首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coffee quality is strongly influenced by a great number of factors, among which the fruit ripening stage at harvest time has a major influence on this feature. Studies comprising ethylene production and the regulation of ethylene biosynthesis genes during the ripening process indicate that ethylene plays an important role on coffee fruit ripening. Coffee early cultivars usually show a more uniform ripening process although little is known about the genetic factors that promote the earliness of ripening. Thus, in order to better understand the physiological and genetic factors involved in the regulation of ripening time, and consequently ripening uniformity, this study aimed to analyze ethylene and respiration patterns during coffee ripening, as well as to analyze ACC oxidase, an ethylene biosynthesis enzyme, gene expression, in fruits of early (Catucaí 785-15) and late (Acauã) coffee cultivars. Coffee fruits were harvested monthly from 124 days after flowering (end of February), until complete maturation (end of June). Dry matter, moisture content, color, respiratory rate and ethylene production analysis were performed. In silico analysis identified a coffee ACC oxidase gene (CaACO-like) and its expression was analyzed by real-time PCR. Dry matter and relative water content constantly increased and gradually decreased, respectively, during fruit ripening, and the color analysis enabled the observation of the earliness in the ripening process displayed by Catucaí 785-15 and its higher fruit ripening uniformity. The results obtained from the CaACO-like expression analysis and respiration and ethylene analysis suggest that the differences in ripening behavior between the two coffee cultivars analyzed in this study may be related to the differences in their capacity to produce ethylene, with fruits of Catucaí 785-15 and Acauã showing a typical and an attenuated climacteric phase, respectively, which may have lead to differences in their ripening time and uniformity.  相似文献   

2.
Rapid ripening of mango fruit limits its distribution to distant markets. To better understand and perhaps manipulate this process, we investigated the role of plant hormones in modulating climacteric ripening of ??Kensington Pride?? mango fruits. Changes in endogenous levels of brassinosteroids (BRs), abscisic acid (ABA), indole-3-acetic acid (IAA), and ethylene and the respiration rate, pulp firmness, and skin color were determined at 2-day intervals during an 8-day ripening period at ambient temperature (21?±?1°C). We also investigated the effects of exogenously applied epibrassinolide (Epi-BL), (+)-cis, trans-abscisic acid (ABA), and an inhibitor of ABA biosynthesis, nordihydroguaiaretic acid (NDGA), on fruit-ripening parameters such as respiration, ethylene production, fruit softening, and color. Climacteric ethylene production and the respiration peak occurred on the fourth day of ripening. Castasterone and brassinolide were present in only trace amounts in fruit pulp throughout the ripening period. However, the exogenous application of Epi-BL (45 and 60?ng?g?1 FW) advanced the onset of the climacteric peaks of ethylene production and respiration rate by 2 and 1?day, respectively, and accelerated fruit color development and softening during the fruit-ripening period. The endogenous level of ABA rose during the climacteric rise stage on the second day of ripening and peaked on the fourth day of ripening. Exogenous ABA promoted fruit color development and softening during ripening compared with the control and the trend was reversed in NDGA-treated fruit. The endogenous IAA level in the fruit pulp was higher during the preclimacteric minimum stage and declined during the climacteric and postclimacteric stages. We speculate that higher levels of endogenous IAA in fruit pulp during the preclimacteric stage and the accumulation of ABA prior to the climacteric stage might switch on ethylene production that triggers fruit ripening. Whilst exogenous Epi-BL promoted fruit ripening, endogenous measurements suggest that changes in BRs levels are unlikely to modulate mango fruit ripening.  相似文献   

3.
4.
5.
Xyloglucan endotransglucosylase/hydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151), a xyloglucan modifying enzyme, has been proposed to have a role during tomato and apple fruit ripening by loosening the cell wall. Since the ripening of climacteric fruits is controlled by endogenous ethylene biosynthesis, we wanted to study whether XET activity was ethylene-regulated, and if so, which specific genes encoding ripening-regulated XTH genes were indeed ethylene-regulated. XET specific activity in tomato and apple fruits was significantly increased by the ethylene treatment, as compared with the control fruits, suggesting an increase in the XTH gene expression induced by ethylene. The 25 SlXTH protein sequences of tomato and the 11 sequences MdXTH of apple were phylogenetically analyzed and grouped into three major clades. The SlXTHs genes with highest expression during ripening were SlXTH5 and SlXTH8 from Group III-B, and in apple MdXTH2, from Group II, and MdXTH10, and MdXTH11 from Group III-B. Ethylene was involved in the regulation of the expression of different SlXTH and MdXTH genes during ripening. In tomato fruit fifteen different SlXTH genes showed an increase in expression after ethylene treatment, and the SlXTHs that were ripening associated were also ethylene dependent, and belong to Group III-B (SlXTH5 and SlXTH8). In apple fruit, three MdXTH showed an increase in expression after the ethylene treatment and the only MdXTH that was ripening associated and ethylene dependent was MdXTH10 from Group III-B. The results indicate that XTH may play an important role in fruit ripening and a possible relationship between XTHs from Group III-B and fruit ripening, and ethylene regulation is suggested.  相似文献   

6.
7.
8.

The “Nanguo” pear is a typically climacteric fruit and ethylene is the main factor controlling the ripening process of climacteric fruit. Ethylene biosynthesis has been studied clearly and ACC synthase (ACS) is the rate-limited enzyme. ACO (ACC oxidase) is another important enzyme in ethylene biosynthesis. By exploring the pear genome, we identified 13 ACS genes and 11 ACO genes, respectively, and their expression patterns in fruit and other organs were investigated. Among these genes, 11 ACS and 8ACO genes were expressed in pear fruits. What’s more, 4 ACS and 3ACO genes could be induced by Ethephon and inhibited by 1-MCP treatment. This study is the first time to explore ACS and ACO genes at genome-wide level and will provide new data for research on pear fruit ripening.

  相似文献   

9.
10.
11.
The modern concept of the hormonal regulation of fruit set, growth, maturation, and ripening is considered. Pollination and fertilization induce ovule activation by surmounting the blocking action of ethylene and ABA to be manifested in auxin accumulation. Active fruit growth by pericarp cell division and elongation is due to the syntheses of auxin in the developing seed and of gibberellins in the pericarp. In climacteric fleshy fruits, the maturation is controlled by ethylene via so-called System 1 combining the possibilities of autoinhibition and autocatalysis by ethylene of its own biosynthesis. Transition of tomato fruits from maturation to ripening is characterized by highly active synthesis of ethylene and its receptors due to the functioning of regulatory System 2 resulting in the up-regulation of much greater number of ethylene-inducible genes. In peach fruits, the hormonal regulation of ripening includes also an active auxin involvement in the ethylene biosynthesis, which is combined with the ethylene-induced expression of genes encoding both auxin biosynthesis and the response to auxin. Ethylene induces the expression of genes responsible for the fruit softening, its taste, color, and flavor. Nonclimacteric fleshy fruits produce very small amounts of ethylene; its evolution increases only by the very end of ripening and can be described by a reduced System 1. The ripening of nonclimacteric fruits only weakly depends on ethylene but is stimulated by abscisic acid.  相似文献   

12.
Ethylene is instrumental to climacteric fruit ripening and EIN3 BINDING F‐BOX (EBF) proteins have been assigned a central role in mediating ethylene responses by regulating EIN3/EIL degradation in Arabidopsis. However, the role and mode of action of tomato EBFs in ethylene‐dependent processes like fruit ripening remains unclear. Two novel EBF genes, SlEBF3 and SlEBF4, were identified in the tomato genome, and SlEBF3 displayed a ripening‐associated expression pattern suggesting its potential involvement in controlling ethylene response during fruit ripening. SlEBF3 downregulated tomato lines failed to show obvious ripening‐related phenotypes likely due to functional redundancy among SlEBF family members. By contrast, SlEBF3 overexpression lines exhibited pleiotropic ethylene‐related alterations, including inhibition of fruit ripening, attenuated triple‐response and delayed petal abscission. Yeast‐two‐hybrid system and bimolecular fluorescence complementation approaches indicated that SlEBF3 interacts with all known tomato SlEIL proteins and, consistently, total SlEIL protein levels were decreased in SlEBF3 overexpression fruits, supporting the idea that the reduced ethylene sensitivity and defects in fruit ripening are due to the SlEBF3‐mediated degradation of EIL proteins. Moreover, SlEBF3 expression is regulated by EIL1 via a feedback loop, which supposes its role in tuning ethylene signaling and responses. Overall, the study reveals the role of a novel EBF tomato gene in climacteric ripening, thus providing a new target for modulating fleshy fruit ripening.  相似文献   

13.
14.
1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is one of the key regulatory enzymes involved in the synthesis of ethylene. Climacteric fruit ripening is accompanied by increased ethylene production, in which ethylene biosynthesis is changed from system 1 to system 2. In apple, at least four members of the ACS gene family have been identified, two of which, MdACS1 and MdACS3a, have been studied extensively due to their specific expression in fruit tissue. However, the regulatory role of MdACS1 and MdACS3a in the ethylene biosynthesis system is unknown. Here we addressed this issue by investigating ACS expression in ripening apple fruits. Expression analysis in ‘Golden Delicious’ and ‘Red Fuji’ fruits, in combination with treatments of 1-MCP (1-methylcyclopropene, an ethylene inhibitor) and Ethephon (an ethylene releaser) has demonstrated that MdACS3a and MdACS1operate in system 1 and system 2 ethylene biosynthesis, respectively.  相似文献   

15.
16.
17.
A role for jasmonates in climacteric fruit ripening   总被引:12,自引:0,他引:12  
Jasmonates are a class of oxylipins that induce a wide variety of higher-plant responses. To determine if jasmonates play a role in the regulation of climacteric fruit ripening, the effects of exogenous jasmonates on ethylene biosynthesis and color, as well as the endogenous concentrations of jasmonates were determined during the onset of ripening of apple (Malus domestica Borkh. cv. Golden Delicious) and tomato (Lycopersicon esculentum Mill. cv. Cobra) fruit. Transient (12 h) treatment of pre-climacteric fruit discs with exogenous jasmonates at low concentration (1 or 10 μM) promoted ethylene biosynthesis and color change in a concentration-dependent fashion. Activities of both 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase and ACC synthase were stimulated by jasmonate treatments in this concentration range. The endogenous concentration of jasmonates increased transiently prior to the climacteric increase in ethylene biosynthesis during the onset of ripening of both apple and tomato fruit. The onset of tomato fruit ripening was also preceded by an increase in the percentage of the cis-isomer of jasmonic acid. Inhibition of ethylene action by diazocyclopentadiene negated the jasmonate-induced stimulation of ethylene biosynthesis, indicating jasmonates act at least in part via ethylene action. These results suggest jasmonates may play a role together with ethylene in regulating the early steps of climacteric fruit ripening. Received: 14 August 1997 / Accepted: 4 October 1997  相似文献   

18.
19.
20.
Ethylene production by tissue slices from preclimacteric, climacteric, and postclimacteric apples was significantly reduced by isopentenyl adenosine (IPA), and by mixtures of IPA and indoleacetic acid, and of IPA, indoleacetic acid, and gibberellic acid after 4 hours of incubation. Ethylene production by apple (Pyrus malus L.) slices in abscisic acid was increased in preclimacteric tissues, decreased in climacteric peak tissues, and little affected in postclimacteric tissues. Indoleacetic acid suppressed ethylene production in tissues from preclimacteric apples but stimulated ethylene production in late climacteric rise, climacteric, and postclimacteric tissue slices. Gibberellic acid had less influence in suppressing ethylene production in preclimacteric peak tissue, and little influenced the production in late climacteric rise, climacteric peak, and postclimacteric tissues. IPA also suppressed ethylene production in pre- and postclimacteric tissue of tomatoes (Lycopersicon esculentum) and avocados (Persea gratissima). If ethylene production in tissue slices of ripening fruits is an index of aging, then IPA would appear to retard aging in ripening fruit, just as other cytokinins appear to retard aging in senescent leaf tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号