首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six nitrogen-, sulfur- and cyclopropane-containing derivatives of cholestanol were examined as inhibitors of growth and sterol biosynthesis in the trypanosomatid protozoan Crithidia fasciculata. The concentrations of inhibitors in the culture medium required for 50% inhibition of growth were 0.32 microM for 24-thia-5 alpha,20 xi-cholestan-3 beta-ol (2), 0.009 microM for 24-methyl-24-aza-5 alpha,20 xi-cholestan-3 beta-ol (3), 0.95 microM for (20,21),(24,-25)-bis-(methylene)-5 alpha,20 xi-cholestan-3 beta-ol (4), 0.13 microM for 22-aza-5 alpha,20 xi-cholestan-3 beta-ol (5), and 0.3 microM for 23-azacholestan-3-ol (7). 23-Thia-5 alpha-cholestan-3 beta-ol (6) had no effect on protozoan growth at concentrations as high as 20 microM. Ergosterol was the major sterol observed in untreated C. fasciculata, but significant amounts of ergost-7-en-3 beta-ol, ergosta-7,24(28)-dien-3 beta-ol, ergosta-5,7,22,24(28)-tetraen-e beta-ol, cholesta-8,24-dien-3 beta-ol, and, in an unusual finding, 14 alpha-methyl-cholesta-8,24-dien-3 beta-ol were also present. When C. fasciculata was cultured in the presence of compounds 2 and 3, ergosterol synthesis was suppressed, and the principal sterol observed was cholesta-5,7,24-trien-3 beta-ol, a sterol which is not observed in untreated cultures. The presence of this trienol strongly suggests that 2 and 3 specifically inhibit the S-adenosylmethionine:sterol C-24 methyltransferase but do not interfere with the normal enzymatic processing of the sterol nucleus. When C. fasciculata was cultured in the presence of compounds 5 and 7, the levels of ergosterol and ergost-7-en-3 beta-ol were suppressed, but the amounts of the presumed immediate precursors of these sterols, ergosta-5,7,22,24(28)-tetraen-3 beta-ol and ergosta-7,24-(28)-dien-3 beta-ol, respectively, were correspondingly increased. These findings suggest that 5 and 7 specifically inhibit the reduction of the delta 24(28) side chain double bond. When C. fasciculata was cultured in the presence of compound 4, ergosterol synthesis was suppressed, but the sterol distribution in these cells was complex and not easily interpreted. Compound 6 had no significant effect on sterol synthesis in C. fasciculata.  相似文献   

2.
[Methyl-14C]methionine was supplied to yeast cells under aerobic and anaerobic conditions for the investigation of the pathway for ergosterol biosynthesis after the methylation of the side-chain. Under aerobic conditions, the incorporation of radioactivity into ergosterol was high. With a limited oxygen supply, in contrast, the radioactivity was first accumulated in ergosta-7,24(28)-dien-3beta-ol and ergosta-8,24(28)-dien-3beta-ol, and then transferred to ergost-7-en-3beta-ol, ergost-8-en-3beta-ol and ergosta-7,22-dien-3beta-ol with time. Under strictly anaerobic conditions, a double bond was introduced neither to delta5 nor to delta22. The results of the tracer experiments suggested the operation of several pathways in the late stages of ergosterol biosynthesis. It was also suggested that the main pathways varied depending on the conditions such as oxygen supply and other factors. The above conclusion was supported by the results of the analyses of the sterol compositions of the cells grown under various conditions.  相似文献   

3.
The mechanism of the elaboration of ring b in ergosterol biosynthesis   总被引:3,自引:3,他引:0  
Methods for the preparation of [3alpha-(3)H]ergosta-7,22-dien-3beta-ol (5,6-dihydro-ergosterol), [5,6-(3)H(2)]ergosta-7,22-dien-3beta-ol and [3alpha-(3)H]ergosta-7,22-diene-3beta,5alpha-diol are described. It is shown that 5,6-dihydro[3alpha-(3)H]ergosterol on incubation under aerobic conditions with whole cells of Saccharomyces cerevisiae LK(2)G(12) is efficiently converted into ergosterol. Studies carried out with dihydro[5alpha,6alpha-(3)H(2)]-ergosterol demonstrate that the introduction of the 5,6-double bond in ergosterol biosynthesis is attended by an overall cis-elimination of two hydrogen atoms. To differentiate between a hydroxylation-dehydration mechanism and a dehydrogenation mechanism, the metabolism of [3alpha-(3)H]ergosta-7,22-diene-3beta,5alpha-diol was studied. It was shown that this diol is converted into ergosterol only under aerobic conditions. It is therefore suggested that the introduction of the 5,6-double bond of ergosterol does not occur through a hydroxylation-dehydration mechanism.  相似文献   

4.
The products of biotransformation by Nocardia erythropolis-402 of the microbial sterol ergosta-7,22-dien-3 beta-ol isolated from a Saccharomyces cerevisiae mutant were studied. The products were identified as ergosta-7,22-dien-3-one and ergosta-7,22-dien-17 alpha-ol-3-one by thin-layer chromatography, UV-spectrophotometry and mass-spectroscopy. It was found that the existence of 7-8 double bond slowed down the cleavage of the sterol side chain. The absence of 5-6 double bond prevents the formation of delta 4-3-ketosystem of coupled bonds.  相似文献   

5.
Ko HH  Hung CF  Wang JP  Lin CN 《Phytochemistry》2008,69(1):234-239
The antiinflammatory properties of triterpenoids and steroids from both Ganoderma lucidum and Ganoderma tsugae were studied. Twelve compounds, including ergosta-7,22-dien-3beta-ol (1), ergosta-7,22-dien-3beta-yl palmitate (2), ergosta-7,22-dien-3-one (3), ergosta-7,22-dien-2beta,3alpha,9alpha-triol (4), 5alpha,8alpha-epidioxyergosta-6,22-dien-3beta-ol (5), ganoderal A (6), ganoderal B (7), ganoderic aldehyde A (8), tsugaric acid A (9), 3-oxo-5alpha-lanosta-8,24-dien-21-oic acid (10), 3alpha-acetoxy-5alpha-lanosta-8,24-dien-21-oic acid ester beta-d-glucoside (11), and tsugaric acid B (12), were assessed in vitro by determining their inhibitory effects on the chemical mediators released from mast cells, neutrophils, and macrophages. Compound 10 showed a significant inhibitory effect on the release of beta-glucuronidase from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP)/cytochalasin B (CB) whereas compound 9 significantly inhibited superoxide anion formation in fMLP/CB-stimulated rat neutrophils. Compound 10 also exhibited a potent inhibitory effect on NO production in lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma)-stimulated N9 microglial cells. Moreover, compound 9 was also able to protect human keratinocytes against damage induced by ultraviolet B (UV B) light, which indicated 9 could protect keratinocytes from photodamage.  相似文献   

6.
The sterol content of Saccharomyces strains with altered ergosterol metabolism was studied by UV-spectrophotometry, thin-layer chromatography and chromatographic mass-spectroscopy. A technique for estimation of D-vitamin activity of the yeast strains is proposed. The irradiated biomass of the strains accumulated ergosta-5,7-dien-3 beta-ol and also cholesta-5,7,24-trien-3 beta-ol and cholesta-5,7,22,24-tetraen-3 beta-ol is characterized by high antirachitic activity.  相似文献   

7.
The isolation, structure determination and synthesis of ergosta-5, 24(28), 25-trien-3 beta-ol, as well as the synthesis of its 28-14C analog--a possible biosynthetic precursor of several marine sterols--is described.  相似文献   

8.
Substrate specificity of biotransformation enzymes of culture Nocardia erythropolis was studied. Products of transformation of cholesterol and three sterols of microbial origin: ergosterol, ergosta-5,7-dien-3 beta-ol and ergosta-7,22-dien-3 beta-ol was identified with a help of thin-layer chromatography, UV spectrophotometry and mass-spectrometry. It was established, that delta 22-bond in the side chains of sterols and delta 7-bond slows and delta 5-bond makes impossible cleavage of side chains of sterols.  相似文献   

9.
Aspergillus fumigatus CY018 was recognized as an endophytic fungus for the first time in the leaf of Cynodon dactylon. By bioassay-guided fractionation, the EtOAc extract of a solid-matrix steady culture of this fungus afforded two new metabolites, named asperfumoid (1) and asperfumin (2), together with six known bioactive compounds including monomethylsulochrin, fumigaclavine C, fumitremorgin C, physcion, helvolic acid and 5alpha,8alpha-epidioxy-ergosta-6,22-diene-3beta-ol as well as other four known compounds ergosta-4,22-diene-3beta-ol, ergosterol, cyclo(Ala-Leu) and cyclo(Ala-Ile). Through detailed spectroscopic analyses including HRESI-MS, homo- and hetero-nuclear correlation NMR experiments (HMQC, COSY, NOESY and HMBC), the structures of asperfumoid and asperfumin were established to be spiro-(3-hydroxyl-2,6-dimethoxyl-2,5-diene-4-cyclohexone-(1,3')-5'-methoxyl-7'-methyl-(1'H, 2'H, 4'H)-quinoline-2',4'-dione) and 5-hydroxyl-2-(6-hydroxyl-2-methoxyl-4-methylbenzoyl)-3,6-dimethoxyl-benzoic methyl ester, respectively. All of the 12 isolates were subjected to in vitro bioactive assays against three human pathogenic fungi Candida albicans, Tricophyton rubrum and Aspergillus niger. As a result, asperfumoid, fumigaclavine C, fumitremorgin C, physcion and helvolic acid were shown to inhibit C. albicans with MICs of 75.0, 31.5, 62.5, 125.0 and 31.5 microg/mL, respectively.  相似文献   

10.
The comparative analysis of sterol content in the yeast Saccharomyces cerevisiae strains singly or doubly defective in nystatin resistance genes was carried out. The strains with two mutations in NYS genes were shown to accumulate the sterol mixture, similar to that of the parental singly defective mutant. This type of gene interaction allows to define the main biochemical order of reaction in ergosterol synthesis: methylation in C24 (NYS1), delta 8----delta 7 isomerization (NYS2), C5 (6) and C22 (23) desaturation (NYS3 and NYSX).  相似文献   

11.
Sterols of three Basidiomycetes were determined. The main sterol was ergosta-5,7,22-trien-3 beta-ol, accompanied by other closely related sterols. Cholesterol was found only in trace amounts.  相似文献   

12.
1. The echinoderms Asterias rubens and Solaster papposus (Class Asteroidea) metabolize injected [4(-14)C]cholest-5-en-3beta-ol to produce labelled 5alpha-cholestan-3beta-ol and 5alpha-cholest-7-en-3beta-ol. 2. Conversion of 5alpha-[4(-14)C]cholestan-3beta-ol into 5alpha-cholest-7-en-3beta-ol was demonstrated in A. Rubens. 3. Incubations of A. rubens with [4(-14)C]cholest-4-en-3-one resulted in the production of labelled 5alpha-cholestan-3-one, 5alpha-cholestan-3beta-ol and 5alpha-cholest-7-en-3beta-ol. 4. [4(-14)C]Sitosterol was metabolized by A. rubens to give 5alpha-stigmastan-3beta-ol and 5alpha-stigmast-7-en-3beta-ol. 5. The significance of these results in relation to the presence of alpha7 sterols in starfish is discussed.  相似文献   

13.
The sterols of the echinoderm Asterias rubens   总被引:7,自引:5,他引:2  
1. Twenty-two sterols were identified in the starfish Asterias rubens (Phylum, Echinodermata; Class, Asteroidea). 2. The major 4-demethyl sterols had a Delta(7) bond and the C(27) compound 5alpha-cholest-7-en-3beta-ol predominated over other mono- and di-unsaturated sterols belonging to the C(26), C(27), C(28) and C(29) series. 3. Small amounts of cholest-5-en-3beta-ol and 5alpha-cholestan-3beta-ol were also present. 4. The minor sterols identified all contained either one or two methyl groups at C-4 and are considered to be potential biosynthetic precursors of 5alpha-cholest-7-en-3beta-ol. 5. Three sterols possessing a 9beta,19-cyclopropane ring were also isolated and were probably derived by the starfish from a dietary source.  相似文献   

14.
An in vitro assay for delta14-sterol reductase from yeast was developed, using ergosta-8,14-dien-3beta-ol as the substrate. The kinetics and localization of the enzyme were examined. The inhibition of the enzyme by the antimycotic agent, 15-azasterol, was verified.  相似文献   

15.
1. The metabolism of [4-(14)C]pregnenolone to androst-16-enes has been studied in short-term incubations of boar testis tissue. With fresh tissue androsta-5,16-dien-3beta-ol (8%) and 5alpha-androst-16-en-3beta-ol (2%) were formed. Tissue that had been stored at -20 degrees C was still capable of metabolizing pregnenolone to androsta-5,16-dien-3beta-ol. 2. NADPH was essential for the formation of androsta-5,16-dien-3beta-ol from pregnenolone; NADH had less activity and ATP was not necessary for the reaction. 3. [4-(14)C]Androsta-5,16-dien-3beta-ol, prepared biosynthetically from [4-(14)C]pregnenolone, was shown to be converted by boar testis preparations into androsta-4,16-dien-3-one (31%) if NAD(+) was present or into 5alpha-androst-16-en-3beta-ol (4%) if NADPH was present. 4. 17alpha-Hydroxyandrost-4-en-3-one and 3beta,17alpha-dihydroxypregn-5-en-20-one were considered as possible precursors for androst-16-ene formation, but both were shown to be ineffective. 5. No radioactivity was incorporated into androst-5-en-3beta-ol used to trap any corresponding (14)C-labelled compound formed from [4-(14)C]pregnenolone.  相似文献   

16.
The data on allele interactions of nystatin resistance genes are presented. It has been shown that the mutant phenotype of heteroallelic hybrids NYS1, NYS4 and, probably, NYS3 is strengthened. The intragenic complementation has been found in NYS2 gene, allowing to imply the multimeric structure of delta 8----delta 7 isomerase which is controlled by this gene.  相似文献   

17.
The possibility that the serum concentrations of various cholesterol precursors may reflect the activity of the hepatic HMG-CoA reductase was investigated in humans under different conditions. The serum levels of squalene, free and esterified lanosterol, (4 alpha, 4 beta, 14 alpha-trimethyl-5 alpha-cholest-8, 24-dien-3 beta-ol), two dimethylsterols (4 alpha, 4 beta-dimethyl-5 beta-cholest-8-en-3 beta-ol and 4 alpha, 4 beta-dimethyl-5 alpha-cholest-8, 24-dien-3 beta-ol), two methostenols (4 alpha-methyl-5 alpha-cholest-7-en-3 beta-ol and 4 alpha-methyl-5 alpha-cholest-8-en-3 beta-ol), two lathosterols (5 alpha-cholest-7-en-3 beta-ol and 5 alpha-cholest-8-en-3 beta-ol) and desmosterol (cholest-5, 24-dien-3 beta-ol) were measured in untreated patients (n = 7) and patients treated with cholestyramine (QuestranR, 8 g twice daily for 2-3 weeks, n = 5) or chenodeoxycholic acid (15 mg/kg body weight daily for 3-4 weeks, n = 8) prior to elective cholecystectomy. The activity of the hepatic microsomal HMG-CoA reductase was measured in liver biopsies taken in connection with the operation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
This study examined the kinetics of sterol desorption from monolayer and small unilamellar vesicle membranes to 2-hydroxypropyl-beta-cyclodextrin. The sterols used include cholesterol, dehydroergosterol (ergosta-5,7,9,(11),22-tetraen-3beta-ol) and cholestatrienol (cholesta-5,7,9,(11)-trien-3beta-ol). Desorption rates of dehydroergosterol and cholestatrienol from pure sterol monolayers were faster (3.3-4.6-fold) than the rate measured for cholesterol. In mixed monolayers (sterol: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 30:70 mol%), both dehydroergosterol and cholestatrienol desorbed faster than cholesterol. clearly indicating a difference in interfacial behavior of these sterols. In vesicle membranes desorption of dehydroergosterol was slower than desorption of cholestatrienol, and both rates were markedly affected by the phospholipid composition. Desorption of sterols was slower from sphingomyelin as compared to phosphatidylcholine vesicles. Desorption of fluorescent sterols was also faster from vesicles prepared by ethanol-injection as compared to extruded vesicles. The results of this study suggest that dehydroergosterol and cholestatrienol differ from cholesterol in their membrane behavior, therefore care should be exercised when experimental data derived with these probes are interpreted.  相似文献   

19.
A fluorescent sterol probe study of human serum low-density lipoproteins   总被引:1,自引:0,他引:1  
The fluorescent sterol probe, ergosta-5,7,9,(11),22-tetraen-3 beta-ol (dehydroergosterol), was utilized as a cholesterol analog to label human serum low-density lipoproteins (LDL). Quenching of dehydroergosterol fluorescence by KI indicated that most of the fluorophore was either buried within the outer phospholipid monolayer of LDL or within the neutral lipid core of LDL. The steady-state anisotropy of dehydroergosterol in LDL detected the cholesteric core phase transition near 30 degrees C. Fluorescence lifetime decays for dehydroergosterol contained two components, both below and above the cholesteric phase transition, with the major lifetime component near 1 ns. Neither lifetime component underwent a detectable change in duration at the core phase transition temperature. Time-correlated fluorescence anisotropy decays of dehydroergosterol indicated a single rotational correlation time near 1.7 ns, which was unaffected by the core phase transition. Time-correlated anisotropy decays also suggested hindered rotation of dehydroergosterol in LDL. These results indicate that unesterified cholesterol is primarily located in the outer phospholipid monolayer of LDL, with the majority of cholesterol not in direct contact with the aqueous phase.  相似文献   

20.
The effect of low concentrations of a specifically designed sterol-24-transmethylase inhibitor, 25-aza-24, 25-dihydrozymosterol (10) on sterol production in Saccharomyces cerevisiae was examined. The synthesis of cholesta-5,7,22,24-tetraen-3beta-ol (4), its 7,22,24 analog (15) and the 7,24 analog (5) coupled with the availability of zymosterol (6) and cholesta-5,7,24-3beta-ol (3) derivatives facilitated a search for these sterols in cultures treated with this inhibitor. When S. cerevisiae was grown in the presence of 1.3 and 5 muM 10, it produced no ergosterol but accumulated zymosterol (6), cholesta-5,7,22,24-tetraen-3beta-ol (4) and related C27 sterols (3 and 5). These results indicate blockage of the side chain methylation that normally occurs during the biosynthesis of ergosterol in yeast by compound 10 is efficient. The cholesta-5,7,22,24-tetraen-3beta-ol is a close structural analog of provitamin D3 (7-dehydrocholesterol). The inhibited yeast thus provides a source of a potentially new provitamin D3 substitute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号