首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyruvate decarboxylase (PDC) is the key enzyme in all homo-ethanol fermentations. Although widely distributed among plants, yeasts, and fungi, PDC is absent in animals and rare in bacteria (established for only three organisms). Genes encoding the three known bacterial pdc genes have been previously described and expressed as active recombinant proteins. The pdc gene from Zymomonas mobilis has been used to engineer ethanol-producing biocatalysts for use in industry. In this paper, we describe a new bacterial pdc gene from Zymobacter palmae. The pattern of codon usage for this gene appears quite similar to that for Escherichia coli genes. In E. coli recombinants, the Z. palmae PDC represented approximately 1/3 of the soluble protein. Biochemical and kinetic properties of the Z. palmae enzyme were compared to purified PDCs from three other bacteria. Of the four bacterial PDCs, the Z. palmae enzyme exhibited the highest specific activity (130 U mg of protein−1) and the lowest Km for pyruvate (0.24 mM). Differences in biochemical properties, thermal stability, and codon usage may offer unique advantages for the development of new biocatalysts for fuel ethanol production.  相似文献   

2.
Pyruvate decarboxylase (PDC) is a key enzyme in homoethanol fermentation process, which decarboxylates 2-keto acid pyruvate into acetaldehyde and carbon dioxide. PDC enzymes from potential ethanol-producing bacteria such as Zymomonas mobilis, Zymobacter palmae and Sarcina ventriculi have different K(m) and k(cat) values for the substrate pyruvate at their respective optimum pH. In this study, the putative three-dimensional structures of PDC dimer of Z. palmae PDC and S. ventriculi PDC were generated based on the X-ray crystal structures of Z. mobilis PDC, Saccharomyces cerevisiae PDC form-A and Enterobacter cloacae indolepyruvate decarboxylase in order to compare the quaternary structures of these bacterial PDCs with respect to enzyme-substrate interactions, and subunit-subunit interfaces that might be related to the different biochemical characteristics. The PROCHECK scores for both models were within recommended intervals. The generated models are similar to the X-ray crystal structure of Z. mobilis PDC in terms of binding modes of the cofactor, the position of Mg(2+), and the amino acids that form the active sites. However, subunit-subunit interface analysis showed lower H-bonding in both models compared with X-ray crystal structure of Z. mobilis PDC, suggesting a smaller interface area and the possibility of conformational change upon substrate binding in both models. Both models have predicted lower affinity towards branched and aromatic 2-keto acids, which correlated with the molecular volumes of the ligands. The models shed valuable information necessary for further improvement of PDC enzymes for industrial production of ethanol and other products.  相似文献   

3.
4.
The PDC1 gene coding for a pyruvate decarboxylase (PDC; EC 4.1.1.1) was deleted from the Saccharomyces cerevisiae genome. The resulting pdc1(0) mutants were able to grow on glucose and still contained 60 to 70% of the wild-type PDC activity. Two DNA fragments with sequences homologous to that of the PDC1 gene were cloned from the yeast genome. One of the cloned genes (PDC5) was expressed at high rates predominantly in pdc1(0) strains and probably encodes the remaining PDC activity in these strains. Expression from the PDC1 promoter in PDC1 wild-type and pdc1(0) strains was examined by the use of two reporter genes. Deletion of PDC1 led to increased expression of the two reporter genes regardless of whether the fusions were integrated into the genome or present on autonomously replicating plasmids. The results suggested that this effect was due to feedback regulation of the PDC1 promoter-driven expression in S. cerevisiae pdc1(0) strains. The yeast PDC1 gene was expressed in Escherichia coli, leading to an active PDC. This result shows that the PDC1-encoded subunit alone can form an active tetramer without yeast-specific processing steps.  相似文献   

5.
6.
The chemical monomer p-hydroxystyrene (pHS) is used for producing a number of important industrial polymers from petroleum-based feedstocks. In an alternative approach, the microbial production of pHS can be envisioned by linking together a number of different metabolic pathways, of which those based on using glucose for carbon and energy are currently the most economical. The biological process conserves petroleum when glucose is converted to the aromatic amino acid L-tyrosine, which is deaminated by a tyrosine/phenylalanine ammonia-lyase (PAL/TAL) enzyme to yield p-hydroxycinnamic acid (pHCA). Subsequent decarboxylation of pHCA gives rise to pHS. Bacteria able to efficiently decarboxylate pHCA to pHS using a pHCA decarboxylase (PDC) include Bacillus subtilis, Pseudomonas fluorescens and Lactobacillus plantarum. Both B. subtilis and L. plantarum possess high levels of pHCA-inducible decarboxylase activity and were chosen for further studies. The genes encoding PDC in these organisms were cloned and the pHCA decarboxylase expressed in Escherichia coli strains co-transformed with a plasmid encoding a bifunctional PAL/TAL enzyme from the yeast Rhodotorula glutinis. Production of pHS from glucose was ten-fold greater for the expressed L. plantarum pdc gene (0.11mM), compared to that obtained when the B. subtilis PDC gene (padC) was used. An E. coli strain (WWQ51.1) expressing both tyrosine ammonia-lyase(PAL) and pHCA decarboxylase (pdc), when grown in a 14L fermentor and under phosphate limited conditions, produced 0.4g/L of pHS from glucose. We, therefore, demonstrate pHS production from an inexpensive carbohydrate feedstock by fermentation using a novel metabolic pathway comprising genes from E. coli, L. plantarum and R. glutinis.  相似文献   

7.
8.
9.
Acetobacter pasteurianus, an obligately oxidative bacterium, is the first organism shown to utilize pyruvate decarboxylase (PDC) as a central enzyme for oxidative metabolism. In plants, yeast, and other bacteria, PDC functions solely as part of the fermentative ethanol pathway. During the growth of A. pasteurianus on lactic acid, the central intermediate pyruvate is cleaved to acetaldehyde and CO(2) by PDC. Acetaldehyde is subsequently oxidized to its final product, acetic acid. The presence of the PDC enzyme in A. pasteurianus was confirmed by zymograms stained for acetaldehyde production, enzyme assays using alcohol dehydrogenase as the coupling enzyme, and by cloning and characterization of the pdc operon. A. pasteurianus pdc was also expressed in recombinant Escherichia coli. The level of PDC activity was regulated in response to growth substrate, highest with lactic acid and absent with mannitol. The translated PDC sequence (548 amino acids) was most similar to that of Zymomonas mobilis, an obligately fermentative bacterium. A second operon ( aldA) was also found which is transcribed divergently from pdc. This operon encodes a putative aldehyde dehydrogenase (ALD2; 357 amino acids) related to class III alcohol dehydrogenases and most similar to glutathione-dependent formaldehyde dehydrogenases from alpha-Proteobacteria and Anabeana azollae.  相似文献   

10.
Expression of bar in the plastid genome confers herbicide resistance   总被引:12,自引:0,他引:12  
Lutz KA  Knapp JE  Maliga P 《Plant physiology》2001,125(4):1585-1590
Phosphinothricin (PPT) is the active component of a family of environmentally safe, nonselective herbicides. Resistance to PPT in transgenic crops has been reported by nuclear expression of a bar transgene encoding phosphinothricin acetyltransferase, a detoxifying enzyme. We report here expression of a bacterial bar gene (b-bar1) in tobacco (Nicotiana tabacum cv Petit Havana) plastids that confers field-level tolerance to Liberty, an herbicide containing PPT. We also describe a second bacterial bar gene (b-bar2) and a codon-optimized synthetic bar (s-bar) gene with significantly elevated levels of expression in plastids (>7% of total soluble cellular protein). Although these genes are expressed at a high level, direct selection thus far did not yield transplastomic clones, indicating that subcellular localization rather than the absolute amount of the enzyme is critical for direct selection of transgenic clones. The codon-modified s-bar gene is poorly expressed in Escherichia coli, a common enteric bacterium, due to differences in codon use. We propose to use codon usage differences as a precautionary measure to prevent expression of marker genes in the unlikely event of horizontal gene transfer from plastids to bacteria. Localization of the bar gene in the plastid genome is an attractive alternative to incorporation in the nuclear genome since there is no transmission of plastid-encoded genes via pollen.  相似文献   

11.
12.
13.
In the yeast, Saccharomyces cerevisiae, pyruvate decarboxylase (Pdc) is encoded by the two isogenes PDC1 and PDC5. Deletion of the more strongly expressed PDC1 gene stimulates the promoter activity of both PDC1 and PDC5, a phenomenon called Pdc autoregulation. Hence, pdc1Delta strains have high Pdc specific activity and can grow on glucose medium. In this work we have characterized the mutant alleles pdc1-8 and pdc1-14, which cause strongly diminished Pdc activity and an inability to grow on glucose. Both mutant alleles are expressed as detectable proteins, each of which differs from the wild-type by a single amino acid. The cloned pdc1-8 and pdc1-14 alleles, as well as the in-vitro-generated pdc1-51 (Glu51Ala) allele, repressed expression of PDC5 and diminished Pdc specific activity. Thus, the repressive effect of Pdc1p on PDC5 expression seems to be independent of its catalytic activity. A pdc1-8 mutant was used to isolate spontaneous suppressor mutations, which allowed expression of PDC5. All three mutants characterized had additional mutations within the pdc1-8 allele. Two of these mutations resulted in a premature translational stop conferring phenotypes virtually indistinguishable from those of a pdc1Delta mutation. The third mutation, pdc1-803, led to a deletion of two amino acids adjacent to the pdc1-8 mutation. The alleles pdc1-8 and pdc1-803 were expressed in Escherichia coli and purified to homogeneity. In the crude extract, both proteins had 10% residual activity, which was lost during purification, probably due to dissociation of the cofactor thiamin diphosphate (ThDP). The defect in pdc1-8 (Asp291Asn) and the two amino acids deleted in pdc1-803 (Ser296 and Phe297) are located within a flexible loop in the beta domain. This domain appears to determine the relative orientation of the alpha and gamma domains, which bind ThDP. Alterations in this loop may also affect the conformational change upon substrate binding. The mutation in pdc1-14 (Ser455Phe) is located within the ThDP fold and is likely to affect binding and/or orientation of the cofactor in the protein. We suggest that autoregulation is triggered by a certain conformation of Pdc1p and that the mutations in pdc1-8 and pdc1-14 may lock Pdc1p in vivo in a conformational state which leads to repression of PDC5.  相似文献   

14.
Wang Q  He P  Lu D  Shen A  Jiang N 《Journal of biochemistry》2004,136(4):447-455
In the production of pyruvate and optically active alpha-hydroxy ketones by Torulopsis glabrata, pyruvate decarboxylase (PDC, EC 4.1.1.1) plays an important role in pyruvate metabolism and in catalyzing the biotransformation of aromatic amino acid precursors to alpha-hydroxy ketones. In this paper, we have purified and characterized PDC from T. glabrata IFO005 and cloned the corresponding gene. A simple, rapid and efficient purification protocol was developed that provided PDC with high specific activity. Unlike other yeast or higher plant enzymes, known as homotetramers (alpha(4) or beta(4)) or heterotetramers (alpha(2)beta(2)), two active isoforms of PDC purified from T. glabrata IFO005 were homodimeric proteins with subunits of 58.7 kDa. We isolated the T. glabrata PDC gene encoding 563 amino acid residues and succeeded in overproducing the recombinant PDC protein in Escherichia coli, in which the product amounted to about 10-20% of the total protein of the cell extract. Recombinant PDC from E. coli was purified as a homotetramer. Targeted gene disruption of PDC confirmed that T. glabrata has only one gene of PDC. This PDC gene showed about 80% homology with the genes of other yeasts, and amino acid residues involved in the allosteric site for pyruvate in other yeast PDCs were conserved in T. glabrata PDC. Both native PDC and recombinant PDC were activated by pyruvate and exhibited sigmoidal kinetics similar to those of Saccharomyces cerevisiae and higher plants. They also exhibited the similar catalytic properties: low thermostability, similar pH stability and optimal pH, and complete inhibition by glyoxylate.  相似文献   

15.
It is generally believed that the effect of translational selection on codon usage bias is related to the number of transfer RNA genes in bacteria, which is more with respect to the high expression genes than the whole genome. Keeping this in the background, we analyzed codon usage bias with respect to asparagine, isoleucine, phenylalanine, and tyrosine amino acids. Analysis was done in seventeen bacteria with the available gene expression data and information about the tRNA gene number. In most of the bacteria, it was observed that codon usage bias and tRNA gene number were not in agreement, which was unexpected. We extended the study further to 199 bacteria, limiting to the codon usage bias in the two highly expressed genes rpoB and rpoC which encode the RNA polymerase subunits β and β′, respectively. In concordance with the result in the high expression genes, codon usage bias in rpoB and rpoC genes was also found to not be in agreement with tRNA gene number in many of these bacteria. Our study indicates that tRNA gene numbers may not be the sole determining factor for translational selection of codon usage bias in bacterial genomes.  相似文献   

16.
F Daldal 《Gene》1984,28(3):337-342
The nucleotide sequence of a 1.3-kb DNA fragment containing the entire pfkB gene which codes for Pfk-2 of Escherichia coli, a minor phosphofructokinase (Pfk) enzyme, is reported. The Pfk-2 protein subunit is encoded by 924 bp, has 308 amino acids and an Mr of 33 000. Like other weakly expressed E. coli genes the codon usage in the pfkB gene is random; there is no strong bias for the usage of major tRNA isoaccepting species, and the codon preference rules of Grosjean and Fiers [Gene, 18 (1982) 199-209] are followed. This is the first report of the complete gene sequence of a phosphofructokinase.  相似文献   

17.
Zymomonas mobilis ferments sugars to produce ethanol with two biochemically distinct isoenzymes of alcohol dehydrogenase. The adhA gene encoding alcohol dehydrogenase I has now been sequenced and compared with the adhB gene, which encodes the second isoenzyme. The deduced amino acid sequences for these gene products exhibited no apparent homology. Alcohol dehydrogenase I contained 337 amino acids, with a subunit molecular weight of 36,096. Based on comparisons of primary amino acid sequences, this enzyme belongs to the family of zinc alcohol dehydrogenases which have been described primarily in eucaryotes. Nearly all of the 22 strictly conserved amino acids in this group were also conserved in Z. mobilis alcohol dehydrogenase I. Alcohol dehydrogenase I is an abundant protein, although adhA lacked many of the features previously reported in four other highly expressed genes from Z. mobilis. Codon usage in adhA is not highly biased and includes many codons which were unused by pdc, adhB, gap, and pgk. The ribosomal binding region of adhA lacked the canonical Shine-Dalgarno sequence found in the other highly expressed genes from Z. mobilis. Although these features may facilitate the expression of high enzyme levels, they do not appear to be essential for the expression of Z. mobilis adhA.  相似文献   

18.
The tryptophanase structural gene, tnaA, of Escherichia coli K-12 was cloned and sequenced. The size, amino acid composition, and sequence of the protein predicted from the nucleotide sequence agree with protein structure data previously acquired by others for the tryptophanase of E. coli B. Physiological data indicated that the region controlling expression of tnaA was present in the cloned segment. Sequence data suggested that a second structural gene of unknown function was located distal to tnaA and may be in the same operon. The pattern of codon usage in tnaA was intermediate between codon usage in four of the ribosomal protein structural genes and the structural genes for three of the tryptophan biosynthetic proteins.  相似文献   

19.
adhB和pdc是运动发酵单胞菌产乙醇途径的关键基因,分别编码乙醇脱氢酶和丙酮酸脱羧酶,将添加有聚球藻PCC7942rbcLS基因RBS序列的adhB和pdc基因插入pUC18载体,经双重菌液PCR检验和酶切检验得到分别含有pUC-adhB、pUC-pdc和pUC-adhB-pdc载体的3个重组菌株。活性检测实验表明聚球藻PCC7942的rbcLS基因的RBS序列能有效介导运动发酵单胞菌的adhB和pdc基因在大肠杆菌中表达,摇瓶发酵实验表明重组大肠杆菌的产乙醇能力较出发菌株大幅提升。鉴于乙醛指示平板法存在着对希夫试剂的要求较高、易产生较强的背景色等缺点,对定性检测丙酮酸脱羧酶和乙醇脱氢酶表达菌株的方法做了改进,即:将菌液诱导表达,然后分别添加对应于两种酶的底物,让酶与底物反应0.5至1小时,之后再加希夫试剂进行显色反应,结果表明改进后的方法比乙醛指示平板法更加简便、快速、可靠。  相似文献   

20.
The Zymomonas mobilis gene encoding acid phosphatase, phoC, has been cloned and sequenced. The gene spans 792 base pairs and encodes an Mr 28,988 polypeptide. This protein was identified as the principal acid phosphatase activity in Z. mobilis by using zymograms and was more active with magnesium ions than with zinc ions. Its promoter region was similar to the -35 "pho box" region of the Escherichia coli pho genes as well as the regulatory sequences for Saccharomyces cerevisiae acid phosphatase (PHO5). A comparison of the gene structure of phoC with that of highly expressed Z. mobilis genes revealed that promoters for all genes were similar in degree of conservation of spacing and identity with the proposed Z. mobilis consensus sequence in the -10 region. The phoC gene contained a 5' transcribed terminus which was AT rich, a weak ribosome-binding site, and less biased codon usage than the highly expressed Z. mobilis genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号