首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Pseudomonas aeruginosa, the GacS/GacA two-component system positively controls the quorum-sensing machinery and the expression of extracellular products via two small regulatory RNAs, RsmY and RsmZ. An rsmY rsmZ double mutant and a gacA mutant were similarly impaired in the synthesis of the quorum-sensing signal N-butanoyl-homoserine lactone, the disulfide bond-forming enzyme DsbA, and the exoproducts hydrogen cyanide, pyocyanin, elastase, chitinase (ChiC), and chitin-binding protein (CbpD). Both mutants showed increased swarming ability, azurin release, and early biofilm development.  相似文献   

2.
3.
4.
姜维芳  吴小刚  闫庆  张力群 《微生物学报》2008,48(12):1588-1594
Pseudomonas fluorescens 2P24是分离自麦田的植物病害生物防治菌株,产生抗生素2, 4-二乙酰基间苯三酚(2,4-diacetylphloroglucinol;2,4-DAPG)是其主要防病机制。菌株2P24中小RNA基因rsmZ正调控抗生素2,4-DAPG的产量。【目的】本文研究上游调控因子对RsmZ转录表达的影响,以进一步理解抗生素产生机制。【方法】构建了rsmZ: : lacZ的转录融合结构,将含有该结构的报告载体转入2P24的多个调控基因缺失突变体中,检测相应的缺失基因对rsmZ转录水平的调控作用。【结果】结果表明,反应调控因子GacA对rsmZ基因的转录具有正调控作用,二硫键合成蛋白DsbA对其负调控;双因子调控系统PhoP/PhoQ突变后,rsmZ基因的转录明显滞后。【结论】小RNA基因rsmZ在菌株2P24中受到多个基因的调控,并在信号传递网络中起到重要作用。  相似文献   

5.
6.
【目的】在假单胞菌中,小RNA(sRNA)参与初级和次级代谢产物、多种毒素因子以及菌群传感系统的调控,通过在植物根际促生铜绿假单胞菌M18中研究RsmY对吩嗪-1-羧酸(PCA)和藤黄绿菌素(Plt)两种抗生素的调控作用,深入了解假单胞菌中次级代谢的途径并为构建高产抗生素工程菌株提供了一定的理论基础。【方法】运用同源重组技术,构建了铜绿假单胞菌M18株的rsmY突变菌株M18RY,通过基因过表达、lacZ报告基因融合分析实验,进一步验证了RsmY对抗生素合成基因的调控作用。【结果】比较野生型M18和突变株M18RY中PCA和Plt在同一培养条件下的生物合成量,突变菌株M18RY中PCA的产量显著增加,为野生型菌株的5倍左右,而Plt的产量降为野生型的1/8。LacZ报告基因融合分析进一步证明了RsmY对PCA的负调控作用主要是通过phz2基因簇来实现的。【结论】结果表明,rsmY基因区别性调控PCA和Plt的生物合成。  相似文献   

7.
8.
9.
10.
11.
12.
13.
Small RNAs (sRNAs) exert important functions in pseudomonads. Classical sRNAs comprise the 4.5S, 6S, 10Sa and 10Sb RNAs, which are known in enteric bacteria as part of the signal recognition particle, a regulatory component of RNA polymerase, transfer–messenger RNA (tmRNA) and the RNA component of RNase P, respectively. Their homologues in pseudomonads are presumed to have analogous functions. Other sRNAs of pseudomonads generally have little or no sequence similarity with sRNAs of enteric bacteria. Numerous sRNAs repress or activate the translation of target mRNAs by a base-pairing mechanism. Examples of this group in Pseudomonas aeruginosa are the iron-repressible PrrF1 and PrrF2 sRNAs, which repress the translation of genes encoding iron-containing proteins, and PhrS, an anaerobically inducible sRNA, which activates the expression of PqsR, a regulator of the Pseudomonas quinolone signal. Other sRNAs sequester RNA-binding proteins that act as translational repressors. Examples of this group in P. aeruginosa include RsmY and RsmZ, which are central regulatory elements in the GacS/GacA signal transduction pathway, and CrcZ, which is a key regulator in the CbrA/CbrB signal transduction pathway. These pathways largely control the extracellular activities (including virulence traits) and the selection of the energetically most favourable carbon sources, respectively, in pseudomonads.  相似文献   

14.
15.
A two-component system comprising GacS and GacA affects a large number of traits in many Gram-negative bacteria. However, the signals to which GacS responds, the regulation mechanism for GacA expression, and the genes GacA controls are not yet clear. In this study, several phenotypic tests and tobacco-leaf pathogenicity assays were conducted using a gacA deletion mutant strain (BL473) of Pseudomonas syringae pv. tabaci 11528. To determine the regulation mechanism for gacA gene expression and to identify GacA-regulated genes, we conducted quantitative RT-PCR and electrophoretic mobility shift assay (EMSA) experiments. The results indicated that virulence traits related to the pathogenesis of P. syringae pv. tabaci 11528 are regulated coordinately by GacA and iron availability. They also revealed that several systems coordinately regulate gacA gene expression in response to iron concentration and bacterial cell density and that GacA and iron together control the expression of several virulence genes. EMSA results provided genetic and molecular evidence for direct control of virulence genes by GacA.  相似文献   

16.
The two-component regulatory system comprised of the sensor kinase, GacS, and its response regulator, GacA, is involved in regulation of secondary metabolism and many other aspects of bacterial physiology. Although it is known that the sensor kinases RetS and LadS feed into the GacS/GacA system, the mechanism through which this occurs is unknown, as are the protein–protein interactions in this system. To characterize and define these interactions, we utilized a bacterial two-hybrid system to study the interactions of GacS and GacA from Pseudomonas fluorescens CHA0. Domains of GacA and GacS, identified through bioinformatics, were subcloned and their ability to interact in vivo was investigated. We found that the entire GacA molecule is required for GacA to interact with itself or GacS. Furthermore, the HisKA/HATPase/REC domains of GacS together are responsible for GacS interacting with GacA, while the HAMP domain of GacS is responsible for GacS interacting with itself. In addition, homologs of Pseudomonas aeruginosa hybrid sensor kinases, RetS and LadS, were identified in P. fluorescens , and shown to interact with GacS, but not GacA.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号