首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activities of glutamate dehydrogenase, asparagine synthetase, and total glutamine synthetase in the organs of the white lupine (Lupinus albus L.) plants were measured during plant growth and development. In addition, the dynamics of free amino acids and amides in plant organs was followed. It was shown that the change in the nutrition type was important for controlling enzyme activities in the organs examined and, consequently, for directing the pathway of ammonium nitrogen assimilation. As long as the plants remained heterotrophic, glutamine-dependent asparagine synthetase of cotyledons and glutamine synthetase of leaves apparently played a major role in the assimilation of ammonium nitrogen. In symbiotrophic plants, root nodules became an exclusive site of asparagine synthesis, and the role of leaf glutamine synthetase increased. Unlike glutamine synthetase and asparagine synthetase, glutamate dehydrogenase activity was present in all organs examined and was less dependent on the nutrition type. This was also indicated by a weak correlation of glutamate dehydrogenase activity with the dynamics of free amino acid and amide content in these organs. It is supposed that glutamine synthetase plays a leading role in both the primary assimilation of ammonium, produced during symbiotic fixation of molecular nitrogen in root nodules, and in its secondary assimilation in cotyledons and leaves. On the other hand, secondary nitrogen assimilation in the axial organs occurs via an alternative glutamate dehydrogenase pathway.  相似文献   

2.
Amino acids and sugars are probably the most commonly measured solutes in plant fluids and tissue extracts. Chromatographic techniques used for the measurement of such solutes require complex derivatization procedures, analysis times are long and separate analyses are required for sugars and amino acids. Two methods were developed for the analysis of underivatized sugars and amino acids by capillary electrophoresis (CE). Separation of a range of sugars and amino acids was achieved in under 30 min, with good reproducibility and linearity. In general, there was close agreement between amino acid analyses by CE and HPLC with post-column derivatization. An alternative, more rapid method was optimized for the common neutral sugars. Separation of a mixture of fructose, glucose, sucrose, and fucose (internal standard) was achieved in less than 5 min. How the source of N applied (nitrate or ammonium) and its concentration (8.0 or 0.5 mM) affects the amino acid and sugar composition of leaves from Banksia grandis Willd. and Hakea prostrata R. Br. was investigated. The amino acid pool of Banksia and Hakea were dominated by seven amino acids (aspartic acid, glutamic acid, asparagine, glutamine, serine, proline, and arginine). Of these, asparagaine and glutamine dominated at low N-supply, whereas at high N-supply the concentration of arginine increased and dominated amino-N. Plants grown with nitrate had a greater concentration of proline relative to plants with ammonium. In Banksia the concentration of amides was greatest and arginine least with a nitrate N-source, whereas in Hakea amides were least and arginine greatest with nitrate N-source. The concentration of sugars was greater in Banksia than Hakea and in both species at greater N-supply.  相似文献   

3.
Rhodes D  Rich PJ  Brunk DG 《Plant physiology》1989,89(4):1161-1171
A serious limitation to the use of N(O,S)-heptafluorobutyryl isobutyl amino acid derivatives in the analysis of 15N-labeling kinetics of amino acids in plant tissues, is that the amides glutamine and asparagine undergo acid hydrolysis to glutamate and aspartate, respectively, during derivatization. This led us to consider an alternative procedure (G Fortier et al. [1986] J Chromatogr 361: 253-261) for derivatization of glutamine and asparagine with N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide in pyridine. Gas chromatography-mass spectrometry (electron ionization) yielded fragment ions (M-57) of mass 417 and 431 for the [14N]asparagine and [14N]glutamine derivatives, respectively, suitable for monitoring unlabeled, single-15N- and double-15N-labeled amide species from the ion clusters at mass to charge ratio (m/z) 415 to 423 for asparagine, and m/z 429 to 437 for glutamine. From separate analyses of the specific isotope abundance of the amino-N groups of asparagine and glutamine as their N-heptafluorobutyryl isobutyl derivatives, the specific amide-[15N] abundance of these amino acids was determined. We demonstrate that this approach to 15N analysis of the amides can yield unique insights as to the compartmentation of asparagine and glutamine in vivo. The ratios of unlabeled:single-15N:double-15N-labeled species are highly diagnostic of the relative sizes and turnover of metabolically active and inactive pools of the amides and their precursors. Kinetic evidence is presented to indicate that a significant proportion (approximately 10%) of the free asparagine pool may be metabolically inactive (vacuolar). If the amide group of asparagine is derived exclusively from glutamine-amide, then asparagine must be synthesized in a compartment of the cell in which both glutamine-amide and aspartate are more heavily labeled with 15N than the bulk pools of these amino acids. This compartment is presumably the chloroplast. The transaminase inhibitor aminooxyacetate is shown to markedly inhibit amino acid synthesis; several amino acid pools accumulated in the presence of aminooxyacetate and [15N]H4+ are 14N-enriched and must be derived primarily from protein turnover.  相似文献   

4.
The paper presents the results of amino acid analyses in xylem sap during leaf regrowth of ryegrass plants defoliated firstly at the 8th and secondly at the 12th week of culture. The free amino acid composition of leaves, stubble and roots was also determined and some of the results are reported. Prior to defoliation, xylem sap contained a high proportion of amides, particularly glutamine. During regrowth after defoliation, the proportion of asparagine in the xylem sap increased until the third day when the highest ratios of asparagine/glutamine appeared. The results are compared with relative amounts of free amino acids in the different plant parts and discussed in relation to source-sink nitrogen transfer.  相似文献   

5.
Nitrogen re-mobilization and changes in free amino acids werestudied as a function of time in leaves, stubble, and rootsduring ryegrass (Lolium perenne L.) re-growth. Experiments with15N labelling clearly showed that during the first days nearlyall the nitrogen in new leaves came from organic nitrogen re-mobilizedfrom roots and stubble. On the days of defoliation, stubblehad the highest content of free amino acids with 23 mg per gdry weight against 15 mg and 14 mg in leaves and roots, respectively.The major amino acids in leaves were asparagine (23% of totalcontent in free amino acids), aminobutyrate, serine, glutamine,and glutamate (between 7% and 15%) whereas in roots and stubblethe contribution of amides was high, especially asparagine (about50%). Re-growth after cutting was associated with a rapid increaseof the free amino acid content in leaves, with a progressivedecrease in roots while stubble content remained virtually unchanged.In leaves, asparagine increased from the first day of re-growth,while the aspartate level remained unchanged and glutamine increasedstrongly on the first day but decreased steadily during thenext few days of re-growth. Asparagine in stubble and rootschanged in opposite directions: in stubble it tended to increasewhereas in roots it clearly decreased. In contrast, stubbleand roots showed a similar decrease in glutamine. In these twoplant parts, as in leaves, aspartate remained at a low level.Results concerning free amino acids are discussed with referenceto nitrogen re-mobilization from source organs (stubble androots) to the sink organ (regrowing leaves). Key words: Lolium perenne L, re-growth, nitrogen, free amino acids, glutamine, asparagine  相似文献   

6.
The principal free amino-acid of the vegetative tulip bulb isarginine and the alcohol insoluble nitrogen fraction containscombined arginine to the extent of 47 per cent. of the nitrogen.In the green leaf the amides glutamine and asparagine occurwhereas free arginine is virtually absent. These amides do notoccur appreciably in the vegetative bulb. By appropriate temperature treatments flowers were initiatedand after the floral parts were formed they were caused to developto the point of emergence from the bulb. The concomitant changesin the soluble nitrogen compounds were determined. The dramatic change in the composition of the soluble nitrogeninvolving a shift from the predominance of arginine to a relativeincrease in glutamine and asparagine occurs when the alreadyinitiated flowers develop. -methyleneglutamine and -methyleneglutamic acid which are prominentin the tulip seem not to be greatly affected by the treatmentsthat cause floral initiation and development. Their metabolismseems superimposed upon the nitrogen metabolism based on argininein the bulb and amides in the leaf which is responsive to thetreatments involved in flower formation.  相似文献   

7.
Cycling of amino compounds in symbiotic lupin   总被引:2,自引:0,他引:2  
The composition of amino acids was determined in the xylem andphloem sap of symbiotic lupins grown under a variety of treatmentsdesigned to alter the rate of nitrogen fixation. Asparaginewas the major amino acid in both xylem and phloem with glutamine,glutamate and aspartate also major components. GABA had a highconcentration in the xylem while valine was a major componentin the phloem. Exposure to combined nitrogen in the form ofeither ammonium or nitrate caused a reduction in specific nitrogenaseactivity and was associated with subsequent changes in bothof the translocated saps. Inhibiting nitrogen fixation by exposingnodules to oxygen produced a lower amide to amine ratio in thexylem sap (1.3:1) compared with control and nitrate ratios (2.6:1)and ammonium ratios (7.1:1). Similar ratios for amide aminewere also observed in the phloem sap. Labelling studies using15N2 to follow nitrogen fixation, ammonium assimilation andamino acid transport have shown rapid accumulation of labelinto glutamine with subsequent enrichment in glutamate, aspartate,alanine, and GABA. Asparagine was found in high concentrationsin nodules and became slowly enriched. Labelled nitrogen fixedand assimilated in nodules was detected 40 min later in stemxylem extracts, largely as the amides glutamine and asparagine.These experiments provide evidence that large amounts of nitrogenouscompounds are cycled through the root nodules of symbiotic plants(contributing approximately 50% of xylem N) and that differencesin the composition of the phloem sap may influence nodule growthand activity. Key words: Nitrogen fixation, nitrogen translocation, isotope labelling, legumes, GC-MS  相似文献   

8.
Free amino acids were determined quantitatively by thin-layer chromatography and identified by various chromatographic methods in the leaves of two floating water ferns. Special interest was paid to the amount of γ-amino butyric acid. Water soluble nitrogen compounds increase in the leaves of both plants during the growth of three to four weeks in darkness. Compounds especially accumulating are ammonia and the amides asparagine and glutamine. The amount of most proper amino acids is reduced in the dark, except γ-amino butyric acid, which, in addition to amides, is the main amino compound increasing in darkness. 0.1 M HCl extracts the greatest amount of nitrogen compounds of low molecular weight from the dried leaves of the experimental plants. If we denote the amount of the dissolved amino compounds as 100 per cent, we can say that water extracts 96 per cent of the amino compounds, and that an 80 per cent ethanol solution extracts 79 per cent of these compounds.  相似文献   

9.
Attachment of Fmoc-asparagine or glutamine to p-alkoxybenzyl alcohol type resins has always been difficult and not very effective. A very simple and effective method for the preparation of peptides terminating in asparagine or glutamine is described. The method involves quantitative attachment of Fmoc-Asp-OtBu or Fmoc-Glu-OtBu via their side-chain carboxyl group to a resin functionalized with our TMBPA linker for peptide amides. Peptide synthesis is performed using our standard Fmoc chemistry, and treatment with acid, e.g. TFA/DCM/scavenger mixtures, releases the Asn or Gln peptides.  相似文献   

10.
Addition of ammonium salts to N2 fixing continuous cultures of Clostridium pasteurianum caused immediate stop of nitrogenase synthesis, while the levels of glutamine synthetase, glutamate dehydrogenase and asparagine synthetase remained constant. No evidence for an interconversion of the glutamine synthetase was found. The activities of glutamate synthase in crude extracts were inversely related to the nitrogenase levels. The intracellular glutamine pool rapidly expanded during nitrogenase repression and decreased as fast during derepression while the pool sizes of all other amino acids were not strongly related to the rate of nitrogenase formation. These investigations suggest glutamine as corepressor of nitrogenase synthesis.  相似文献   

11.
Glutamine, in the presence of alpha-oxoglutarate, stimulates nicotinamide nucleotide oxidation by crude extracts of pea roots and leads to a reductant-dependent formation of glutamate. Commercially available asparagine also stimulates nicotinamide nucleotide oxidation in the presence of alpha-oxoglutarate, but the reaction causing the stimulation can occur in the absence of a reductant, is inhibited by transaminase inhibitors, and is additive to the glutamine reaction. The asparagine used was found to be contaminated with aspartate. Repurified asparagine, chromatographically free of aspartate, did not stimulate the rate of nicotinamide nucleotide oxidation, and it is probable that the original stimulation was due to aspartate contamination. It is concluded that pea-root glutamine (amide)-alpha-oxoglutarate aminotransferase (glutamate synthase), in common with the enzyme in leaves, is specific for glutamine as the N donor and alpha-oxoglutarate as the N acceptor. The significance of the enzyme in conjunction with glutamine synthetase in the assimilation of nitrate by roots is discussed.  相似文献   

12.
The side-chain amide groups of asparagine and glutamine play important roles in stabilizing the structural fold of proteins, participating in hydrogen-bonding networks and protein interactions. Selective 15N-labeling of side-chain amides, however, can be a challenge due to enzyme-catalyzed exchange of amide groups during protein synthesis. In the present study, we developed an efficient way of selectively labeling the side chains of asparagine, or asparagine and glutamine residues with 15NH2. Using the biosynthesis pathway of tryptophan, a protocol was also established for simultaneous selective 15N-labeling of the side-chain NH groups of asparagine, glutamine, and tryptophan. In combination with site-specific tagging of the target protein with a lanthanide ion, we show that selective detection of 15N-labeled side-chains of asparagine and glutamine allows determination of magnetic susceptibility anisotropy tensors based exclusively on pseudocontact shifts of amide side-chain protons.  相似文献   

13.
Abstract

Qualitative and quantitative analysis of free and bound amino acids and amides during dormancy and the most important phases of the first cell cycle was carried out in tubers of Helianthus tuberosus.

In the dormant tuber arginine was confirmed to be the most abundant amino acid. A high amount of asparagine was also present; on the contrary glutamine was found in very low concentrations. During the progression of dormancy, all the free amino acids and amides declined while aspartic and glutamic acid increased.

During the G1 phase of the first cell cycle induced by 2,4-D, all the free amino acids and amides decreased with the exception of glutamic acid.

At 18, 20, 24 h of activation with 2,4-D, corresponding to the S phase and the beginning of mitosis, bound amino acids were also determined. In these phases of the cell cycle they increased reaching a maximum at 20 h; on the other hand the free amino acid and amide content, especially aspartic acid, asparagine and arginine, decreased with the exception of glutamic acid, alanine and phenylalanine.  相似文献   

14.
Concentrations of free amino acids and amides were measuredin organs of maize plants, Zea mays L. in the period from 14d before pollen liberation until complete seed maturation. Inthis time anthesis took place and only the ovaries of ear 9(numbered from below) developed into seeds. In mature leaf bladesNH4 ion assimilation had ceased and asparagine and glutaminewere not found there. N redistribution induced the occurrenceof large amounts of aspartate, glutamate and alanine. The amountsof amides in leaf sheaths and stem parts depended on the neighbourhoodof generative parts. The generative plant parts can be distinguishedfrom adjacent vegetative plant parts in concentrations of freeproline or asparagine. Proline occurred in pollen but not inthe empty anthers. Ears had a small, early peak amount of prolinemostly before pollination. Only the ninth ear had a first maximumproline amount after the fifth day of pollen liberation. A secondproline peak in the ears coincided with the period of maximumincrease in d. wt. The occurrence of proline in the generativeorgans relative to metabolic processes inducing fertility orseed maturation is discussed. Zea mays L., amides, amino acids, amino-transferring components, asparagine, glutamine, proline  相似文献   

15.
Abstract

Distribution and metabolism of γ-methyleneglutamic acid, γ-methyleneglutamine and other amino acids and amides has been studied during fruit growth of Tribulus terrestris. The largest concentration of free amino acids and amides has been observed in fruit stage 1. The marked decline in the amount of γ-methyleneglutamic acid and γ-methyleneglutamine after fruit stage 1 may indicate their rapid utilization along with asparagine and glutamine during fruit growth. In leaf and in different fruit growth stages, γ-methyleneglutamic acid dominated over γ-methyleneglutamine.  相似文献   

16.
WEINBERGER  PEARL 《Annals of botany》1975,39(4):767-775
Changes in the free alcohol-soluble amino acid fraction of theseparate organs of Rideau wheat (Triticum aestivum L.) preconditionedby vernalization were determined after 1 and 3 weeks' growthand compared with comparable organs of non-vernalized controlplants. The major components of the fraction were composed of the acidicand neutral amino acids together with asparagine and glutamine.Cystine and methionine were rarely present in more than traceamounts. Changes coincident with ontogency and growth varied considerablyboth between all seedling parts and between comparable organsof the control and vernalized series. Generally, vernalizationwas paralleled by higher levels of the acidic amino acids andthe amides. Coleoptile senescence was characterized by depletionof the total fraction but individual amino acids increased withageing. The pattern of change varied with ontogeny, age andprior grain treatment. However, within each category significantvariations in the level of one or more amino acids could berelated to the physiological status of the tissue. The amides,glutamine and asparagine were consistently absent from the stemapex and the very young fifth and sixth leaves. In stem apextissue, 17 of the commonly occurring amino acids were generallyfound present while, in coleoptiles and young leaves only eightamino acids were present.  相似文献   

17.
1H/15N and 13C NMR were used to investigate metabolism in Spodoptera frugiperda (Sf9) cells. Labelled substrates ([2-15N]glutamine, [5-15N]glutamine, [2-15N]glutamate, 15NH4Cl, [2-15N]alanine, and [1-13C]glucose) were added to batch cultures and the concentration of labelled excreted metabolites (alanine, NH4+, glutamine, glycerol, and lactate) were quantified. Cultures with excess glucose and glutamine produce alanine as the main metabolic by-product while no ammonium ions are released. 1H/15N NMR data showed that both the amide and amine-nitrogen of glutamine was incorporated into alanine in these cultures. The amide-nitrogen of glutamine was not transferred to the amine-position in glutamate (for further transamination to alanine) via free NH4+ but directly via an azaserine inhibitable amido-transfer reaction. In glutamine-free media 15NH4+ was consumed and incorporated into alanine. 15NH4+ was also incorporated into the amide-position of glutamine synthesised by the cells. These data suggest that the nitrogen assimilation system, glutamine synthetase/glutamate synthase (NADH-GOGAT), is active in glutamine-deprived cells. In cultures devoid of glucose, ammonium is the main metabolic by-product while no alanine is formed. The ammonium ions stem both from the amide and amine-nitrogen of glutamine, most likely via glutaminase and glutamate dehydrogenase. 13C NMR revealed that the [1-13C] label from glucose appeared in glycerol, alanine, lactate, and in extracellular glutamine. Labelling data also showed that intermediates of the tricarboxylic acid cycle were recycled to glycolysis and that carbon sources, other than glucose-derived acetylCoA, entered the cycle. Furthermore, Sf9 cell cultures excreted significant amounts glycerol (1.9-3.2 mM) and ethanol (6 mM), thus highlighting the importance of sinks for reducing equivalents in maintaining the cytosolic redox balance.  相似文献   

18.
Application of the gas—liquid chromatographic method previously reported by us was made to the analysis of the 22 amino acids including asparagine and glutamine in serum. The method permitted that aqueous serum samples obtained after deproteinization with perchloric acid were directly subjected to derivatization without any further clean-up procedure such as ion-exchange chromatography. The N-ethyloxycarbonyl methyl esters, which were prepared in the same manner as the N-isobutyloxycarbonyl methyl esters, were introduced for the determination of leucine, isoleucine, arginine and tyrosine. Both derivatives were prepared by two-step procedures involving alkyloxycarbonylation in aqueous media and esterification with diazomethane, and simultaneously analyzed by using the dual set of columns with the same thermal conditions. The advantages of this method are that the sample pretreatment and derivatization are very simple and rapid, and that both asparagine and glutamine along with other amino acids in serum can be determined.  相似文献   

19.
Maize seedlings were grown on either nitrate or ammonium, at two different potassium levels, and the growth analysis revealed that ammonium supply reduced shoot dry matter particularly under conditions of limited potassium supply. The ammonium content of the leaves was determined in vitro, using continuous flow analysis of plant extracts, and in vivo using 14N nuclear magnetic resonance (NMR) spectroscopy. The conventional continuous flow analysis procedure was modified by the inclusion of a gas dialysis step across a PTFE membrane and control experiments showed that this provided an effective method for avoiding the overestimation of the ammonium content of leaf tissue extracts, by eliminating interference from amino acids and amides. Excellent agreement was obtained between the non-invasive NMR method and the modified continuous flow analysis technique, and it was concluded that leaf ammonium levels are unlikely to affect growth in plants grown with an adequate potassium supply.  相似文献   

20.
The effects of ammonium and glutamine supply on amino acid levels and the activity of glucose-6P dehydrogenase (G6PDH EC 1.1.1.49), the main regulated enzyme of the oxidative pentose phosphate pathway, were investigated in barley roots ( Hordeum vulgare cv. Alfeo). Feeding ammonium to barley plants increased the contents of glutamine, asparagine and G6PDH in roots. These effects were abolished by using inhibitors of glutamine synthetase. Glutamine-fed barley roots showed a similar increase in G6PDH activities to ammonium-fed plants. Two G6PDH enzymes (G6PDH 1 and 2) were partially purified and characterized from ammonium-fed and glutamine-fed roots. The isozymes had different pH optima and apparent Km values for glucose-6P. G6PDH 2 showed similar kinetic parameters to the G6PDH present in root extracts of barley grown without any nitrogen source, while G6PDH 1 exhibited different kinetic parameters, suggesting the appearance of a second G6PDH isoform in response to ammonium. Western blot analysis demonstrated the existence of two G6PDH subunits of different molecular mass in barley roots grown in the presence of ammonium or glutamine, while only one isoform could be detected in roots grown without any nitrogen source. The results suggest a primary role of ammonium and/or glutamine in the appearance of a novel G6PDH isoform; this enzyme (G6PDH 1) shows kinetic parameters similar to those measured previously for chloroplastic and plastidic isoforms and seems to be induced by changes in glutamine content or a related compound(s) in the roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号