首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skin microbiome main cultivable aerobes in human are coagulase-negative staphylococci and lipophilic corynebacteria. Staphylococcus strains (155) belonging to 10 species and 105 strains of Corynebacterium belonging to nine species from the skin swabs of healthy male volunteers were investigated to determine their enzymatic activity to main metabolic substrates: carbohydrates, proteins, lipids, and response to factors present on the skin such as osmotic pressure, pH, and organic acids. The results showed that lipophilic corynebacteria have different capacity for adaptation on the skin than staphylococci. Most of Corynebacterium spp. expressed lack of proteinase, phospholipase, and saccharolytic enzymes activity. Corynebacteria were also more sensitive than Staphylococcus spp. to antimicrobial agents existing on human skin, especially to low pH. These characters can explain domination of Staphylococcus genera on healthy human skin. It can be suggested that within these two bacterial genus, there exists conceivable cooperation and reciprocal protection which results in their quantitative ratio. Such behavior must be considered as crucial for the stability of the population on healthy skin.  相似文献   

2.
Seborrheic dermatitis (SD) is a chronic inflammatory dermatologic condition in which erythema and itching develop on areas of the body with sebaceous glands, such as the scalp, face and chest. The inflammation is evoked directly by oleic acid, which is hydrolyzed from sebum by lipases secreted by skin microorganisms. Although the skin fungal genus, Malassezia, is thought to be the causative agent of SD, analysis of the bacterial microbiota of skin samples of patients with SD is necessary to clarify any association with Malassezia because the skin microbiota comprises diverse bacterial and fungal genera. In the present study, bacterial microbiotas were analyzed at non‐lesional and lesional sites of 24 patients with SD by pyrosequencing and qPCR. Principal coordinate analysis revealed clear separation between the microbiota of non‐lesional and lesional sites. Acinetobacter, Corynebacterium, Staphylococcus, Streptococcus and Propionibacterium were abundant at both sites. Propionibacterium was abundant at non‐lesional sites, whereas Acinetobacter, Staphylococcus and Streptococcus predominated at lesional sites; however, the extent of Propionibacterium colonization did not differ significantly between lesional and non‐lesional sites according to qPCR. Given that these abundant bacteria hydrolyze sebum, they may also contribute to SD development. To the best of our knowledge, this is the first comprehensive analysis of the bacterial microbiotas of the skin of SD patients.  相似文献   

3.
Gut microbiota has been recognized to play a beneficial role in honey bees (Apis mellifera). Present study was designed to characterize the gut bacterial flora of honey bees in north-west Pakistan. Total 150 aerobic and facultative anaerobic bacteria from guts of 45 worker bees were characterized using biochemical assays and 16S rDNA sequencing followed by bioinformatics analysis. The gut isolates were classified into three bacterial phyla of Firmicutes (60%), Proteobacteria (26%) and Actinobacteria (14%). Most of the isolates belonged to genera and families of Staphylococcus, Bacillus, Enterococcus, Ochrobactrum, Sphingomonas, Ralstonia, Enterobacteriaceae, Corynebacterium and Micrococcineae. Many of these bacteria were tolerant to acidic environments and fermented sugars, hence considered beneficial gut inhabitants and involved the maintenance of a healthy microbiota. However, several opportunistic commensals that proliferate in the hive environment including members Staphylococcus haemolyticus group and Sphingomonas paucimobilis were also identified. This is the first report on bee gut microbiota from north-west Pakistan geographically situated at the crossroads of Indian subcontinent and central Asia.  相似文献   

4.
5.
The human skin microbiome could provide another example, after the gut, of the strong positive or negative impact that human colonizing bacteria can have on health. Deciphering functional diversity and dynamics within human skin microbial communities is critical for understanding their involvement and for developing the appropriate substances for improving or correcting their action. We present a direct PCR-free high throughput sequencing approach to unravel the human skin microbiota specificities through metagenomic dataset analysis and inter-environmental comparison. The approach provided access to the functions carried out by dominant skin colonizing taxa, including Corynebacterium, Staphylococcus and Propionibacterium, revealing their specific capabilities to interact with and exploit compounds from the human skin. These functions, which clearly illustrate the unique life style of the skin microbial communities, stand as invaluable investigation targets for understanding and potentially modifying bacterial interactions with the human host with the objective of increasing health and well being.  相似文献   

6.
Skin bacteria at peripheral intravenous catheter (PIVC) insertion sites pose a serious risk of microbial migration and subsequent colonisation of PIVCs, and the development of catheter related bloodstream infections (CRBSIs). Common skin bacteria are often associated with CRBSIs, therefore the bacterial communities at PIVC skin sites are likely to have major implications for PIVC colonisation. This study aimed to determine the bacterial community structures on skin at PIVC insertion sites and to compare the diversity with associated PIVCs. A total of 10 PIVC skin site swabs and matching PIVC tips were collected by a research nurse from 10 hospitalised medical/surgical patients at catheter removal. All swabs and PIVCs underwent traditional culture and high-throughput sequencing. The bacterial communities on PIVC skin swabs and matching PIVCs were diverse and significantly associated (correlation coefficient = 0.7, p<0.001). Methylobacterium spp. was the dominant genus in all PIVC tip samples, but not so for skin swabs. Sixty-one percent of all reads from the PIVC tips and 36% of all reads from the skin swabs belonged to this genus. Staphylococcus spp., (26%), Pseudomonas spp., (10%) and Acinetobacter spp. (10%) were detected from skin swabs but not from PIVC tips. Most skin associated bacteria commonly associated with CRBSIs were observed on skin sites, but not on PIVCs. Diverse bacterial communities were observed at skin sites despite skin decolonization at PIVC insertion. The positive association of skin and PIVC tip communities provides further evidence that skin is a major source of PIVC colonisation via bacterial migration but microbes present may be different to those traditionally identified via culture methods. The results provide new insights into the colonisation of catheters and potential pathogenesis of bacteria associated with CRBSI, and may assist in developing new strategies designed to reduce the risk of CRBSI.  相似文献   

7.
Severe oral mucositis occurs frequently in patients receiving hematopoietic stem cell transplantation (HCT). Oral mucosal bacteria can be associated with progression of oral mucositis, and systemic infection may occur via ulcerative oral mucositis. However, little information is available regarding the oral microbiota after HCT. Here, PCR-denaturing gradient gel electrophoresis (DGGE) was performed to characterize the oral mucosal microbiota, which can be affected by antibiotics, before and after HCT. Sixty reduced-intensity HCT patients were enrolled. Three patients with the least antibiotic use (quinolone prophylaxis and/or β-lactam monotherapy group) and three patients with the most antibiotic use (β-lactam-glycopeptide combination therapy group) were selected. Bacterial DNA samples obtained from the oral mucosa before and after HCT were subjected to PCR-DGGE. The trajectory of oral mucositis was evaluated. The oral mucosal microbiota in the β-lactam-glycopeptide combination therapy group was different from that in the quinolone prophylaxis and/or β-lactam monotherapy group, and Staphylococcus spp. and Enterococcus spp. were identified. Lautropia mirabilis was dominant in one patient. Ulcerative oral mucositis was observed only in the β-lactam-glycopeptide combination therapy group. In conclusion, especially with the use of strong antibiotics, such as glycopeptides, the oral mucosal microbiota differed completely from that under normal conditions and consisted of Staphylococcus spp., Enterococcus spp., and unexpectedly L. mirabilis. The normal oral microbiota consists not only of bacteria, but these unexpected bacteria could be involved in the pathophysiology as well as systemic infection via oral mucositis. Our results can be used as the basis for future studies in larger patient populations.  相似文献   

8.
For studying the microbiota of four Danish surface-ripened cheeses produced at three farmhouses and one industrial dairy, both a culture-dependent and culture-independent approach were used. After dereplication of the initial set of 433 isolates by (GTG)5-PCR fingerprinting, 217 bacterial and 25 yeast isolates were identified by sequencing of the 16S rRNA gene or the D1/D2 domain of the 26S rRNA gene, respectively. At the end of ripening, the cheese core microbiota of the farmhouse cheeses consisted of the mesophilic lactic acid bacteria (LAB) starter cultures Lactococcus lactis subsp. lactis and Leuconostoc mesenteorides as well as non-starter LAB including different Lactobacillus spp. The cheese from the industrial dairy was almost exclusively dominated by Lb. paracasei. The surface bacterial microbiota of all four cheeses were dominated by Corynebacterium spp. and/or Brachybacterium spp. Brevibacterium spp. was found to be subdominant compared to other bacteria on the farmhouse cheeses, and no Brevibacterium spp. was found on the cheese from the industrial dairy, even though B. linens was used as surface-ripening culture. Moreover, Gram-negative bacteria identified as Alcalignes faecalis and Proteus vulgaris were found on one of the farmhouse cheeses. The surface yeast microbiota consisted primarily of one dominating species for each cheese. For the farmhouse cheeses, the dominant yeast species were Yarrowia lipolytica, Geotrichum spp. and Debaryomyces hansenii, respectively, and for the cheese from the industrial dairy, D. hansenii was the dominant yeast species. Additionally, denaturing gradient gel electrophoresis (DGGE) analysis revealed that Streptococcus thermophilus was present in the farmhouse raw milk cheese analysed in this study. Furthermore, DGGE bands corresponding to Vagococcus carniphilus, Psychrobacter spp. and Lb. curvatus on the cheese surfaces indicated that these bacterial species may play a role in cheese ripening.  相似文献   

9.
Chronic rhinosinusitis (CRS) is a common, debilitating condition characterized by long‐term inflammation of the nasal cavity and paranasal sinuses. The role of the sinonasal bacteria in CRS is unclear. We conducted a meta‐analysis combining and reanalysing published bacterial 16S rRNA sequence data to explore differences in sinonasal bacterial community composition and predicted function between healthy and CRS affected subjects. The results identify the most abundant bacteria across all subjects as Staphylococcus, Propionibacterium, Corynebacterium, Streptococcus and an unclassified lineage of Actinobacteria. The meta‐analysis results suggest that the bacterial community associated with CRS patients is dysbiotic and ecological networks fostering healthy communities are fragmented. Increased dispersion of bacterial communities, significantly lower bacterial diversity, and increased abundance of members of the genus Corynebacterium are associated with CRS. Increased relative abundance and diversity of other members belonging to the phylum Actinobacteria and members from the genera Propionibacterium differentiated healthy sinuses from those that were chronically inflamed. Removal of Burkholderia and Propionibacterium phylotypes from the healthy community dataset was correlated with a significant increase in network fragmentation. This meta‐analysis highlights the potential importance of the genera Burkholderia and Propionibacterium as gatekeepers, whose presence may be important in maintaining a stable sinonasal bacterial community.  相似文献   

10.

Raw milk samples were collected from 200 dairy cows belonging to Girolando 1/2, Gyr, Guzera, and Holstein breeds, and the bacterial diversity was explored using 16S rRNA amplicon sequencing. SCC analysis showed that 69 animals were classified as affected with subclinical mastitis. The milk bacterial microbiome was dominated by Firmicutes, Proteobacteria, and Actinobacteria, with an increase of Firmicutes in animals with subclinical mastitis and Proteobacteria in healthy animals. At the family and genus level, the milk bacterial microbiome was dominated by Staphylococcus, Acinetobacter, Pseudomonas, members of the family Enterobacteriaceae, Lactococcus, Aerococcus, members of the family Rhizobiaceae, Anaerobacillus, Streptococcus, members of the family Intrasporangiaceae, members of the family Planococcaceae, Corynebacterium, Nocardioides, and Chryseobacterium. Significant differences in alpha and beta diversity analysis suggest an effect of udder health status and breed on the composition of raw bovine milk microbiota. LEfSe analysis showed 45 and 51 discriminative taxonomic biomarkers associated with udder health status and with one of the four breeds respectively, suggesting an effect of subclinical mastitis and breed on the microbiota of milk in cattle.

  相似文献   

11.
The skin microbial community is regarded as essential for human health and well-being, but likewise plays an important role in the formation of body odor in, for instance, the axillae. Few molecular-based research was done on the axillary microbiome. This study typified the axillary microbiome of a group of 53 healthy subjects. A profound view was obtained of the interpersonal, intrapersonal and temporal diversity of the human axillary microbiota. Denaturing gradient gel electrophoresis (DGGE) and next generation sequencing on 16S rRNA gene region were combined and used as extent to each other. Two important clusters were characterized, where Staphylococcus and Corynebacterium species were the abundant species. Females predominantly clustered within the Staphylococcus cluster (87%, n = 17), whereas males clustered more in the Corynebacterium cluster (39%, n = 36). The axillary microbiota was unique to each individual. Left-right asymmetry occurred in about half of the human population. For the first time, an elaborate study was performed on the dynamics of the axillary microbiome. A relatively stable axillary microbiome was noticed, although a few subjects evolved towards another stable community. The deodorant usage had a proportional linear influence on the species diversity of the axillary microbiome.  相似文献   

12.

Background

The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei) are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation.

Methodology/Principal Findings

In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial.

Conclusions/Significance

This is the first experimental in vivo evidence supporting previous assumptions that establishment of pathogens follow scabies infection. Our findings provide an explanation for a biologically important aspect of the disease pathogenesis. The methods developed from this pig trial will serve as a guide to analyze human clinical samples. Studies building on this will offer implications for development of novel intervention strategies against the mites and the secondary infections.  相似文献   

13.
《Trends in parasitology》2023,39(8):696-707
‘Chiggers’ (trombiculid mite larvae) are best known as vectors of rickettsial pathogens, Orientia spp., which cause a zoonosis, scrub typhus. However, several other pathogens (e.g., Hantaan orthohantavirus, Dabie bandavirus, Anaplasma spp., Bartonella spp., Borrelia spp., and Rickettsia spp.) and bacterial symbionts (e.g., Cardinium, Rickettsiella, and Wolbachia) are being reported from chiggers with increasing frequency. Here, we explore the surprisingly diverse chigger microbiota and potential interactions within this microcosm. Key conclusions include a possible role for chiggers as vectors of viral diseases; the dominance in some chigger populations of unidentified symbionts in several bacterial families; and increasing evidence for vertical transmission of potential pathogens and symbiotic bacteria in chiggers, suggesting intimate interactions and not simply incidental acquisition of bacteria from the environment or host.  相似文献   

14.
Despite a long-suspected role in the development of human colorectal cancer (CRC), the composition of gut microbiota in CRC patients has not been adequately described. In this study, fecal bacterial diversity in CRC patients (n=46) and healthy volunteers (n=56) were profiled by 454 pyrosequencing of the V3 region of the 16S ribosomal RNA gene. Both principal component analysis and UniFrac analysis showed structural segregation between the two populations. Forty-eight operational taxonomic units (OTUs) were identified by redundancy analysis as key variables significantly associated with the structural difference. One OTU closely related to Bacteroides fragilis was enriched in the gut microbiota of CRC patients, whereas three OTUs related to Bacteroides vulgatus and Bacteroides uniformis were enriched in that of healthy volunteers. A total of 11 OTUs belonging to the genera Enterococcus, Escherichia/Shigella, Klebsiella, Streptococcus and Peptostreptococcus were significantly more abundant in the gut microbiota of CRC patients, and 5 OTUs belonging to the genus Roseburia and other butyrate-producing bacteria of the family Lachnospiraceae were less abundant. Real-time quantitative PCR further validated the significant reduction of butyrate-producing bacteria in the gut microbiota of CRC patients by measuring the copy numbers of butyryl-coenzyme A CoA transferase genes (Mann–Whitney test, P<0.01). Reduction of butyrate producers and increase of opportunistic pathogens may constitute a major structural imbalance of gut microbiota in CRC patients.  相似文献   

15.
The establishment and succession of bacterial communities in infants may have a profound impact in their health, but information about the composition of meconium microbiota and its evolution in hospitalized preterm infants is scarce. In this context, the objective of this work was to characterize the microbiota of meconium and fecal samples obtained during the first 3 weeks of life from 14 donors using culture and molecular techniques, including DGGE and the Human Intestinal Tract Chip (HITChip) analysis of 16S rRNA amplicons. Culture techniques offer a quantification of cultivable bacteria and allow further study of the isolate, while molecular techniques provide deeper information on bacterial diversity. Culture and HITChip results were very similar but the former showed lower sensitivity. Inter-individual differences were detected in the microbiota profiles although the meconium microbiota was peculiar and distinct from that of fecal samples. Bacilli and other Firmicutes were the main bacteria groups detected in meconium while Proteobacteria dominated in the fecal samples. Culture technique showed that Staphylococcus predominated in meconium and that Enterococcus, together with Gram-negative bacteria such as Escherichia coli, Escherichia fergusonii, Klebsiella pneumoniae and Serratia marcescens, was more abundant in fecal samples. In addition, HITChip results showed the prevalence of bacteria related to Lactobacillus plantarum and Streptococcus mitis in meconium samples whereas those related to Enterococcus, Escherichia coli, Klebsiella pneumoniae and Yersinia predominated in the 3rd week feces. This study highlights that spontaneously-released meconium of preterm neonates contains a specific microbiota that differs from that of feces obtained after the first week of life. Our findings indicate that the presence of Serratia was strongly associated with a higher degree of immaturity and other hospital-related parameters, including antibiotherapy and mechanical ventilation.  相似文献   

16.
The development of Leishmania parasites within sand fly vectors occurs entirely in the insect gut lumen, in the presence of symbiotic and commensal bacteria. The impacts of host species and environment on the gut microbiome are currently poorly understood. We employed MiSeq sequencing of the V3-16S rRNA gene amplicons to characterize and compare the gut microbiota of field-collected populations of Phlebotomus kandelakii, P. perfiliewi, P. alexandri, and P. major, the primary or secondary vectors of zoonotic visceral leishmaniasis (ZVL) in three distinct regions of Iran where ZVL is endemic. In total, 160,550 quality-filtered reads of the V3 region yielded a total of 72 operational taxonomic units (OTUs), belonging to 23 phyla, 47 classes, 91 orders, 131 families, and 335 genera. More than 50% of the bacteria identified were Proteobacteria, followed by Firmicutes (22%), Deinococcus-Thermus (9%), Actinobacteria (6%), and Bacteroidetes (5%). The core microbiome was dominated by eight genera: Acinetobacter, Streptococcus, Enterococcus, Staphylococcus, Bacillus, Propionibacterium, Kocuria, and Corynebacterium. Wolbachia were found in P. alexandri and P. perfiliewi, while Asaia sp. was reported in P. perfiliewi. Substantial variations in the gut bacterial composition were found between geographically distinct populations of the same sand fly species, as well as between different species at the same location, suggesting that sand fly gut microbiota is shaped by both the host species and geographical location. Phlebotomus kandelakii and P. perfiliewi in the northwest, and P. alexandri in the south, the major ZVL vectors, harbor the highest bacterial diversity, suggesting a possible relationship between microbiome diversity and the capacity for parasite transmission. In addition, large numbers of gram-positive human or animal pathogens were found, suggesting that sand fly vectors of ZVL could pose a potential additional threat to livestock and humans in the region studied. The presence of Bacillus subtilis, Enterobacter cloacae, and Asaia sp suggests that these bacteria could be promising candidates for a paratransgenesis approach to the fight against Leishmaniasis.  相似文献   

17.
Ticks represent a large group of pathogen vectors that blood feed on a diversity of hosts. In the Americas, the Ixodidae ticks Amblyomma cajennense are responsible for severe impact on livestock and public health. In the present work, we present the isolation and molecular identification of a group of culturable bacteria associated with A. cajennense eggs from females sampled in distinct geographical sites in southeastern Brazil. Additional comparative analysis of the culturable bacteria from Anocentor nitens, Rhipicephalus sanguineus and Ixodes scapularis tick eggs were also performed. 16S rRNA gene sequence analyses identified 17 different bacterial types identified as Serratia marcescens, Stenotrophomonas maltophilia, Pseudomonas fluorescens, Enterobacter spp., Micrococcus luteus, Ochrobactrum anthropi, Bacillus cereus and Staphylococcus spp., distributed in 12 phylogroups. Staphylococcus spp., especially S. sciuri, was the most prevalent bacteria associated with A. cajennense eggs, occurring in 65% of the samples and also frequently observed infecting A. nitens eggs. S. maltophilia, S. marcescens and B. cereus occurred infecting eggs derived from specific sampling sites, but in all cases rising almost as pure cultures from infected A. cajennense eggs. The potential role of these bacterial associations is discussed and they possibly represent new targets for biological control strategies of ticks and tick borne diseases.  相似文献   

18.
The animal gastrointestinal tract houses a large microbial community, the gut microbiota, that confers many benefits to its host, such as protection from pathogens and provision of essential metabolites. Metagenomic approaches have defined the chicken fecal microbiota in other studies, but here, we wished to assess the correlation between the metagenome and the bacterial proteome in order to better understand the healthy chicken gut microbiota. Here, we performed high-throughput sequencing of 16S rRNA gene amplicons and metaproteomics analysis of fecal samples to determine microbial gut composition and protein expression. 16 rRNA gene sequencing analysis identified Clostridiales, Bacteroidaceae, and Lactobacillaceae species as the most abundant species in the gut. For metaproteomics analysis, peptides were generated by using the Fasp method and subsequently fractionated by strong anion exchanges. Metaproteomics analysis identified 3,673 proteins. Among the most frequently identified proteins, 380 proteins belonged to Lactobacillus spp., 155 belonged to Clostridium spp., and 66 belonged to Streptococcus spp. The most frequently identified proteins were heat shock chaperones, including 349 GroEL proteins, from many bacterial species, whereas the most abundant enzymes were pyruvate kinases, as judged by the number of peptides identified per protein (spectral counting). Gene ontology and KEGG pathway analyses revealed the functions and locations of the identified proteins. The findings of both metaproteomics and 16S rRNA sequencing analyses are discussed.  相似文献   

19.
Methicillin-resistant Staphylococcus spp. (MRSS) are causing numerous forms of illness in humans ranging from mild to fatal infections. We need to investigate the resistant pattern for different clinical isolates to control the resistance phenomena. This study was designed to provide the resistance pattern of isolated Staphylococcus spp. from various clinical samples in Khartoum State and to elucidate the frequencies of Multidrug-resistant (MDR), Extensively drug-resistant (XDR) and pan-drug resistant (PDR). Two hundred and ten bacterial isolates were from different sources (catheter tip, sputum, vaginal swab, urine, tracheal aspirate, blood, pus, nasal swab, stool, throat swab, pleural fluid, and ear swab). Isolates were identified based on their morphological characters and biochemical reaction. Antibiotics susceptibility screening was performed using twenty-three antibiotics from eighteen classes against all isolated Staphylococcus spp. following the Clinical and Laboratory Standards Institute (CLSI) guideline. The result revealed that out of 63 Gram-positive isolated bacteria, 52 (82.5%) were Staphylococcus spp. with a high incidence of S. aureus 37(71.2%). Out of all Staphylococcus spp., 38 (73.1%) were Methicillin-resistant (MR). The prevalence of MDR was higher in S. aureus (89.2%) than in S. epidermidis (75%). All Staphylococcus spp. displayed resistance to ampicillin and penicillin, while all S. aureus were sensitive to daptomycin and fosfomycin. One isolate was XDR possible PDR, while no PDR was reported in all isolated bacteria. This study provided evidence for the antimicrobial-resistant (AMR) burden in Sudan and highlighted the need for a practical and functional stewardship program to reduce the unreasonable costs of antibiotics.  相似文献   

20.
Noma (cancrum oris) is a gangrenous disease of unknown etiology affecting the maxillo-facial region of young children in extremely limited resource countries. In an attempt to better understand the microbiological events occurring during this disease, we used phylogenetic and low-density microarrays targeting the 16S rRNA gene to characterize the gingival flora of acute noma and acute necrotizing gingivitis (ANG) lesions, and compared them to healthy control subjects of the same geographical and social background. Our observations raise doubts about Fusobacterium necrophorum, a previously suspected causative agent of noma, as this species was not associated with noma lesions. Various oral pathogens were more abundant in noma lesions, notably Atopobium spp., Prevotella intermedia, Peptostreptococcus spp., Streptococcus pyogenes and Streptococcus anginosus. On the other hand, pathogens associated with periodontal diseases such as Aggregatibacter actinomycetemcomitans, Capnocytophaga spp., Porphyromonas spp. and Fusobacteriales were more abundant in healthy controls. Importantly, the overall loss of bacterial diversity observed in noma samples as well as its homology to that of ANG microbiota supports the hypothesis that ANG might be the immediate step preceding noma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号