首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biosolids result from treatment of sewage sludge to meet jurisdictional standards, including pathogen reduction. Once government regulations are met, materials can be applied to agricultural lands. Culture-based methods are used to enumerate pathogen indicator microorganisms but may underestimate cell densities, which is partly due to bacteria existing in a viable but non-culturable physiological state. Viable indicators can also be quantified by real-time polymerase chain reaction (qPCR) used with propidium monoazide (PMA), a dye that inhibits amplification of DNA found extracellularly or in dead cells. The objectives of this study were to test an optimized PMA-qPCR method for viable pathogen detection in wastewater solids and to validate it by comparing results to data obtained by conventional plating. Reporter genes from genetically marked Pseudomonas sp. UG14Lr and Agrobacterium tumefaciens 542 cells were spiked into samples of primary sludge, and anaerobically digested and Lystek-treated biosolids as cell-free DNA, dead cells, viable cells, and mixtures of live and dead cells, followed by DNA extraction with and without PMA, and qPCR. The protocol was then used for Escherichia coli quantification in the three matrices, and results compared to plate counts. PMA-qPCR selectively detected viable cells, while inhibiting signals from cell-free DNA and DNA found in membrane-compromised cells. PMA-qPCR detected 0.5–1 log unit more viable E. coli cells in both primary solids and dewatered biosolids than plate counts. No viable E. coli was found in Lystek-treated biosolids. These data suggest PMA-qPCR may more accurately estimate pathogen cell numbers than traditional culture methods.  相似文献   

2.
ObjectivesAccording to the current guidelines for laboratory diagnosis of sexually transmitted infections (STIs), nucleic acid amplification tests (NAATs) are the preferred diagnostic method for Chlamydia trachomatis (CT) infections. However, NAATs amplify the available target DNA without discriminating between DNA originating from viable or non-viable CT. Assessing CT viability will provide more insights in the clinical and public health relevance of a CT positive test result. The aim of this study was to technically validate and implement viability-PCR (V-PCR) to asses CT viability.MethodsTechnical validation of V-PCR was performed by the assessment of predefined viability ratios of CT. Samples were subjected to V-PCR which consisted of propidium monoazide (PMA) treatment prior to DNA extraction followed by quantitative PCR (qPCR) targeting the ompA gene for the detection of CT DNA. Finally, V-PCR was applied to vaginal swabs of 50 CT positive patients, as indicated by routine NAAT, collected at our outpatient STD clinics before antimicrobial treatment.ResultsTechnical validation of V-PCR showed that PMA treatment of heat-inactivated CT culture resulted in an almost complete loss of qPCR signal. PMA treated samples of the fresh viable CT culture showed no marked reduction of PCR signal, indicating that all DNA from viable CT could be detected. Applying V-PCR to clinical samples showed that in 36% of samples (18/50) less than 1% of CT DNA originated from viable bacteria.ConclusionsV-PCR showed to be a fast and easy method to assess CT viability in clinical samples, without the need of traditional challenging cell culture methods. Furthermore, V-PCR results of clinical samples have indicated that a substantial amount of the amplified CT DNA originated from non-viable cells. Although results might be influenced by cell death during transport, this study suggests that there is a potential overestimation of quantitative CT positivity by currently used NAATs.  相似文献   

3.
Molecular viability testing (MVT) was previously reported to specifically detect viable bacterial cells in complex samples. In MVT, brief nutritional stimulation induces viable cells, but not non-viable cells, to produce abundant amounts of species-specific ribosomal RNA precursors (pre-rRNA). Quantitative polymerase chain reaction (qPCR) is used to quantify specific pre-rRNAs in a stimulated aliquot relative to a non-stimulated control. In addition to excluding background signal from non-viable cells and from free DNA, we report here that MVT increases the analytical sensitivity of qPCR when detecting viable cells. Side-by-side limit-of-detection comparisons showed that MVT is 5-fold to >10-fold more sensitive than standard (static) DNA-targeted qPCR when detecting diverse bacterial pathogens (Aeromonas hydrophila, Acinetobacter baumannii, Listeria monocytogenes, Mycobacterium avium, and Staphylococcus aureus) in serum, milk, and tap water. Sensitivity enhancement may come from the elevated copy number of pre-rRNA relative to genomic DNA, and also from the ratiometric measurement which reduces ambiguity associated with weak or borderline signals. We also report that MVT eliminates false positive signals from bacteria that have been inactivated by moderately elevated temperatures (pasteurization), a condition that can confound widely-used cellular integrity tests that utilize membrane-impermeant compounds such as propidium iodide (PI) or propidium monoazide (PMA) to differentiate viable from inactivated bacteria. MVT enables the sensitive and specific detection of very small numbers of viable bacteria in complex matrices.  相似文献   

4.
Propidium monoazide (PMA) or ethidium bromide monoazide (EMA) treatment has been used before nucleic acid detection methods, such as PCR, to distinguish between live and dead cells using membrane integrity as viability criterion. The performance of these DNA intercalating dyes was compared in many studies utilizing different microorganisms. These studies demonstrated that EMA and PMA differ in their abilities to identify nonviable cells from mixed cell populations, depending on the microorganism and the nature of the sample. Due to this heterogeneity, both dyes were used in the present study to specifically distinguish dead from live Candida albicans cells using viable quantitative PCR (qPCR). The viable qPCR was optimized, and the best results were obtained when pre-treating the cells for 10 min in the dark with 25 μM EMA followed by continuous photoactivation for 15 min. The suitability of this technique to distinguish clotrimazole- and fluconazole-treated C. albicans cells from untreated cells was then assessed. Furthermore, the antifungal properties of two commercial essential oils (Thymus vulgaris and Matricaria chamomilla) were evaluated. The viable qPCR method was determined to be a feasible technique for assessing the viability of C. albicans after drug treatment and may help to provide a rapid diagnostic and susceptibility testing method for fungal infections, especially for patients treated with antifungal therapies.  相似文献   

5.
Method to detect only viable cells in microbial ecology   总被引:3,自引:0,他引:3  
Propidium monoazide can limit the analysis of microbial communities derived from genetic fingerprints to viable cells with intact cell membranes. However, PMA treatment cannot completely suppress polymerase chain reaction (PCR) amplification when the targeted gene is too short. PMA treatment in combination with two-step nested PCR was designed to overcome this problem. Four experiments were performed to determine the limitation of PMA treatment and to evaluate the suitability of the method by applying the following samples: (1) pure cultures of Escherichia coli O157:H7, Enterobacter aerogenes, and Alcaligenes faecalis; (2) pond water samples spiked with heat-killed E. coli O157:H7 and E. aerogenes; (3) anaerobic sludge samples exposed to increasing heat stress; and (4) selected natural samples of estuarine sediment and lake mud. Results from the first two experiments show that PMA treatment cannot efficiently suppress dead cells from PCR amplification when the targeted gene is as short as 190 bp, however, the two-step nested PCR can overcome this problem. The last two experiments indicate the method that PMA treatment in combination with two-step nested PCR is useful for viable cells detection in microbial ecology.  相似文献   

6.
The development of rapid detection assays of cell viability is essential for monitoring the microbiological quality of water systems. Coupling propidium monoazide with quantitative PCR (PMA-qPCR) has been successfully applied in different studies for the detection and quantification of viable cells in small-volume samples (0.25–1.00 mL), but it has not been evaluated sufficiently in marine environments or in large-volume samples. In this study, we successfully integrated blue light-emitting diodes for photoactivating PMA and membrane filtration into the PMA-qPCR assay for the rapid detection and quantification of viable Enterococcus faecalis cells in 10-mL samples of marine waters. The assay was optimized in phosphate-buffered saline and seawater, reducing the qPCR signal of heat-killed E. faecalis cells by 4 log10 and 3 log10 units, respectively. Results suggest that high total dissolved solid concentration (32 g/L) in seawater can reduce PMA activity. Optimal PMA-qPCR standard curves with a 6-log dynamic range and detection limit of 102 cells/mL were generated for quantifying viable E. faecalis cells in marine waters. The developed assay was compared with the standard membrane filter (MF) method by quantifying viable E. faecalis cells in seawater samples exposed to solar radiation. The results of the developed PMA-qPCR assay did not match that of the standard MF method. This difference in the results reflects the different physiological states of E. faecalis cells in seawater. In conclusion, the developed assay is a rapid (~5 h) method for the quantification of viable E. faecalis cells in marine recreational waters, which should be further improved and tested in different seawater settings.  相似文献   

7.
Quantitative PCR (qPCR) assays targeting the host-specific Bacteroides-Prevotella 16S rRNA genetic markers have been proposed as one of the promising approaches to identify the source of fecal contamination in environmental waters. One of the concerns of qPCR assays to environmental samples is the reliability of quantified values, since DNA extraction followed by qPCR assays are usually performed without appropriate sample process control (SPC) and internal amplification controls (IACs). To check the errors in sample processing and improve the reliability of qPCR results, it is essential to evaluate the DNA recovery efficiency and PCR amplification efficiency of the target genetic markers and correct the measurement results. In this study, we constructed a genetically-engineered Escherichia coli K12 strain (designated as strain MG1655 Δlac::kan) as sample process control and evaluated the applicability to environmental water samples. The recovery efficiency of the SPC strain MG1655 Δlac::kan was similar to that of Bacteroides fragilis JCM 11019, when DNA were extracted from water samples spiked with the two bacteria. Furthermore, the SPC was included in the qPCR assays with propidium monoazide (PMA) treatment, which can exclude the genetic markers from dead cells. No significant DNA loss was observed in the PMA treatment. The inclusion of both the SPC (strain MG1655 Δlac::kan) and IAC in qPCR assays with PMA treatment gave the assurance of reliable results of host-specific Bacteroides-Prevotella 16S rRNA genetic markers in environmental water samples.  相似文献   

8.
Standardization of DNA extraction is a fundamental issue of fidelity and comparability in investigations of environmental microbial communities. Commercial kits for soil or feces are often adopted for studies of activated sludge because of a lack of specific kits, but they have never been evaluated regarding their effectiveness and potential biases based on high throughput sequencing. In this study, seven common DNA extraction kits were evaluated, based on not only yield/purity but also sequencing results, using two activated sludge samples (two sub-samples each, i.e. ethanol-fixed and fresh, as-is). The results indicate that the bead-beating step is necessary for DNA extraction from activated sludge. The two kits without the bead-beating step yielded very low amounts of DNA, and the least abundant operational taxonomic units (OTUs), and significantly underestimated the Gram-positive Actinobacteria, Nitrospirae, Chloroflexi, and Alphaproteobacteria and overestimated Gammaproteobacteria, Deltaproteobacteria, Bacteroidetes, and the rare phyla whose cell walls might have been readily broken. Among the other five kits, FastDNA@ SPIN Kit for Soil extracted the most and the purest DNA. Although the number of total OTUs obtained using this kit was not the highest, the abundant OTUs and abundance of Actinobacteria demonstrated its efficiency. The three MoBio kits and one ZR kit produced fair results, but had a relatively low DNA yield and/or less Actinobacteria-related sequences. Moreover, the 50 % ethanol fixation increased the DNA yield, but did not change the sequenced microbial community in a significant way. Based on the present study, the FastDNA SPIN kit for Soil is recommended for DNA extraction of activated sludge samples. More importantly, the selection of the DNA extraction kit must be done carefully if the samples contain dominant lysing-resistant groups, such as Actinobacteria and Nitrospirae.  相似文献   

9.
A PMA (propidium monoazide) pretreatment protocol, in which PMA is applied directly to membrane filters, was developed for the PCR-based quantification (PMA-qPCR) of viable Legionella pneumophila. Using this method, the amplification of DNA from membrane-damaged L. pneumophila was strongly inhibited for samples containing a small number of dead bacteria.  相似文献   

10.
In this study, we successfully demonstrated that 454 pyrosequencing was a powerful approach for investigating the bacterial communities in the activated sludge, digestion sludge, influent, and effluent samples of a full scale wastewater treatment plant treating saline sewage. For each sample, 18,808 effective sequences were selected and utilized to do the bacterial diversity and abundance analysis. In total, 2,455, 794, 1,667, and 1,932 operational taxonomic units were obtained at 3 % distance cutoff in the activated sludge, digestion sludge, influent, and effluent samples, respectively. The corresponding most dominant classes in the four samples are Alphaproteobacteria, Thermotogae, Deltaproteobacteria, and Gammaproteobacteria. About 67 % sequences in the digestion sludge sample were found to be affiliated with the Thermotogales order. Also, these sequences were assigned into a recently proposed genus Kosmotoga by the Ribosomal Database Project classifier. In the effluent sample, we found high abundance of Mycobacterium and Vibrio, which are genera containing pathogenic bacteria. Moreover, in this study, we proposed a method to differentiate the “gene percentage” and “cell percentage” by using Ribosomal RNA Operon Copy Number Database.  相似文献   

11.
Propidium monoazide is a DNA‐intercalating dye. PMA‐qPCR has been reported as a novel method to detect live bacteria in complex samples. In this study, this method was used to monitor the sterilization effects of UHP, ultrasound and high PEF on Escherichia coli O157:H7. Our results showed that all three sterilization techniques are successful to kill viable E. coli O157:H7 cells under their appropriate conditions. PMA‐qPCR can effectively monitor the amount of DNA released from viable E. coli O157:H7 cells, and the results from PMA‐qPCR were highly consistent with those from plate counting after treatment with UHP, ultrasound and high PEF. The maximal ΔCt between PMA‐qPCR and qPCR obtained in this study was 10·39 for UHP, 5·76 for ultrasound and 2·30 for high PEF. The maximal sterilization rates monitored by PMA‐qPCR were 99·92% for UHP, 99·99% for ultrasound and 100% for high PEF. Thus, PMA‐qPCR can be used to detect the sterilization effect on food and water supplies after treatment with UHP, ultrasound and high PEF.

Significance and Impact of the Study

The reliable detection of viable foodborne pathogenic bacteria in water and food is of great importance in our daily life. However, the traditional bacteria cultivation‐based methods are time‐consuming and difficult to monitor all viable bacteria because of the limitation of cultivation conditions. This study demonstrated that PMA‐qPCR technique is very effective to monitor viable E. coli O157:H7 after sterilization and will help to monitor the viable bacteria in food and water.  相似文献   

12.
Rapid microbiological methods (RMMs) as an alternative to conventional cultivation-based bioburden analysis are receiving increasing attention although no single technology is currently able to satisfy the needs of the health care industry. Among the RMMs, quantitative PCR (qPCR) seems particularly suited. Its implementation is, however, hampered by false-positive signals originating from free DNA in PCR reagents or from dead cells in the samples to be analysed. In this study, we assessed the capability of propidium monoazide (PMA) to inactivate exogenous DNA in PCR reagents and thus to minimise its impact in bioburden analysis. PMA is a membrane-impermeant dye that intercalates into DNA and covalently binds to it upon photoactivation leading to strong inhibition of PCR amplification. PMA is currently used mainly for treatment of microbiological samples to exclude signals from membrane-compromised cells, but is also very useful for suppression of exogenous DNA signals. In addition to testing the effect of different PMA concentrations on non-template controls and target DNA, we demonstrate the effect of amplicon length on the exclusion of background amplification. Targeting a 1,108-bp 16S rRNA gene fragment using universal bacterial primers and PCR reagents treated with 5 μM PMA resulted in complete suppression of signals from exogenous DNA within 50 cycles of amplification, while a limit of detection of 10 copies of Escherichia coli genomic DNA per PCR reaction was achieved. A combined PMA treatment of sample and PCR reagents furthermore improved the selective detection of live cells making this method appear a highly attractive RMM.  相似文献   

13.
Vibrio sp., ubiquitous in the aquatic ecosystem, are bacteria of interest because of their involvement in human health, causing gastroenteritis after ingestion of seafood, as well as their role in vibriosis leading to severe losses in aquaculture production. Their ability to enter a viable but non-culturable (VBNC) state under stressful environmental conditions may lead to underestimation of the Vibrio population by traditional microbiological enumeration methods. As a result, using molecular methods in combination with EMA or PMA allows the detection of viable (VBNC and culturable viable) cells. In this study, the impact of the EMA and PMA was tested at different concentrations on the viability of several Vibrio species. We compared the toxicity of these two DNA-binding dyes to determine the best pretreatment to use with qPCR to discriminate between viable and dead Vibrio cells. Our results showed that EMA displayed lethal effects for each strain of V. cholerae and V. vulnificus tested. In contrast, the concentrations of PMA tested had no toxic effect on the viability of Vibrio cells studied. These results may help to achieve optimal PMA-qPCR methods to detect viable Vibrio sp. cells in food and environmental samples.  相似文献   

14.
BacteroidesPrevotella group is one of the most promising targets for detecting fecal contamination in water environments, principally due to its host-specific distributions and high concentrations in feces of warm-blooded animals. We developed real-time PCR assays for quantifying chicken/duck-, chicken-, and duck-associated BacteroidesPrevotella 16S rRNA genetic markers (Chicken/Duck-Bac, Chicken-Bac, and Duck-Bac). A reference collection of DNA extracts from 143 individual fecal samples and wastewater treatment plant influent was tested by the newly established markers. The quantification limits of Chicken/Duck-Bac, Chicken-Bac, and Duck-Bac markers in environmental water were 54, 57, and 12 copies/reaction, respectively. It was possible to detect possible fecal contaminations from wild ducks in environmental water with the constructed genetic marker assays, even though the density of total coliforms in the identical water samples was below the detection limit. Chicken/Duck-Bac marker was amplified from feces of wild duck and chicken with the positive ratio of 96 and 61 %, respectively, and no cross-reaction was observed for the other animal feces. Chicken-Bac marker was detected from 70 % of chicken feces, while detected from 39 % of cow feces, 8.3 % of pig feces, and 12 % of swan feces. Duck-Bac marker was detected from 85 % of wild duck feces and cross-reacted with 31 % of cow feces. These levels of detection specificity are common in avian-associated genetic markers previously proposed, which implies that there is a practical limitation in the independent application of avian-associated BacteroidesPrevotella 16S rRNA genetic markers and a combination with other fecal contamination markers is preferable for detecting fecal contamination in water environments.  相似文献   

15.
In this study, we examined the potential for detecting fecal bacteria and microbial source tracking markers in samples discarded during the concentration of Cryptosporidium and Giardia using USEPA Method 1623. Recovery rates for different fecal bacteria were determined in sewage spiked samples and environmental waters using different group-specific and host-specific PCR assays. Bacteroidales DNA recovery ranged from 59 to 71% for aliquots of supernatant collected after the elution step. The recovery of human-specific Bacteroidales DNA from sewage spiked samples was 54% in the elution step. An additional 1-7% Bacteroidales DNA was recovered after the immunomagnetic separation step, while recovery from the pellet left after the immunomagnetic separation of protozoa parasites was substantially lower. Comparison of Bacteroidales 16S rRNA gene sequences from elution and immunomagnetic separation discarded samples indicated that the distribution of clones was not statistically different, suggesting that there were no recovery biases introduced by these steps. Human- and cow-specific Bacteroidales and fecal indicator bacteria (i.e., enterococci,) were also detected in the discarded fractions of environmental samples collected from different geographic locations. Overall, the results of this study demonstrated the potential application of leftover sample fractions that are currently discarded for the PCR detection of fecal bacterial indicators and molecular source tracking.  相似文献   

16.
The aim of the present study was to investigate the distribution of bacteria and detect the presence of quinolone resistance gene (qnrA) and integrons (intI1, intI2) in a habitat polluted by pharmaceutical sewage. The bacteria were isolated by nutrient agar and nutrient broth from waste water and sludge collected from the sewage outfall of a pharmaceutical factory. The bacteria were identified by Gram staining and biochemical tests, and the bacterial community diversity was analyzed by Shannon–Wiener diversity index (H), Pielou evenness index (J) and Simpson’s diversity index (D). The occurrence of qnrA and integrons (intI1, intI2) were detected by Real-time PCR assays. The results showed that 90 strains were isolated from water samples and sludge samples including 22 genera and 26 species. Types of bacteria in water samples contained 18 genera and 20 species, while 13 genera and 14 species were detected in sludge samples. Fifty-five Enterobacteriaceae isolates (61.11 %, 55 of 90) were the predominant bacteria in water and sludge samples. Bacterial species richness and evenness in water samples were higher than in sludge samples. The resistance genes of qnrA and integrons (intI1, intI2) with the total DNA and single isolate plasmid DNA were detected. There were a variety of bacterial species and the presence of qnrA and integrons (intI1, intI2) genes in pharmaceutical wastewater habitats, in which Enterobacteriaceae strains were the dominant bacteria. These results suggested that pharmaceutical wastewater had potential risks to public health.  相似文献   

17.
The purpose of this study was to evaluate the behavior of metals, pathogen parasites, and indicator bacteria in sewage effluents during biological treatment by activated sludge in a wastewater treatment plant in Ribeirão Preto (WTP-RP), Sao Paulo, Brazil. The evaluation was done during a period of 1 year. Results showed that metal concentrations in treated effluents decreased, reaching concentrations according to those established by national regulations. The activated sludge process at the WTP-RP promoted a partial removal of parasites considered as possible indicators according to the WHO guidelines. Reduction factors varied between 18.2% and 100% for agents such as Endolimax nana, Entamoeba coli, Entamoeba hystolitica, Giardia sp., Ancylostoma sp., Ascaris sp., Fasciola hepatica, and Strongyloides stercoralis. A removal was also observed in total and fecal coliforms quantification. The present study represents an initial evaluation of the chemical and microbiological removal capacity of the WTP-RP. The results should be of interest for the authorities responsible for the environmental health at municipal, regional, national, and international levels.  相似文献   

18.
MacConkey agar, standard M-FC agar, M-FC agar without rosolic acid, M-FC agar with a resuscitation top layer, Teepol agar, and pads saturated with Teepol broth, were evaluated as growth media for membrane filtration counting of fecal coliform bacteria in water. In comparative tests on 312 samples of water from a wide variety of sources, including chlorinated effluents, M-FC agar without rosolic acid proved the medium of choice because it generally yielded the highest counts, was readily obtainable, easy to prepare and handle, and yielded clearly recognizable fecal coliform colonies. Identification of 1,139 fecal coliform isolates showed that fecal coliform tests cannot be used to enumerate Escherichia coli because the incidence of E. coli among fecal coliforms varied from an average of 51% for river water to 93% for an activated sludge effluent after chlorination. The incidence of Klebsiella pneumoniae among fecal coliforms varied from an average of 4% for the activated sludge effluent after chlorination to 32% for the river water. The advantages of a standard membrane filtration procedure for routine counting of fecal coliforms in water using M-FC agar without rosolic acid as growth medium, in the absence of preincubation or resuscitation steps, are outlined.  相似文献   

19.
Sewage sludge is the solid, organic material remaining after wastewater is treated and discharged from a wastewater treatment plant. Sludge is treated to stabilize the organic matter and reduce the amount of human pathogens. Once government regulations are met, including material quality standards (e.g., E. coli levels and heavy metal content) sludge is termed “biosolids”, which may be disposed of by land application according to regulations. Live-culture techniques have traditionally been used to enumerate select pathogens and/or indicator organisms to demonstrate compliance with regulatory requirements. However, these methods may result in underestimates of viable microorganisms due to several problems, including their inability to detect viable but non-culturable (VBNC) cells. Real-time quantitative polymerase chain reaction (qPCR) is currently under investigation as a fast, sensitive, and specific molecular tool for enumeration of pathogens in biosolids. Its main limitation is that it amplifies all target DNAs, including that from non-viable cells. This can be overcome by coupling qPCR with propidium monoazide (PMA), a microbial membrane-impermeant dye that binds to extracellular DNA and DNA in dead or membrane-compromised cells, inhibiting its amplification. PMA has successfully been used to monitor the presence of viable pathogens in several different matrices. In this review the use of PMA–qPCR is discussed as a suitable approach for viable microbial enumeration in biosolids. Recommendations for optimization of the method are made, with a focus on DNA extraction, dilution of sample turbidity, reagent concentration, and light exposure time.  相似文献   

20.
To investigate how the microbial community in activated sludge responded to high antibiotic levels, a bench-scale aerobic wastewater treatment system was used to treat oxytetracycline (OTC) mother liquor (OTC-ML). Removal efficiency of chemical oxygen demand decreased from 64.9 to 51.0 % when the OTC level increased from 191.6 to 620.5 mg/L, respectively. According to the cloning results, Psychrobacter and Cryptophyta were the dominant bacterium and eukaryote in the inoculated sludge, respectively, both of which related to low temperature. After OTC exposure, Alphaproteobacteria and Betaproteobacteria became the dominant bacteria, with a small proportion of Firmicutes, Actinobacteria appeared, and fungi (mainly Saccharomycotina) became the dominant eukaryotes, indicating the possible functions of these microorganisms in the wastewater treatment of OTC-ML. The relative abundance of nine tetracycline resistance genes and four mobile elements (class 1 integron, class 2 integron, transposon Tn916/1545, and pattern 1 insertion sequence common region) significantly increased from undetectable to 2.1?×?10?3 in the inoculated sludge to 1.7?×?10?4–9.8?×?10?1 in sludge exposed to 620.5 mg/L OTC by using real-time PCR. The variety of gene cassette arrays of class 1 integron in the sludge samples increased with increasing OTC exposure concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号