首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The planktonic and epibenthic crustacean fauna from two sites of the brackish Schlei fjord, Northern Germany, was investigated over a six-month period. Calanoid and cyclopoid copepods were more abundant in lower salinities, whereas, benthic decapods, isopods and amphipods prevailed in the site of higher salinity. Cestodan larvae were found only in spring which may be due to the timing of the respective life-cycles. Parasites of benthic crustaceans, mostly digenean metacercariae but also cestodans, acanthocephalans and nematodes, appeared from spring to late summer. Decreasing salinities caused lower intensities of the most abundant parasite,Maritrema subdolum; only the true brackish-water species among the hosts were more heavily infested than those found in higher salinities. The correlation of parasite size and host size at infestation became apparent. Therefore,Crangon crangon is an optimal host for the largePodocotyle atomon metacercariae. Coevolutive trends between some hosts and parasites are made evident.  相似文献   

2.
O'Grady SP  Dearing MD 《Oecologia》2006,150(3):355-361
Nitrogen isotopes have been widely used to investigate trophic levels in ecological systems. Isotopic enrichment of 2–5‰ occurs with trophic level increases in food webs. Host–parasite relationships deviate from traditional food webs in that parasites are minimally enriched relative to their hosts. Although this host–parasite enrichment pattern has been shown in multiple systems, few studies have used isotopic relationships to examine other potential symbioses. We examined the relationship between two gut-nematodes and their lizard hosts. One species, Physaloptera retusa, is a documented parasite in the stomach, whereas the relationship of the other species, Parapharyngodon riojensis (pinworms), to the host is putatively commensalistic or mutualistic. Based on the established trophic enrichments, we predicted that, relative to host tissue, parasitic nematodes would be minimally enriched (0–1‰), whereas pinworms, either as commensals or mutualists, would be significantly enriched by 2–5‰. We measured the 15N values of food, digesta, gut tissue, and nematodes of eight lizard species in the family Liolaemidae. Parasitic worms were enriched 1±0.2‰ relative to host tissue, while the average enrichment value for pinworms relative to gut tissue was 6.7±0.2‰. The results support previous findings that isotopic fractionation in a host–parasite system is lower than traditional food webs. Additionally, the larger enrichment of pinworms relative to known parasites suggests that they are not parasitic and may be several trophic levels beyond the host.  相似文献   

3.
The recorded salinity ranges of freshwater, estuarine and marine fish species in Lake St Lucia, a Ramsar and World Heritage Site, are documented. The freshwater group is most diverse and abundant under oligohaline conditions, although the Mozambique tilapia (Oreochromis mossambicus) was common under all salinity regimes. Estuary resident species also favoured oligohaline conditions but, in contrast to the freshwater taxa, were well represented in salinities up to 40 ‰. The marine group was most diverse and abundant within the salinity range 10–40 ‰, but a large number of species could also be found in salinities up to 70 ‰. Very few fish species were able to tolerate salinities between 70 ‰ and 110 ‰, with only O. mossambicus surviving for extended periods in salinities above 110 ‰. All the aquatic macrophytes and most of the zoobenthos within the lake appear to die out within the salinity range of 50–60 ‰, thus creating additional stress to those fish present under such conditions. The food resources least affected by extreme hypersalinity are the microphytobenthos and detritus food chains, with detritivorous fishes being dominant when the lake is in this state. Mass mortalities of fishes in Lake St Lucia have been recorded under both low (<5 ‰) and high salinity (>70 ‰) conditions. The fish kills are often triggered by exceptionally low or high water temperatures which affect the osmoregulatory abilities of these species. Hypersaline conditions and fish mortalities under the most recent closed estuary mouth conditions (2002–2005) are reviewed. If the surface area of St Lucia (35,000 ha) is compared to the total surface area of all South African estuaries (approximately 70,000 ha), then the possibility exists that the loss of the Lake St Lucia nursery area for estuary-associated marine fish species over the past few years may cause significant short-term declines in the future abundance of these taxa on both a local and regional scale.  相似文献   

4.
Four helminth parasites out of 19 species found in the Lübeck Bight, Baltic Sea, were chosen for investigations on the transfer from invertebrate to small-sized fish hosts: larvae of the tapewormsSchistocephalus sp. andBothriocephalus sp. (Cestoda) living in planktonic copepods as primary hosts;Podocotyle atomon (Digenea) andHysterothylacium sp. (Nematoda) were found in benthic crustaceans, especiallyGammarus spp. These hosts were the prey of 3 gobiid fishes,Gobiusculus flavescens (feeding mainly on plankton),Pomatoschistus minutus (preferring benthos), andP. pictus (feeding more on plankton than benthos). Because the fishes selected smaller sizes of crustaceans, they ingested all stages of the copepods but only the smaller-sized groups of gammarids which were often less infested by parasites. In order to evaluate the probability for a fish to be parasitized by a helminth, an infestation potential index (IP) was calculated.Podocotyle atomon andHysterothylacium sp. revealed an IP which was far lower in gobies than expected when the prevalences of the previous hosts were taken into consideration. The IP of tapeworm larvae was mainly influenced by the feeding pressure of the gobiid predators, which might change with developmental stage and season. It is concluded that parasite transfer to the next host decreases when sizes of prey and predator differ only moderately. This mechanism can reduce the numbers of parasites transferred to less suitable or wrong hosts.  相似文献   

5.
Fifty specimens of Notothenia coriiceps caught in Potter Cove, King George Island, were examined for ecto- and endoparasites. Of the 22 parasite species found, 18 were helminths, 2 were hirudineans and 2 were crustaceans. The isopod Aega antarctica and an unidentified hirudinean are reported for the first time from this fish host. Dominant parasites were the adults of Aspersentis megarhynchus, the invasive stage of Corynosoma spp. (cystacanth) and the adults of Macvicaria pennelli, with respective prevalences of infestation of 94, 76 and 74%. The preferred sites of infestation were the pylorus and intestine, where five different larval (nematodes and cestodes) and eight adult (digeneans and acanthocephalans) parasite species were found. No adult nematodes and cestodes were found and no parasites could be isolated from the musculature. The results of the present study are related to previous findings on the parasite fauna of N. coriiceps. The comparison implies a high parasite diversity in this benthic Antarctic fish species. Most parasites found appear to have a wide range of distribution within Antarctic waters together with a low host specificity. Besides its role as final host for several species of trematodes and acanthocephalans, N. coriiceps serves as transmitter of parasite larvae to piscivorous birds and seals. It is concluded that the parasite fauna in Antarctic fish species provides important insights into the different habitat use and trophic relationship of their fish hosts. Received: 11 September 1997 / Accepted: 12 January 1998  相似文献   

6.
Synopsis Although they are the oldest and most diverse members of the subphylum, the fishes have relatively few nematode parasites in comparison with other vertebrate classes. It is hypothesized that this paucity of parasite species has occurred because nematode parasites first evolved in terrestrial hosts and only a few lines of these parasites were able to transfer to fish after the appearance of heteroxeny (use of intermediate hosts) and paratenesis (use of transport hosts). The inability of nematodes to initiate parasitism in aquatic ecosystems restricted fish parasites mainly to forms first adapted to terrestrial vertebrates and at the same time deprived large groups of aquatic invertebrates such as the crustaceans, annelids and molluscs of a nematode parasite fauna.Invited editorial  相似文献   

7.
ACarcinus maenas population inhabiting the Schlei, a glacial fjord of the Baltic Sea, was studied during a three-year period of at least monthly sampling. Due to slightly higher water temperatures in the Schlei (c. 1 °C higher than in the neighbouring waters of the western Baltic Sea) annual larval development starts there one month earlier. When in some years salinities are unfavourable (<13), larval development may be almost completely prevented. Juveniles and adults tolerate changing salinities, even though females prefer staying in deep waters and juveniles in shallow waters of high salinities. During winter all crabs move to deeper waters and stay huddled together in crevices and holes until March or April. Females usually moult after being fertilized, which takes place after the breeding season in August. Males moult between May and June; juveniles continue to moult during the warm season. Moulting for growth lasts until puberty is reached in the second year. From then on intermoult periods are more extended, but males moult more frequently than females, attaining ultimately a larger size. Under favourable environmental conditions, the maximum lifespan ofC. maenas in the Schlei amounts to five years. During this period, five larval moults and about fifteen moults for growth occur.  相似文献   

8.
In September 2002, Hurricane Isidore devastated the Yucatán Peninsula, Mexico. To understand its effects on the parasites of aquatic organisms, we analyzed long-term monthly population data of the horn snail Cerithidea pliculosa and its trematode communities in Celestún, Yucatán, Mexico before and after the hurricane (February 2001 to December 2009). Five trematode species occurred in the snail population: Mesostephanus appendiculatoides, Euhaplorchis californiensis, two species of the genus Renicola and one Heterophyidae gen. sp. Because these parasites use snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts, their presence in snails depends on food webs. No snails were present at the sampled sites for 6 months after the hurricane. After snails recolonised the site, no trematodes were found in snails until 14 months after the hurricane. It took several years for snail and trematode populations to recover. Our results suggest that the increase in the occurrence of hurricanes predicted due to climate change can impact upon parasites with complex life cycles. However, both the snail populations and their parasite communities eventually reached numbers of individuals and species similar to those before the hurricane. Thus, the trematode parasites of snails can be useful indicators of coastal lagoon ecosystem degradation and recovery.  相似文献   

9.
Exotic species typically lose most of their associated parasites during long-distance spread. However, the few parasites that are co-introduced may have considerable adverse impacts on their novel hosts, including mass mortalities. We present a comprehensive inventory of parasites known to infect 38 species of exotic invertebrates established in the Great Lakes, as well as 16 invertebrate species predicted to arrive in the near future, all of them crustaceans. Based on a literature analysis, we identified a total of 277 parasite taxa associated with the examined invertebrates in their native ranges and/or invaded areas. Of these parasites, 56 species have been documented to cause various pathologies in their intermediate or final hosts, with humans and fishes being the most frequently affected host categories. Potentially harmful parasites were identified in 61% of the invaders for which published information was retrieved (in their ranges outside of the Great Lakes), with molluscs and crustaceans hosting the highest numbers of such parasites. The results of our study provide a baseline for further assessment and management of the parasitological risks posed by exotic species to the Great Lakes.  相似文献   

10.
In brackish water the variety of marine and freshwater parasite species is considerably reduced. The distribution in brackish water of most marine endoparasites is restricted by the salinity tolerance of their hosts, most of the parasite species are more tolerant than their hosts. The influence of salinity and temperature on nine species has been examined; first stage larvae of Contracaecum aduncum develop in 0-32‰ salinity; Cryptocotyle lingua proved to be infective at salinities down to 4‰. The greatest resistance was found in Anisakis larvae from herring Clupea harengus , which survived for more than half a year. Parasites in the fish intestines appear to be unaffected by changing water salinities, as the osmolarity in the intestines stays nearly constant. Marine ectoparasites ( Acanthochondria depressa, Lepeophtheirus pectoralis ) survive about three times longer than freshwater species ( Piscicola geometra, Argulus foliaceus ) when salinity is 16‰. High temperature increases the effects of adverse salinities on parasites. There is evidence that none of these ecto-parasitic species can develop within the range of 7-20‰ salinity.  相似文献   

11.
Belden LK  Wojdak JM 《Oecologia》2011,166(4):1077-1086
Predators can have important impacts on host–parasite dynamics. For many directly transmitted parasites, predators can reduce transmission by removing the most heavily infected individuals from the population. Less is known about how predators might influence parasite dynamics in systems where the parasite relies on vectors or multiple host species to complete their life cycles. Digenetic trematodes are parasitic flatworms with complex life cycles typically involving three host species. They are common parasites in freshwater systems containing aquatic snails, which serve as obligate first intermediate hosts, and multiple trematode species use amphibians as second intermediate hosts. We experimentally examined the impact of predatory salamanders (Ambystoma jeffersonianum) and trematode parasites (Echinostoma trivolvis and Ribeiroia ondatrae) on short-term survival of wood frog tadpoles (Rana sylvatica) in 150-L outdoor pools. Two trematode species were used in experiments because field surveys indicated the presence of both species at our primary study site. Parasites and predators both significantly reduced tadpole survival in outdoor pools; after 6 days, tadpole survival was reduced from 100% in control pools to a mean of 46% in pools containing just parasites and a mean of 49% in pools containing just predators. In pools containing both infected snails and predators, tadpole survival was further reduced to a mean of 5%, a clear risk-enhancement or synergism. These dramatic results suggest that predators may alter transmission dynamics of trematodes in natural systems, and that a complete understanding of host–parasite interactions requires studying these interactions within the ecological framework of community interactions.  相似文献   

12.
Fifty specimens each of bream Abramis brama and roach Rutilus rutilus were examined for metazoan parasite fauna and trichodinid ciliates; 25 specimens of each species were collected from the Kiel Canal, a man-made waterway, and a nearby freshwater lake, the Dieksee. This is the first detailed parasitological examination of A. brama and R. rutilus at these locations: 30 parasite species were found, comprising 4 protozoans, 4 myxozoans, 5 digeneans, 3 monogeneans, 2 cestodes, 6 nematodes, 2 acanthocephalans, 3 crustaceans and 1 hirudinean. The crustacean Caligus lacustris occurred in both habitats while 2 other crustacean species, 2 acanthocephalans and 1 hirudinean were recorded exclusively for the lake habitat. Larval as well as adult stages of the different parasite species were found, indicating that both fish species act as intermediate and final hosts in both habitats. The Kiel Canal (total of 17 parasite species) showed a lower parasite species richness for A. brama and R. rutilus (14 and 10 parasite species, respectively) than the lake (25 parasite species). A. brama had a higher parasite richness (22 species) than R. rutilus (16 species) in the lake habitat. Most parasites collected were of freshwater origin. Consequently, the observed infection pattern of both fish species in the waterway is mainly influenced by the limited salinity tolerance of freshwater parasites, which are negatively affected even by a salinity of 2.3 to 4.5. In the central Kiel Canal, neither fish species was infected with marine parasites of low host specifity. These parasites are either limited by the low salinity at this sampling site (<4.5 to 6.0) or they cannot enter the canal due to the environmental conditions prevailing in this artificial brackish water habitat. Thus, the canal may comprise a natural barrier preventing the distribution of North Sea parasites into the Baltic Sea. However, the brackish water Baltic Sea nematodes Paracuaria adunca and Cosmocephalus obvelatus were found in R. rutilus from the canal, demonstrating the ability of some parasite species to invade and extend their range of distribution through this man-made shipping route from the Baltic to the North Sea.  相似文献   

13.
The metazoan parasite fauna of two species of freshwater fishes Aplocheilus panchax and A. melastigma collected from a stream at Waltair is compared; 17 parasite species were found. Aplocheilus panchax served as a host to 13 parasite species and A. melastigma to 10 parasite species. Of the 17 parasites collected, 12 were larval helminths to which the fishes act as intermediate and paratenic hosts. This has been attributed to the interaction between terrestrial birds, mammals and fishes in determining the parasite fauna in the biocoenosis. The parasite fauna of these fishes is divided into typical and less typical according to their frequencies. Among less typical there are peripheral division parasites which are abundant in other fishes in the stream. Only six parasite species occurred in both A. panchax and A. melastigma and both fish shared most of their parasite fauna with other fishes. Differences in the parasite fauna of these fishes are attributed to the morphological, behavioural or ecological features of these fishes.  相似文献   

14.
A total of 668 specimens representing 18 species of meso- and bathypelagic fishes collected from the western North Atlantic were examined for parasites. Seventeen species and 39.1% of the specimens harboured at least one type of parasite. The highest number of parasite taxa recovered from a single fish species was seven. Host species had overall infection prevalences ranging from 10.0 to 88.9% of the specimens examined. Cestodes were most common (22.8% of all specimens examined), followed by fungi (6.6%), nematodes (6.1%) and digenetic trematodes (4.9%). Mesopelagic fishes showed a greater prevalence of infection (49.1%) than bathypelagic fishes (28.9%). Most parasites recovered were immature; however, based on the presence of adult and postlarval stage parasites, definitive and second intermediate host status is suggested for at least three fish species (Nemichthys scolopaceus, Nessorhamphus ingolfianus and Eurypharynx pelecanoides ). The presence of the cestode Nybelinia and Anisakis-lype nematodes among a number of host species may have been due to predation on the euphausiid Nematoscelis , which was found in the stomachs of all host species infected by these two parasite taxa. Higher overall infection prevalences among host species were found than have been previously reported for mid-water fishes and it is possible that this may be a function of near-bottom presence of the fishes over the continental slope. It is suggested that the low prevalence of parasites within meso- and bathypelagic fishes when compared to benthic and shallow-water species reflects the lower overall energy of, and reduced probability of host-to-host transfer in, the deep-sea pelagic ecosystem.  相似文献   

15.
The semiterrestrial crab Neohelice (=Chasmagnathus) granulata (Dana 1851) is a predominant species in brackish salt marshes, mangroves and estuaries. Its larvae are exported towards coastal marine waters. In order to estimate the limits of salinity tolerance constraining larval retention in estuarine habitats, we exposed in laboratory experiments freshly hatched zoeae to six different salinities (5–32‰). At 5‰, the larvae survived for a maximum of 2 weeks, reaching only exceptionally the second zoeal stage, while 38% survived to the megalopa stage at 10‰. Shortest development and negligible mortality occurred at all higher salt concentrations. These observations show that the larvae of N. granulata can tolerate a retention in the mesohaline reaches of estuaries, with a lower limit of ca. 10–15‰. Maximum survival at 25‰ suggests that polyhaline conditions rather than an export to oceanic waters are optimal for successful larval development of this species. In another experiment, we tested the capability of the last zoeal stage (IV) for reimmigration from coastal marine into brackish waters. Stepwise reductions of salinity during this stage allowed for moulting to the megalopa at 4–10‰. Although survival was at these conditions reduced and development delayed, these results suggest that already the zoea-IV stage is able to initiate the reimmigration into estuaries. After further salinity reduction, megalopae survived in this experiment for up to >3 weeks in freshwater, without moulting to juvenile crabs. In a similar experiment starting from the megalopa stage, successful metamorphosis occurred at 4–10‰, and juvenile growth continued in freshwater. Although these juvenile crabs showed significantly enhanced mortality and smaller carapace width compared to a seawater control, our results show that the late larval and early juvenile stages of N. granulata are well adapted for successful recruitment in brackish and even limnetic habitats.  相似文献   

16.
Nancy F. Smith 《Oecologia》2001,127(1):115-122
Spatial variation in parasitism is commonly observed in intermediate host populations. However, the factors that determine the causes of this variation remain unclear. Increasing evidence has suggested that spatial heterogeneity in parasitism among intermediate hosts may result from variation in recruitment processes initiated by definitive hosts. I studied the perching and habitat use patterns of wading birds, the definitive hosts in this system, and its consequences for the recruitment of parasites in snail intermediate hosts. Populations of the mangrove snail, Cerithidea scalariformis, collected from mangrove swamps on the east coast of central Florida are parasitized by a diverse community of trematode parasites. These parasites are transmitted from wading birds, which frequently perch on dead mangrove trees. I tested the hypothesis that mangrove perches act as transmission foci for trematode infections of C. scalariformis and that the spatial variation of parasitism frequently observed in this system is likely to emanate from the distribution of wading birds. On this fine spatial scale, definitive host behaviors, responding to a habitat variable, influenced the distribution, abundance and species composition of parasite recruitment to snails. This causal chain of events is supported by regressions between perch density, bird abundance, bird dropping density and ultimately parasite prevalence in snails. Variation between prevalence of parasites in free-ranging snails versus caged snails shows that while avian definitive hosts initiate spatial patterns of parasitism in snails through their perching behaviors, these patterns may be modified by the movement of snail hosts. Snail movement could disperse their associated parasite populations within the marsh, which may potentially homogenize or further increase parasite patchiness initiated by definitive hosts.  相似文献   

17.
Examination of 111 peacock wrasse [Symphodus tinea (L.)] and 97 brown wrasse ( Labrus merula L.) from the Valencian coast (Spain) yielded 24 metazoan parasite species (11 Digenea, three Cestoda, four Nematoda. one Acanlhocephala, five Crustacea). Eighteen species were from 5. tinea and 17 from L. merula; 11 of the 24 species were common to both hosts. Brillouin's diversity index, was applied to fully censused parasite infracommunities. This is the first time that all the metazoan parasites (internal and external) in any position in the host have been analysed for diversity. High values of prevalence, intensity, and diversity parameters indicate that these labrid fishes support diverse parasite communities. This may be due to their diverse diet, mainly marine invertebrates which are possible intermediate hosts; they also support certain netnatodes and crustaceans which have direct life-cycle.  相似文献   

18.
Poulin R  Leung TL 《Oecologia》2011,166(3):731-738
Within food webs, trophically transmitted helminth parasites use predator–prey links for their own transfer from intermediate prey hosts, in which they occur as larval or juvenile stages, to predatory definitive hosts, in which they reach maturity. In large taxa that can be used as intermediate and/or definitive hosts, such as fish, a host species’ position within a trophic network should determine whether its parasite fauna consists mostly of adult or larval helminths, since vulnerability to predation determines an animal’s role in predator–prey links. Using a large database on the helminth parasites of 303 fish species, we tested whether the proportion of parasite species in a host that occur as larval or juvenile stages is best explained by their trophic level or by their body size. Independent of fish phylogeny or habitat, only fish body length emerged as a significant predictor of the proportion of parasites in a host that occur as larval stages from our multivariate analyses. On average, the proportion of larval helminth taxa in fish shorter than 20 cm was twice as high as that for fish over 100 cm in length. This is consistent with the prediction that small fishes, being more vulnerable to predation, make better hosts for larval parasites. However, trophic level and body length are strongly correlated among fish species, and they may have separate though confounded effects on the parasite fauna exploiting a given species. Helminths show varying levels of host specificity toward their intermediate host when the latter is the downstream host involved in trophic transmission toward an upstream definitive host. Given this broad physiological compatibility of many helminths with fish hosts, our results indicate that fish body length, as a proxy for vulnerability to predators, is a better predictor of their use by helminth larvae than their trophic level based on diet content.  相似文献   

19.
Spatial changes in structural and functional characteristics of fish and macroinvertebrate communities in eastern Kentucky were investigated in a drainage system chronically exposed to high levels of chloride salts from nearby oilfield operations. Salinity levels at biological monitoring stations ranged from 0.12–31.3‰. Lotic regions with salinities greater than 10‰ were dominated by larvae of the dipterans Ephydra and Culicoides. In regions with salinities less than 10‰ species richness increased more or less linearly with decreasing levels of chloride salts. Ephemeropterans appeared to be one of the major invertebrate groups least tolerant of elevated NaCl levels and were absent in regions with salinities greater than 2‰ Availability of food resources, such as periphyton and particulate organic matter, did not appear to be grossly altered in disturbed regions, and it is suggested that the observed distribution of macroinvertebrate fauna was largely in response to taxonomic differences in salt tolerance. Fish seemed to be more tolerant of highly saline conditions, and several species were observed in regions experiencing salinities as high as 15‰. Accordingly, assemblages of fish taxa along the salinity gradient may have been influenced by trophic factors, such as spatial limitations in availability of invertebrate prey.  相似文献   

20.
Parasitic castration is an adaptive strategy where the parasite usurps its host’s phenotype, most notably the host’s reproductive effort. Though castrators are loosely known to be large relative to their hosts (compared to typical parasites), their mass has rarely been quantified and little is known about size variation, even if such variation exists. By cross-sectioning snails, we examined intra- and inter-specific variation in the parasite/host mass of 15 trematode species that castrate the California horn snail, Cerithidea californica. Trematode species occupied 14–39% (mean = 20.3%) of an infected snail’s soft tissue mass. Intraspecific variation in castrator mass fluctuated with variables that covary with energy available for host reproduction. Specifically, trematode mass was 24% higher in summer than in winter, 15% greater in snails from intertidal flats than from tidal channels, and increased with host mass to the 1.37 power (a finding contrary to that previously documented for other types of parasites). Relative body mass differed across trematode species, varying interspecifically with: (1) taxonomic family, (2) host tissue use (larger species used more types of host-tissue), (3) position in the trematode interspecific competitive dominance hierarchy (the two most subordinate species were the largest, otherwise size tended to increase with dominance), and (4) type of host used by offspring (species whose offspring infect relatively predictably occurring benthic invertebrates were larger than those infecting transient vertebrates). Our findings suggest that ecological constraints and life history trade-offs between reproduction and survival influence the mass of these very large parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号