at 5.7 pg to 500 ng/ml, benzylamine at 310 ng/ml, phenol at 102 fg to 10 mg/ml, 2,4-dichlorophenoxyacetate at 1.5 pg/ml, and di-(2-ethylhexyl) phthalate at 21 pg to 200 ng/ml, but it was exponential at several p-nitrophenol concentrations. The rate of mineralization of 50 and 500 ng of aniline per ml and 200 pg and 2.0 ng of the phthalate per ml increased with time in lake waters. The phthalate and 2,4-dichlorophenoxyacetate were mineralized in samples from a eutrophic but not an oligotrophic lake. Addition to eutrophic lake water of a benzoate-utilizing bacterium did not increase the rate of benzoate mineralization at 34 and 350 pg/ml but did so at 5 and 50 ng/ml. Glucose and phenol reduced the percentage of p-nitrophenol mineralized at p-nitrophenol concentrations of 200 ng/ml but not at 22.6 pg/ml and inhibited the rates of mineralization at both concentrations. These results show that the kinetics of mineralization, the capacity of the aquatic community to assimilate carbon from the substrate or the extent of assimilation, and the sensitivity of the mineralizing populations to organic compounds are different at trace levels than at higher concentrations of organic compounds.  相似文献   

16.
For the unequivocal proof of the use of a nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), a rapid, accurate and sensitive method which allows us to identify its main hydrolysis product ethyl methylphosphonic acid (EMPA) in human serum was explored by GC-MS. GC-MS analysis was performed after solvent extraction with acetonitrile in acidic conditions from the serum sample, which was previously deproteinized by micro-ultrafiltration, and subsequent tert.-butyldimethylsilyl derivatization with N-methyl-N-(tert.-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) with 1% tert.-butyldimethylsilyl chloride (t-BDMSC). Linear calibration curves were obtained in the concentration range from 50 to 500 ng/ml for EMPA in the full-scan EI mode and from 5 to 50 ng/ml for EMPA in the SIM EI mode. The relative standard deviation obtained at a sample concentration of 50 ng/ml was 8.4% in the full-scan mode and 7.3% in the SIM mode. Upon applying the full-scan EI and CI mode, 40 ng/ml and 80 ng/ml were the detection limits. Using the SIM-EI mode, in which the ion at m/z 153 was chosen, the limit was 3 ng/ml.  相似文献   

17.
A rapid, sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS-MS) method has been developed and validated for the simultaneous analysis of hydrocodone (HYC) and its metabolite hydromorphone (HYM) in human plasma. A robotic liquid handler and a 96-channel liquid handling workstation were used to aliquot samples, to add internal standard (I.S.), and to extract analytes of interest. A 96-well mixed-mode solid-phase cartridge plate was used to extract the analytes and I.S. The chromatographic separation was on a silica column (50 x 3 mm, 5-microm) with a mobile phase consisting of acetonitrile, water and trifluoroacetic acid (TFA) (92:8:0.01, v/v). The run time for each injection was 2.5 min with the retention times of approximately 2.1 and 2.2 min for HYC and HYM, respectively. The tandem mass spectrometric detection was by monitoring singly charged precursor-->product ion transition 300-->199 (m/z) for HYC, and 28-->185 (m/z) for HYM. The validated calibration curve range was 0.100-100 ng/ml, based on a plasma volume of 0.3 ml. The correlation coefficients were greater than or equal to 0.9996 for both HYC and HYM. The low limit of quantitation (LLOQ) was 0.100 ng/ml for both HYC and HYM with signal-to-noise ratio (S/N) of 50 and 10. respectively. The deuterated analytes, used as internal standards, were monitored at mass transitions 303-->199 (m/z) for HYC-d3 and 289-->185 (m/z) for HYM-d3. The inter-day (n= 17) precision of the quality control (QC) samples were < or = 3.5% RSD (relative standard deviation) for HYC and < or = 4.7% RSD for HYM, respectively. The inter-day accuracy of the QC samples were < or = 2.1% RE (relative error) for HYC and < or = 1.8% RE for HYM. The intra-day (n=6) precision and accuracy of the QC samples were < or = 2.6% RSD and < or = 3.0% RE for HYC, and < or = 4.7% RSD and < or = 2.4% RE for HYM. There was no significant deviation from the nominal values after a 5-fold dilution of high concentration QC samples by blank matrix. The QC samples were stable when kept at room temperature for 24-h or experienced three freeze-thaw cycles. The extraction recoveries were 86% for HYC and 78% for HYM. No detectable carryover was observed when a blank sample was injected immediately after a 2500 ng/ml sample that was 25-fold more concentrated than the upper limit of quantitation (ULOQ).  相似文献   

18.
A simple, rapid, sensitive and selective method has been developed for the stereospecific determination of verapamil and its metabolite, norverapamil in urine. For sample preparation we utilized a membrane-based solid-phase extraction (SPE) disk consisting of a thin, particle-loaded membrane inserted in a plastic syringe-like barrel. The particles, which may be C8 or C18 bonded phase (C8 in this work), are embedded within a matrix of PTFE (Teflon) fibrils. Overall analyte recoveries were above 85%, even at low concentration of 3.0 ng/ml with reproducibilities (C.V. values) below 13.1%. This method of extraction has the advantage of speed and considerable reduction in solvent volumes compared to conventional SPE and solvent extraction. The separation of all the enantiomers was achieved using a single chiral stationary phase column, the cellulose-based reversed-phase, Chiralcel OD-R. Analyte concentrations of less than 3.0 ng/ml could be quantitated with C.V. values below 14%. Calibration curves were linear in the range 2.5–300 ng/ml. Intra-day and inter-day reproducibilities were 10.5–14.2% at 3 ng/ml, 4.8–9.3% at 138.5 ng/ml and 7.8–10.1% at 280 ng/ml level, respectively, for all the enantiomers.  相似文献   

19.
A sensitive and very specific method, using liquid chromatography–electrospray mass spectrometry (LC–ES-MS), was developed for the determination of epirubicin, doxorubicin, daunorubicin, idarubicin and the respective active metabolites of the last three, namely doxorubicinol, daunorubicinol and idarubicinol in human serum, using aclarubicin as internal standard. Once thawed, 0.5-ml serum samples underwent an automated solid-phase extraction, using C18 Bond Elut cartridges (Varian) and a Zymark Rapid-Trace robot. After elution of the compounds with chloroform–2-propanol (4:1, v/v) and evaporation, the residue was reconstituted with a mixture of 5 mM ammonium formate buffer (pH 4.5)–acetonitrile (60:40, v/v). The chromatographic separation was performed using a Symmetry C18, 3.5 μm (150×1 mm I.D.) reversed-phase column, and a mixture of 5 mM ammonium formate buffer (pH 3)–acetonitrile (70:30, v/v) as mobile phase, delivered at 50 μl/min. The compounds were detected in the selected ion monitoring mode using, as quantitation ions, m/z 291 for idarubicin and idarubicinol, m/z 321 for daunorubicin and daunorubicinol, m/z 361 for epirubicin and doxorubicin, m/z 363 for doxorubicinol and m/z 812 for aclarubicin (I.S.). Extraction recovery was between 71 and 105% depending on compounds and concentration. The limit of detection was 0.5 ng/ml for daunorubicin and idarubicinol, 1 ng/ml for doxorubicin, epirubicin and idarubicin, 2 ng/ml for daunorubicinol and 2.5 ng/ml for doxorubicinol. The limit of quantitation (LOQ) was 2.5 ng/ml for doxorubicin, epirubicin and daunorubicinol, and 5 ng/ml for daunorubicin, idarubicin, doxorubicinol and idarubicinol. Linearity was verified from these LOQs up to 2000 ng/ml for the parent drugs (r≥0.992) and 200 ng/ml for the active metabolites (r≥0.985). Above LOQ, the within-day and between-day precision relative standard deviation values were all less than 15%. This assay was applied successfully to the analysis of human serum samples collected in patients administered doxorubicin or daunorubicin intravenously. This method is rapid, reliable, allows an easy sample preparation owing to the automated extraction and a high selectivity owing to MS detection.  相似文献   

20.
A rapid, reliable and specific reversed-phase high-performance liquid chromatographic procedure is described for the determination of diphenylpyraline hydrochloride at nanogram concentrations in plasma and urine. After extraction of the drug with n-pentane-2-propanol (50:1) from alkalinized samples, the organic extract was evaporated to dryness, reconstituted with methanol and chromatographed using a 5-μm Asahipak ODP-50 C18 column with UV detection at 254 nm. The elution time for diphenylpyraline was 7.9 min. The overall recovery of diphenylpyraline from spiked plasma and urine samples at concentrations ranging from 53 to 740 ng/ml were 94.65% and 92.29%, respectively. Linearity and precision data for plasma and urine standards after extraction were acceptable. The limit of detection was 15 ng/ml for both plasma and urine samples at 0.002 AUFS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号