首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract. 1. Encarsia pergandiella Howard females develop as primary parasitoids on immature whiteflies, and males develop as secondary parasitoids on females of their own or a related species. The hypothesis that the sex ratio reflects the relative abundance of the two host types was tested in the laboratory using petri dish arenas with varying proportions of early fourth instar greenhouse whitefly (Trialeurodes vaporariorum (West.)) (primary hosts) and pupal female E.pergandiella (secondary hosts). Egg distribution was analysed with respect to sex ratio, super-parasitism and host discrimination.
2. The proportion of primary and secondary hosts parasitized in each treatment reflected the relative availability of each host type. Thus females presented with 75% primary hosts laid more female eggs than male. However, in all treatments, a greater proportion of secondary hosts were parasitized than would be expected from the proportion of secondary hosts available. This indicates that more male eggs were laid than expected.
3. More secondary hosts than primary hosts were superparasitized.
4. Host discrimination analysis using a new test statistic showed that females generally laid eggs at random with regard to previous parasitism of primary or secondary hosts. However, females in one treatment with 50% of each host type appeared to preferentially oviposit in secondary hosts which did not contain any eggs.  相似文献   

2.
Encarsia pergandiella Howard, described from North America (USA), and Encarsia tabacivora Viggiani, described from South America (Brazil) (Hymenoptera: Aphelinidae), are two formally recognized taxonomic entities, that have been treated by several authors as synonyms due to lack of strong diagnostic characters. Taxonomy of these species is further complicated because several populations, geographically separated and differing in their biology, have been included under the concept of E. pergandiella. Among these, a population originally collected in Brazil and introduced to North America reproduces by thelytokous parthenogenesis and is infected by the symbiont Cardinium, while a morphologically indistinguishable population, naturally occurring in Texas, is biparental and infected by a related strain of Cardinium that induces cytoplasmic incompatibility. A third population known from California and introduced to the Old World is biparental and uninfected by intracellular symbionts. While adult females of the first two populations have entirely light yellow bodies and pupate face up (light form), those of the third population have largely brown bodies and pupate face down (dark form). Other dark form populations are known from Texas, Florida and New York. Because these parasitoids are economically important biological control agents of cosmopolitan whitefly pests, it is critical to characterize them correctly. In this study, we integrated molecular and morphometric analyses to substantiate observed differences in biological traits, and resolve the complicated taxonomy of this species complex. We sequenced the mitochondrial cytochrome c oxidase subunit I gene and the D2 region of the ribosomal 28S gene for individuals of both light form (from Texas and Brazil) and dark form (from California, Texas, Italy and Canary Islands) originating from laboratory cultures or collected in the field. Phylogenetic analysis unambiguously distinguished three well‐supported groups corresponding to the Texas light form, the Brazil light form and the dark form. Individuals of these three groups, in combination with all available type material (E. pergandiella, its synonym Encarsia versicolor Girault and E. tabacivora) and additional museum specimens of the dark form from New York and Italy, were subjected to multivariate morphometric analyses using Burnaby principal component analysis followed by a linear discriminant analysis, and multivariate ratio analysis. Overall, the analyses showed that: (i) E. pergandiella and E. tabacivora are two distinct species; (ii) the thelytokous Brazil light form corresponds to E. tabacivora; (iii) the biparental Texas light form is a new species formally described here as Encarsia suzannae sp.n. ; (iv) two new biparental species can be referred to the dark form, one described as Encarsia gennaroi sp.n. including the populations sampled in California, Texas, Italy and Canary Islands, and the other corresponding to the population from New York described as Encarsia marthae sp.n. A dichotomous key for both sexes of the species of the E. pergandiella complex is provided for identification. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:278475A0‐C2C4‐4400‐A042‐A5716457829D .  相似文献   

3.
Studies were conducted to compare preference among Bemisia tabaci Gennadius, biotype B instars for parasitization by Eretmocerus mundus Mercet and Encarsia pergandiella Howard when provided one instar only, two different instars, and four different instars simultaneously. In the single‐instar no choice treatment, Er. mundus was more successful in parasitizing the younger host instars, while En. pergandiella parasitized a greater proportion of the older instars. Similar results were observed when parasitoids were provided a choice of two instars in six different pair combinations. When all four instars were provided simultaneously, the numbers of first, second, and third instars parasitized by Er. mundus were not significantly different from each other (range 10.3–16.4%), but all were significantly higher than parasitism of fourth instar nymphs (2.1%). The highest percentage parasitization by En. pergandiella was in third instar (17.2%), and the lowest in first instar (2.8%).  相似文献   

4.
We investigated the spectral sensitivity and response to light intensity of Encarsia formosa (Hymenoptera: Aphelinidae), which is a key natural enemy of the greenhouse whitefly, Trialeurodes vaporariorum, and the tobacco whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). To do so, we used 15 monochromatic lights (emitting various specific wavelengths from 340 to 649?nm) and white light. E. formosa adults, which are diurnal insects, showed a positive phototaxis to a broad spectrum of light, with peaks of sensitivity at 414, 340, 450, and 504?nm. These results show that this parasitoid is generally more sensitive to short wavelength lights than long wavelength lights across all spectral ranges tested. Furthermore, E. formosa adults showed an increased phototactic response at low intensities and a decreased response at high intensities, for both ultraviolet light and violet light. Thus, E. formosa showed both colour and intensity preferences. This experiment provides a scientific basis for the development of colour traps for insect pest management and improves understanding of the ecological significance of colour vision by E. formosa.  相似文献   

5.
Abstract.  The Encarsia longifasciata group is established and revised, and its relationship to other species groups of Encarsia is discussed with reference to biological, morphological and molecular evidence. Principal component analysis on all available specimens provided supporting evidence for the existence of five species, two of which are described herein as new: E. dewa Pedata & Polaszek, sp.n and E. prinslooi Pedata & Polaszek, sp.n. All species are either diagnosed or described, and illustrated, and information is given on their distribution and host range. Additional information on the biology and larval stages, and scanning electron micrographs of morphological details, are provided for E. arabica Hayat. A preliminary phylogenetic study using 28S D2 rDNA sequence data for E. arabica was inconclusive, but suggested possible affinities between the longifasciata and parvella species groups. An illustrated dichotomous key to all species of the E. longifasciata group is given.  相似文献   

6.
In Drosophila simulans a Wolbachia-like microorganism is responsible for reduced egg-hatch when infected males mate with uninfected females. Both incompatibility types have previously been found in North America, Europe and Africa. Some California populations have remained polymorphic for over two years, and the infection is apparently spreading in central California. Egg hatch proportions for wild-caught females from polymorphic populations show that the incompatibility system acts in nature, but egg mortality rates are apparently lower than observed in laboratory populations. Although infected females maintained under various laboratory conditions never produce uninfected offspring, some wild-caught infected females produce both infected and uninfected progeny. This helps explain the persistence of a low frequency of uninfected flies in predominantly infected populations and may also explain the other polymorphisms observed. Fitness comparisons of infected and uninfected stocks, including both larval and adult fitness components, indicate that fecundity may be the component most affected. Infected females suffer a fecundity reduction of 10-20% in the laboratory, but the reduction seems to be smaller in nature. A theoretical analysis provides some insight into the population biology of the infection.  相似文献   

7.
Endoparasitic Hymenoptera vary in the extent to which they provision their eggs and thus in the degree to which they appear to rely on their hosts for resources during embryonic development. In this study, developmental rates were examined in two congeneric parasitoid species, Encarsia formosa and E. pergandiella, that provision their eggs to different degrees. E. formosa eggs are much larger than E. pergandiella eggs. E. formosa eggs hatch significantly earlier than the eggs of E. pergandiella when deposited in 1st or 4th instar nymphs of a common whitefly host, Bemisia tabaci. Both species hatch earlier in 4th instar nymphs, but the delay in hatching in hosts parasitized as 1st instars is much greater in E. pergandiella. While E. formosa develops more rapidly to the 1st larval instar, E. pergandiella emerge as adults significantly earlier, though smaller, than E. formosa adults regardless of the host instar parasitized. These findings show that the extent of provisioning in the eggs of these wasps does not strictly determine their order of progression through different stages of development.  相似文献   

8.
Interspecific host discrimination and within-host competition between Encarsia formosa Gahan and Encarsia pergandiella (Howard), two endoparasitoids of whiteflies, were studied under laboratory conditions. Interspecific host discrimination was studied at two time intervals (0 h and 72 h after the first species had oviposited). Parasitized and unparasitized Trialeurodes vaporariorum (Westwood) hosts were accepted for oviposition at the same rate by the two parasitoid species. Host type did not affect the handling time of the two parasitoids. The outcome of within-host competition was investigated after females of the two species parasitized the hosts at various time intervals. In four treatments, E. pergandiella was allowed to oviposit 0, 24, 48 and 72 h after E. formosa while in the other two, E. formosa was allowed to oviposit 0 and 72 h after E. pergandiella. In four of these treatments: E. formosa following E. pergandiella at 0 and 72 h, and E. pergandiella following E. formosa at 0 and 24 h, E. pergandiella prevailed. In the host discrimination experiment (72 h interval), 20% of E. pergandiella eggs were killed by E. formosa females. Interspecific ovicide was also observed in the within-host competition experiment, in which 6% of 72-h-old E. pergandiella eggs were killed by E. formosa females.  相似文献   

9.
张锐锐  张桂芬  贤振华  万方浩 《昆虫学报》2012,55(12):1386-1393
丽蚜小蜂Encarsia formosa Gahan作为温室粉虱Trialeurodes vaporariorum Westwood和烟粉虱Bemisia tabaci (Gennadius)等粉虱类害虫的优势寄生蜂而备受关注。针对丽蚜小蜂体型微小, 难以与其他同域近缘种寄生蜂快速、 准确区别的问题, 本研究采用SCAR (sequence characterized amplified region, 特异性扩增区域)标记技术, 筛选出一对丽蚜小蜂特征片段扩增引物(EFZZF/EFZZR), 其扩增片段的大小为287 bp。种特异性检验结果表明, 该对引物只对丽蚜小蜂的基因组DNA具有扩增能力, 对其近缘种属寄生蜂如浅黄恩蚜小蜂Encarsia sophia (Girault & Dodd)、 海氏桨角蚜小蜂Eretmocerus hayati Zolnerowich & Rose、 本地未知种桨角蚜小蜂Eretmocerus sp.、 蒙氏桨角蚜小蜂Eretmocerus mundus Mercet、 刺粉虱黑蜂Amitus hesperidum Silvertri不具有扩增效果, 对丽蚜小蜂的寄主包括不同生物型 (B型、 Q型、 ZHJ 1型和ZHJ 2型)的烟粉虱、 温室粉虱以及我国最常见的黑刺粉虱Aleurocanthus spiniferus (Quaintanca)等亦不具有扩增能力。同时, 该检测技术灵敏度高, 对成虫的最低检出阈值为7.812 ng/μL (相当于1/1 600头成虫)。研究结果对丽蚜小蜂的种类识别、 寄主谱的确定及其有效利用具有重要意义。  相似文献   

10.
Wolbachia and Cardinium are maternally inherited intracellular bacteria that can manipulate the reproduction of their arthropod hosts, such as by inducing cytoplasmic incompatibility (CI). Although the reproductive alteration induced by Wolbachia or Cardinium have been well investigated, the effects of these two endosymbionts co-infecting the same host are poorly understood. We found that Tetranychus piercei McGregor is naturally infected with Wolbachia and Cardinium. We performed all possible crossing combinations using naturally infected and cured strains, and the results show that Wolbachia induced a weak level of CI, while Cardinium-infected and doubly infected males caused severe CI. Wolbachia and Cardinium could not rescue CI each other; however, Wolbachia boosted the expression of Cardinium-induced CI. Quantitative PCR results demonstrated that CI was associated with the infection density of Wolbachia and Cardinium.  相似文献   

11.
The parasitoid Encarsia formosa Gahan (Hymenoptera: Aphelinidae) has been used successfully for the control of Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). The development of UV-blocking plastic films has added a new component to future integrated pest management systems by disrupting insect pest infestation when UV light is excluded. Because both T. vaporariorum and E. formosa are reported to have similar spectral efficiency, there was a need to identify the impact of UV-blocking films on the dispersal behavior of both the pest and the natural enemy. In field studies, using choice-chamber experiments, E. formosa showed some preference to disperse into compartments where less UV light was blocked. However, further studies indicated that the effect was primarily attributable to the different light diffusion properties of the films tested. Thus, unlike its whitefly host, when the UV-absorbing properties of the films were similar, but the light diffusion properties differed, E. formosa adults preferred to disperse into compartments clad with films that had high light diffusion properties. When the plastic films differed most in their UV-absorbing capacity and had no light-diffusion capability, the initial dispersal of E. formosa between treatments was similar, although a small preference toward the environment with UV light was observed over time. When parasitoid dispersal was measured 3 h after release, more parasitoids were found on plants, suggesting that the parasitoids would search plants for whitefly hosts, even in a UV-blocked light environment. The potential for the integration of UV-blocking films with E. formosa in an advanced whitefly management system is discussed.  相似文献   

12.
G Odierna  F Baldanza  G Aprea  E Olmo 《Génome》1993,36(4):662-667
Well-defined G-bands were obtained on somatic metaphase chromosomes of Encarsia berlesei using trypsin and warm 2x SCC in sequence. The G-banded pattern allowed rapid identification of all five metacentric chromosomes, which appeared uniformly lighted when stained with DAPI fluorochrome dye. It is stressed that ageing affects G-banding in this insect species; in fact, good banded chromosomes were obtained on 1-month air-stored chromosomes. Evidence for asynchronous condensation on the chromosomes of this species is also provided.  相似文献   

13.
Encarsia tricolor is a facultative autoparasitoid of the glasshouse whitefly, Trialeurodes vaporariorum, with a potential in biological control. The rate of development, number of mature oocytes at emergence, number of ovarioles and size of the emerged adults were studied. Five nymphal instars (N1, N2, N3, N4, and pharate adult) of T. vaporariorum were used as hosts for the females. Female larvae and pupae of E. tricolor and Encarsia formosa were used as hosts for the males. Females developed faster when the egg was laid on N3 (18.0 days from egg to adult) and slower on N1 (22.3 days). Females were bigger when developing from N1 and N3 than from N4 and pharate adult. On emergence the mean number of mature oocytes was always small (0.8–2.6). Males developed faster and were smaller than females, and developed faster and were larger on larvae of E. formosa.  相似文献   

14.
Abstract Interspecific competition between Encarsia formosa and Encarsia sophia, two major parasitoids of Bemisia tabaci, and the influence of five tomato varieties on competition outcome were investigated under laboratory conditions. E. formosa parasitized more B. tabaci than E. sophia when in single wasp assays on any of the tomato varieties investigated. When B. tabaci nymphs were exposed to both wasp species (either simultaneously or sequentially), the number of B. tabaci nymphs parasitized by either wasp species was significantly decreased compared to the sole access condition. Total mortality of B. tabaci was increased when B. tabaci nymphs were exposed to both wasp species compared to only one wasp species. Thus competition between E. formosa and E. sophia apparently reduced parasitoid offspring numbers, but not the efficiency of biological control. In fact, control efficiency was enhanced in some cases, particularly on tomato variety Huangtuoyuan (HTY). When wasps were allowed sequential access to hosts, interference occurred through host feeding by the second wasp, especially if it was E. sophia. The effect of different tomato varieties was not significant.  相似文献   

15.
Abstract Fitness and efficacy of Encarsia sophia (Girault & Dodd) (Hymenoptera: Aphelinidae) as a biological control agent was compared on two species of whitefly (Hemiptera: Aleyrodidae) hosts, the relatively smaller sweetpotato whitefly, Bemisia tabaci (Gennadius) biotype ‘B’, and the larger greenhouse whitefly, Trialeurodes vaporariorum (Westwood). Significant differences were observed on green bean (Phaseolus vulgaris L.) in the laboratory at 27 ± 2°C, 55%± 5% RH, and a photoperiod of 14: 10 h (L: D). Adult parasitoids emerging from T. vaporariorum were larger than those emerging from B. tabaci, and almost all biological parameters of E. sophia parasitizing the larger host species were superior except for the developmental times of the parasitoids that were similar when parasitizing the two host species. Furthermore, parasitoids emerging from T. vaporariorum parasitized more of these hosts than did parasitoids emerging from B. tabaci. We conclude that E. sophia reared from larger hosts had better fitness than from smaller hosts. Those from either host also preferred the larger host for oviposition but were just as effective on smaller hosts. Therefore, larger hosts tended to produce better parasitoids than smaller hosts.  相似文献   

16.
Wolbachia是一类广泛存在于节肢动物体内, 可以对寄主的生殖力及生殖行为产生影响的共生菌。用抗生素可以有效除去寄主体内的Wolbachia。本实验通过喂食浓度分别为1, 5和10 mg盐酸四环素/mL蔗糖水, 结合PCR检测丽蚜小蜂Encarsia formosa体内Wolbachia的去除效果; 解剖观察丽蚜小蜂F0代及F1, F2和F3代怀卵量和卵巢管数量, 评价Wolbachia对丽蚜小蜂生殖的影响。结果显示: 抗生素处理去除Wolbachia后F0代蜂的卵巢管数量与未处理蜂之间无显著差异(P=0.12), 但F1, F2和F3代蜂的卵巢管均为6条, 显著少于F0代蜂的卵巢管数量(P<0.001)。抗生素处理去除Wolbachia后的F0代蜂怀卵量与未处理蜂相比显著下降, 但显著高于经抗生素处理去除Wolbachia后的F1, F2和F3代蜂怀卵量(P<0.001), 后代(F1, F2, F3)蜂之间怀卵量无显著差异(P=0.59)。去除Wolbachia后, 丽蚜小蜂可以产生雄性后代, 但未见交配行为, 且雌蜂可不经交配而产生雌性后代。结果说明, Wolbachia不仅直接影响丽蚜小蜂的怀卵量, 而且还可以通过影响丽蚜小蜂卵巢管的发育影响丽蚜小蜂的怀卵量; 然而, 去除Wolbachia不改变雌蜂的孤雌生殖方式。  相似文献   

17.
18.
Several series of host-reared specimens of an Encarsia species, initially thought to be the cosmopolitan Encarsia inaron (Walker), were collected in the Azores Islands (Portugal). Subsequent morphometric analysis supported the presence of two species: E. inaron and a new species, described herein as Encarsia estrellae Manzari & Polaszek sp. n. Encarsia estrellae was reared from Aleyrodes singularis Danzig, A. ?singularis, and Bemisia sp. afer-group on several host plants. In addition, the D2 region of the 28S rDNA gene was sequenced in eight individuals belonging to these species, as well as single representatives of two closely related and one distantly related species. Phylogenetic analysis of these DNA sequences, together with 23 additional Encarsia sequences retrieved from the European Molecular Biology Laboratory (EMBL) and GenBank databases, further supported the specific status of E. estrellae, and the placement of E. dichroa (Mercet) in the E. inaron species-group. Additionally, E. inaron is redescribed and some taxonomic problems in the E. inaron species-group are discussed.  相似文献   

19.
烟粉虱生物型对浅黄恩蚜小蜂寄主选择及个体发育的影响   总被引:2,自引:0,他引:2  
为探讨寄生蜂在Q型烟粉虱Bemisia tabaci替代B型烟粉虱的过程中是否起作用, 我们在实验室条件(温度27±1℃, 光周期16L∶8D, 相对湿度RH 70%~80%)下, 观察了浅黄恩蚜小蜂Encarsia sophia寄生B型和Q型烟粉虱若虫的行为, 研究了浅黄恩蚜小蜂对B型和Q型烟粉虱若虫的选择性、 烟粉虱生物型对浅黄恩蚜小蜂取食数量及个体发育的影响。结果发现, 浅黄恩蚜小蜂体外检测时间在B型和Q型烟粉虱若虫间差异不显著, 而寄生Q型烟粉虱若虫时的体内检测和产卵时间(190.2±14.6 s)显著高于寄生B型时所用时间(140.0±7.5 s)。在非选择条件下, 浅黄恩蚜小蜂寄生B型烟粉虱若虫的数量(8.1±0.5头)及总产卵量(9.3±0.6粒)显著高于仅提供Q型烟粉虱的寄生数量(6.3±0.5头)及总产卵量(7.0±0.6粒); 而被寄生若虫单头着卵量在处理间差异不显著。在选择性条件下, 该蜂寄生B型烟粉虱若虫量(3.1±0.4头)、总产卵量(3.8±0.5粒)及被寄生若虫单头着卵量(1.2±0.1粒)都显著高于寄生Q型烟粉虱时的情况(1.8±0.3头、1.8±0.4粒、0.7±0.1粒)。被寄生蜂取食的B型与Q型烟粉虱数量间差异不显著, 但对于同一生物型而言, 交配过的雌蜂能够取食更多的烟粉虱若虫。以B型烟粉虱为寄主时, 浅黄恩蚜小蜂雌蜂卵-黑蛹(7.2±0.1 d)、黑蛹-羽化(5.2±0.1 d)的发育时间与以Q型烟粉虱若虫为寄主时的相应发育时间(7.3±0.1 d, 5.6±0.1 d)间无显著性差异。以B型烟粉虱为寄主时寄生蜂的羽化率(73.55%±1.42%)与以Q型烟粉虱为寄主时的羽化率(68.42%±13.01%)间差异不显著。这些结果表明, 虽然浅黄恩蚜小蜂发育时间、 羽化率在烟粉虱2种生物型间无显著差异, 但该小蜂倾向于B型烟粉虱若虫作为寄主, 而且, 以B型烟粉虱若虫为寄主时, 小蜂的产卵量和寄生若虫数量均增加。但田间浅黄恩蚜小蜂的存在是否有助于Q型烟粉虱成为B型和Q型混合种群的优势种群, 还需进一步研究。  相似文献   

20.
Novel biorational insecticides are rapidly replacing more toxic, broad-spectrum compounds to control pests of ornamental plants. These new formulations are widely regarded as safe, effective, and environmentally sound with minimal impact on nontarget organisms. We tested several biorational and traditional insecticides for their ability to control euonymus scale, Unaspis euonymi (Comstock), and their potential impacts on the aphelinid parasitoid, Encarsia citrina (Crawford). Soil-applied acephate and foliar-applied pyriproxyfen exhibited superior control of euonymus scale, but also reduced numbers of surviving E. citrina. Imidacloprid failed to control euonymus scale and decreased parasitism by E. citrina. Thus, the potential impact of a pesticide on biological control is not necessarily predicted by its potential longevity, mode of delivery, or its toxicity to the target pest. Finding the best fit of a compound into an integrated pest management program requires a consideration of all these factors and direct study of effects on the natural enemies of pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号