首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eighteen black spruce (Picea mariana) stands, representing postfire ages of 26 to 120 yr, were surveyed for understorey vegetation and site/microsite characteristics at two spatial scales. This enabled comparison of within- versus among-stand compositional variation.Detrended correspondence analysis (DCA) ordination among the 18 stands revealed a complex age/moisture gradient. DCA ordination among 1 800 quadrats within the stands indicated a similar gradient with much compositional overlap. Quadrats were grouped, using two-way indicator species analysis (TWINSPAN), into 9 classes each representing a phase in understorey vegetation composition. These phases shifted in abundance from young to old stands with a high degree of concordance among replicates in the same age class. Understorey succession is strongly linked to the stages in tree growth, mortality and thinning coupled with the accumulation of site moisture.Abbreviations DCA Detrended Corrospondence Analysis  相似文献   

2.
Multivariate analyses were used to describe the vegetation characteristics of a transition from lowelevation Mojave desert to higher-elevation Great Basin desert. Vegetation data used were from Plutonium Valley in the Nevada Test Site. Data from forty nine releves were analyzed with two classifications (two-day indicator analysis or TWINSPAN and unweighted paried group cluster analysis or CLUSTER). Three ordinations, reciprocal averaging (RA), detrended reciprocal averaging (DCA) and non-metric multidimensional scaling (MNDS), were also used. A rotational correlation analysis was used to determine the vector direction of environmental gradients that correlate best with ordination results. Only token correspondence was found between multivariate classes generated by TWINSPAN and CLUSTER, and seven classes (plant communities) identified from field reconnaissance. The latter seven communities were based on differences in dominant species. Distribution of the vegetation was related more to beta diversity than alpha diversity. Individual species were much less diagnostic than the amount of plant cover, groups or guilds of species or differences in elevation and steepness of slope. Because of the high beta diversity the NMDS ordination gave results with the greatest ease of interpretation.  相似文献   

3.
Foster  Bryan L.  Tilman  David 《Plant Ecology》2000,146(1):1-10
Chronosequence and permanent plot studies are the two most common methods for evaluating successional dynamics in plant communities. We combined these two approaches by re-sampling an old-field chronosequence at Cedar Creek Natural History Area (Minnesota, USA) to: (1) measure rates of secondary succession; and (2) to test the ability of the chronosequence approach to predict actual successional dynamics over a 14-year survey interval. For each of 19 chronosequence fields we calculated four complimentary indices of succession rate for community changes that actually occurred within each of these fields between 1983 and 1997. We found that measures of compositional dissimilarity, species turnover, and the change rates of perennial and native species cover over this 14-year period were all negatively correlated with field age, indicating that the rate of successional change in these old-fields generally declines over time. We also found that data collected from the initial static chronosequence survey (1983) accurately predicted many of the observed changes in species abundance that occurred between 1983 and 1997, but was a poor predictor of changes in species richness. In general, chronosequence re-sampling confirmed the validity of using the chronosequence approach to infer basic patterns of successional change.  相似文献   

4.
Summary A soil nitrogen (N) availability gradient was induced on a disturbed sagebrush site in northwestern Colorado by fertilizing with nitrogen (high available N), applying sucrose (low available N), and applying neither nitrogen nor sucrose (control). Species composition was studied for 3 years. At the end of the study, N concentration of aboveground tissue of 3 major species was determined. The rate of species replacement was most rapid on plots receiving the sucrose treatment and was slowest on plots receiving the N treatment. Early-seral dominats had greater tissue N concentrations when availability of the resource was high but lower tissue N concentrations when available soil N became limited. Midseral dominants displayed the opposite pattern. These results suggest that the supply of available soil N, and therefore the dynamics of N incorporation in perennial plant tissue, is a primary mechanism in controlling the rate of secondary succession within this semiarid ecosystem.  相似文献   

5.
The relationship between biodiversity and ecosystem functioning (BEF) is one of the most concerned topics in ecology. However, most of the studies have been conducted in controlled experiments in grasslands, few observational field studies have been carried out in forests. In this paper, we report variations of species diversity, functional diversity and aboveground biomass (AGB) for woody plants (trees and shrubs) along a chronosequence of four successional stages (18-year-old fallow, 30-year-old fallow, 60-year-old fallow, and old-growth forest) in a tropical lowland rainforest recovered after shifting cultivation on Hainan Island, China. Fifty randomly selected sample plots of 20 m × 20 m were investigated in each of the four successional stages. Four functional traits (specific leaf area, wood density, maximum species height and leaf dry matter content) were measured for each woody plants species and the relationships between species/functional diversity and AGB during secondary succession were explored. The results showed that both plant diversity and AGB recovered gradually with the secondary succession. AGB was positively correlated with both species and functional diversity in each stage of succession. Consistent with many controlled experimental results in grasslands, our observational field study confirms that ecosystem functioning is closely related to biodiversity during secondary succession in species rich tropical forests.  相似文献   

6.
7.
Ornithochory and plant succession in mediterranean abandoned orchards   总被引:1,自引:0,他引:1  
Data on the occurrence of species with fleshy diaspores and on breeding birds were collected in three abandoned orchards, resp. 8, 11 and 24 years after abandonment. Most of the 41 phanerophytes and vines with fleshy diaspores are also found in the borders of the orchards, the more so if the number of years since abandonment increases. Most species have small seeds and red or black coloured diaspores, most of which ripen in autumn. The frequent species show a characteristic distribution pattern in relation to the distance of the fruit trees: high densities near the trunk and uniform decrease with distance. This is explained by the behaviour of frugivorous birds. No correlation was found between distribution patterns and soil conditions. Age structure of colonizing species shows a distribution conforming an inversed J curve in the more recently abandoned orchard. The main conclusions are:
  1. Pioncor trees are attractive for frugivorous birds and may act as nuclei. This supports the facilitation model.
  2. The distribution of diaspores by birds helps to homogenize the species distribution on the regional level but at the site level individual differences in nucleation cause a heterogeneity.
  相似文献   

8.
We investigated the effects of total (TR) or partial (PR) removal of the above-ground biomass of the dominant species on early successional trends in two oldfields in central New Jersey, USA. Our objective was to assess the occurrence of facilitation, tolerance, or inhibition as mechanisms of species replacement in the fields studied. In a 2nd-yr oldfield dominated by Ambrosia artemisiifolia, floristic composition and distribution of species cover changed markedly between the 2nd and the 3rd yr, regardless of the removal treatment. In both TR and PR plots and in control plots dominance shifted from an annual (A. artemisiifolia) to a biennial (Erigeron annuus). This indicates that the presence of the annual dominant is not necessary to promote this successional replacement, and therefore facilitation can be ruled out. Most species present in the 3rd-yr community were late summer and fall invaders which were not initially present. In a 7-yr oldfield dominated by Solidago canadensis, a clonal perennial, very little change in the distribution of species cover could be detected between years. Overall physiognomy remained the same, but there was a gradual change in floristic composition. In this field, TR and PR treatments enhanced vegetational change by allowing the increase in cover of suppressed understory species. Both inhibition and tolerance mechanisms may be involved in the pattern of vegetational change in this field. Finally, we stress that the mechanisms of species replacement operating in early secondary succession are dependent on structural and life history characteristics of the species assemblage on a particular site.  相似文献   

9.
Austin  M. P.  Belbin  L. 《Plant Ecology》1981,46(1):19-30
Differences in vegetation dynamics over a period of two years along an environmental gradient of shading on a lawn are examined. Communities (groups) recognized by numerical classification are correlated with degree of shading, season and differences between years by means of generalized linear model analysis. More of the variance is explained if environmental position is used instead of degree of shading as spatial distribution of a strongly competitive species (Trifolium repens) is confounded with shading. Transition probabilities are related to environmental position and season. Simulation with Markov matrices for each season and position demonstrate markedly different successions for different positions. These simulations have no predictive value however as accurate estimate of transition probabilities requires knowledge of the state of adjacent quadrats, i.e. individual observations of transition probabilities are not independent.Transition matrices are unlikely to be useful for predictive analysis of succession when spatial pattern is of significance in the community.We thank S. Kendall, S. Witts, A. Howard and C. Helman for their assistance with the data preparation and analysis, and R. Cunningham for advice on statistical analysis.  相似文献   

10.
Summary A study was begun in 1976 to measure succession patterns following soil disturbance within a sagebrush community in northwestern Colorado. The principal hypothesis was that type of disturbance affects the direction of succession, resulting in different plant communities over time. Successional dynamics were studied through 1988. Four types of soil disturbance resulted in 3 early seral communities: one dominated by grasses, one by annuals, and one intermediate. The annual-dominated communities were opportunistic on these sites, lasting 3–5 years and not determining the direction in which succession proceeded following their replacement. Twelve years after disturbance, 3 communities (one grass-dominated, one shrub-dominated, and one intermediate) occupied the site, the characteristics of which were functions of type of initial soil disturbance. For the period of time covered by this study (12 years), degree of disturbance was found to affect the direction of succession, resulting in different plant communities over time. There were, however, successional characteristics toward the end of the study that suggest that over a longer time period, succession might progress to a single community regardless of type of disturbance.  相似文献   

11.
Reclamation is an application of treatment(s) following disturbance to promote succession and accelerate the return of target conditions. Previous studies have framed reclamation in the context of succession by studying its effectiveness in reestablishing late‐successional plant communities. Reestablishment of plant communities is especially important and challenging in drylands such as shrub steppe ecosystems where succession proceeds slowly. These ecosystems face threats from climate change, invasive species, altered fire regimes, and land‐use change, as well as fossil‐fuel extraction and associated disturbance. As such, the need for effective reclamation after this type of energy development is great. However, past research regarding this type of reclamation has focused on mining rather than oil and gas development. To better understand the effect of reclamation on rates of succession in dryland shrub steppe ecosystems, we sampled oil and gas wellpads and adjacent undisturbed big sagebrush plant communities in Wyoming, U.S.A., and quantified the extent of recovery for forbs, grasses, and shrubs on reclaimed and unreclaimed wellpads relative to undisturbed plant communities. Reclamation increased the recovery rate for early‐successional types, including combined forbs and grasses and perennial grasses, but did not affect recovery rate of late‐successional types, particularly big sagebrush and perennial forbs. Rather, subsequent analyses showed that recovery of late‐successional types was affected by soil texture and time since wellpad abandonment. This is consistent with studies in other ecosystems where reclamation has been implemented, suggesting that reclamation may not help reestablish late‐successional plant communities more quickly than they would reestablish naturally.  相似文献   

12.
Question: Our knowledge of secondary old‐field succession in Mediterranean environments is extremely poor and is non‐existent for restrictive soil conditions. How these ecosystems, such as those on semi‐arid gypsum outcrops, recover seems a priority for managing change and for ensuring conservation of specialized and endangered biota. We tested whether reinstallation of gypsum vegetation after cropland abandonment requires: (1) soil physical restructuring and (2) chemical readjustment to enable growth and survival of specialized gypsophilous vegetation, and more specifically how time from abandonment drives such environmental change. Location: We sampled a complete set of old fields on gypsum soils (1–60 yr since abandonment) in Villarrubia de Santiago (Toledo, Spain). Methods: Generalized linear models and model comparisons were used to analyse the effect of several environmental parameters on species abundance and richness. Ordination methods (canonical correspondence analyses and partial canonical correspondence analyses) were undertaken to evaluate compositional variation among the sampled fields. Results: Secondary old‐field succession on semi‐arid Mediterranean gypsum soils was controlled by a complex set of factors acting relatively independently. Surprisingly, time since abandonment explains only a small proportion of compositional variation (3%). Conversely, soil chemical features independently from time since abandonment are important for explaining differences found in old‐field composition. Conclusions: Secondary succession on specialized Mediterranean soils does not follow the widely described “amelioration” process in which soil features and composition are closely related over time. Restrictive soil conditions control both structure and functioning of mature communities and also secondary succession.  相似文献   

13.
14.
Metabolic quotient of the soil microflora in relation to plant succession   总被引:14,自引:0,他引:14  
Summary In this study we propose the hypothesis that ecosystem succession is accompanied by a decrease in the metabolic quotient qCO2 (respiration-to-biomass ratio) of the soil microflora. The qCO2 is calculated from basal respiration (CO2-C·h-1) per unit microbial biomass carbon (Cmier). The hypothesis was tested by studying two primary successions on recessional moraines of the Rotmoos Ferner (Austria) and the Athabasca Glacier (Canada). For both soil seres (0->200 years) it was shown that the qCO2 decreased with time, which corroborated the hypothesis. In addition, the short term development of the qCO2 was demonstrated with a revegetation trial. We observed a rise in qCO2 for the first two years after reclamation, followed by a subsequent decrease.  相似文献   

15.
16.
I examine the process of plant community colonization through a chronosequence study of permanent plots spanning 45 years on a 70-year-old subalpine earthflow in south-western Colorado, USA.While local diversity and average density of vegetation remained stable throughout the study, the overall diversity increased through the early years of the study with little change over the past 20 years. A gradual shift in species composition occurred through time with species with good dispersal and stress tolerance abilities colonizing the site initially followed by more generalist species.After over 70 years the disturbed communities remained distinct from adjacent relatively undisturbed areas in diversity, density, and species composition. Soil translocation experiments suggest that it is the severe microclimate of the earthflow which is limiting further colonization of the site.  相似文献   

17.
Topographic control of vegetation in a mountain big sagebrush steppe   总被引:2,自引:0,他引:2  
Mountain big sagebrush steppes in Wyoming have strong spatial patterning associated with topography. We describe the spatial variability of vegetation in a sagebrush steppe, and test the relationship between topography and vegetation using canonical correlation. Results of the analysis suggest that the main control over vegetation distribution in this system is wind exposure. Exposed sites are characterized by cushion plant communities and Artemisia nova, and less exposed sites by the taller sagebrush species Artemisia tridentata ssp. vaseyana. Topographic depressions and leeward slopes are characterized by aspen stands and nivation hollows. Measurements of soil microclimate suggest that a major influence of topographic position on vegetation is snow redistribution and its effect on soil moisture and temperature.Abbreviations ARNO Artemisia nova - ARTRW Artemisia tridentata ssp. wyomingensis - ARTRV Artemisia tridentata ssp. vaseyana - PUTR Purshia tridentata - RIP riparian community - POTR Populus tremuloides - NIV nivation hollow community  相似文献   

18.
Vegetation treatments have been widely implemented in efforts to enhance conditions for wildlife populations. Yet the effectiveness of such efforts often lack rigorous evaluations to determine whether these practices are effective for targeted species. This is particularly important when manipulating wildlife habitats in ecosystems that are faced with multiple stressors. The sagebrush (Artemisia spp.) ecosystem has been altered extensively over the last century leading to declines of many associated species. Wyoming big sagebrush (A. tridentata wyomingensis) is the most widely distributed subspecies, providing important habitats for sagebrush-obligate and associated wildlife. Sagebrush often has been treated with chemicals, mechanical treatments, and prescribed burning to increase herbaceous forage species released from competition with sagebrush overstory. Despite many studies documenting negative effects of sagebrush control on greater sage-grouse (Centrocercus urophasianus) habitat, treatments are still proposed as a means of improving habitat for sage-grouse and other sagebrush-dependent species. Furthermore, most studies have focused on vegetation response and none have rigorously evaluated the direct influence of these treatments on sage-grouse. We initiated a 9-year (2011–2019) experimental study in central Wyoming, USA, to better understand how greater sage-grouse respond to sagebrush reduction treatments in Wyoming big sagebrush communities. We evaluated the influence of 2 common sagebrush treatments on greater sage-grouse demography and resource selection. We implemented mowing and tebuthiuron application in winter and spring 2014 and evaluated the pre- (2011–2013) and post-treatment (2014–2019) responses of sage-grouse relative to these management actions. We evaluated responses to treatments using demographic and behavioral data collected from 620 radio-marked female greater sage-grouse. Our specific objectives were to evaluate how treatments influenced 1) sage-grouse reproductive success and female survival; 2) sage-grouse nesting, brood-rearing, and female resource selection; 3) vegetation responses; and 4) forbs and invertebrates. Our results generally suggested neutral demographic responses and slight avoidance by greater sage-grouse in response to Wyoming big sagebrush treated by mowing and tebuthiuron. Neither mowing nor tebuthiuron treatments influenced nest survival, brood survival, or female survival. Selection for nest and brood-rearing sites did not differ before and after treatments. Females selected habitats near treatments before and after they were implemented; however, the strength of selection was lower after treatments compared with pre-treatment periods, which may be explained by a lack of response in vegetation and invertebrates following treatments. Perennial grass cover and height varied temporally yet did not vary systematically between treatment and control plots. Forb cover and species richness varied annually but not in relation to either treatment type. Perennial grass cover and height, forb cover, and forb species richness did not increase within mowed or tebuthiuron-treated areas that received 2 or 6 years of grazing rest compared with areas that received no grazing rest. Finally, forb and invertebrate dry mass did not differ between treated plots and control plots at mowing or tebuthiuron sites in any years following treatments. Results from our study add to a large body of evidence that sage-grouse using Wyoming big sagebrush vegetation communities do not respond positively to sagebrush manipulation treatments. Management practices that focus on the maintenance of large, undisturbed tracts of sagebrush will best facilitate the persistence of sage-grouse populations and other species reliant on the sagebrush steppe.  相似文献   

19.
Early succession of butterfly and plant communities on set-aside fields   总被引:9,自引:0,他引:9  
 Hypotheses on secondary succession of butterfly and plant communities were tested using naturally developed 1- to 4-year-old set-aside fields (n = 16), sown fields (n = 8) and old meadows (n = 4) in 1992 in South Germany. Pioneer successional fields (1st and 2nd year of succession, dominated by annuals) and early successional fields (3rd and 4th year of succession where perennials, especially grasses became dominant) had fewer plant species than mid-successional fields (old meadows). In contrast to established hypotheses, mean number of plant species decreased from 1- to 4-year-old set-aside fields. Species richness of butterfly communities did not change during the first four years of succession, but species composition changed greatly. Pioneer successional fields were characterized by (1) specialized butterflies depending on annual pioneer foodplants (e.g. Issoria lathonia), and (2) species preferring the pioneer successions despite their host plants being more abundant on early and mid-successional fields (e.g. Papilio machaon). The variability in butterfly species richness was best explained by flower abundance which was closely correlated with plant species richness. Species whose abundance was correlated with habitat connectivity were significantly smaller than species which correlated with flower abundance. Numbers of caterpillar species were correlated with numbers of adult butterfly species. Life-history features of butterflies changed significantly from pioneer to early and mid-successional fields. We found decreasing body size and migrational ability, decreasing numbers of species hibernating as imago, decreasing numbers of generations and increasing larval stage duration with age of succession, but, contrary to expectation, host plant specialization, numbers of egg-cluster laying species and egg diameter did not change with successional age. Received 18 September 1995 / Accepted: 17 July 1996  相似文献   

20.
The role of seed bank, seed rain, and regeneration from seedlings and sprouts after swidden agriculture was compared in 5-, 10- and 20-year-old secondary forest and in a primary forest in Bragantina, Pará, Brazil. The seed bank (0–5 cm soil depth) was largest in the 5-year-old forest (1190 ± 284 seeds m−2) and decreased nearly ten-fold with age to 137 ± 19 seeds m−2 in the primary forest. The highest seed rain was in the 5-year-old forest (883 ± 230 seeds m−2 year−1) and the least in the primary forest (220 ± 80 seeds m−2 year−1). Large plants (≥5 cm dbh) had more individuals and species that regenerated from sprouts than from seeds and the most abundant tree species in the secondary forest stands of all ages appear to be maintained by sprouting. The smaller individuals (≥1 m tall, <5 cm dbh) in the 5-year-old forest were mainly from sprouts, but those in the older secondary forests originated mainly from seeds. These results show that at the beginning of succession, although many species can be introduced to swidden fallow from seed bank and seed rain, it is the sprout that is the main source of recruits of primary forest species in secondary forests in Bragantina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号