首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The genetic code is defined by the specific aminoacylations of tRNAs by aminoacyl-tRNA synthetases. Although the synthetases are widely conserved through evolution, aminoacylation of a given tRNA is often system specific-a synthetase from one source will not acylate its cognate tRNA from another. This system specificity is due commonly to variations in the sequence of a critical tRNA identity element. In bacteria and the cytoplasm of eukaryotes, an acceptor stem G3:U70 base pair marks a tRNA for aminoacylation with alanine. In contrast, Drosophila melanogaster (Dm) mitochondrial (mt) tRNA(Ala) has a G2:U71 but not a G3:U70 pair. Here we show that this translocated G:U and the adjacent G3:C70 are major determinants for recognition by Dm mt alanyl-tRNA synthetase (AlaRS). Additionally, G:U at the 3:70 position serves as an anti-determinant for Dm mt AlaRS. Consequently, the mitochondrial enzyme cannot charge cytoplasmic tRNA(Ala). All insect mitochondrial AlaRSs appear to have split apart recognition of mitochondrial from cytoplasmic tRNA(Ala) by translocation of G:U. This split may be essential for preventing introduction of ambiguous states into the genetic code.  相似文献   

2.
The acceptor stem of Escherichia coli tRNA(Ala), rGGGGCUA.rUAGCUCC (ALAwt), contains the main identity element for the correct aminoacylation by the alanyl tRNA synthetase. The presence of a G3.U70 wobble base pair is essential for the specificity of this reaction, but there is a debate whether direct minor-groove contact with the 2-amino group of G3 or a distortion of the acceptor stem induced by the wobble pair is the critical feature recognized by the synthetase. We here report the structure analysis of ALAwt at near-atomic resolution using twinned crystals. The crystal lattice is stabilized by a novel strontium binding motif between two cis-diolic O3'-terminal riboses. The two independent molecules in the asymmetric unit of the crystal show overall A-RNA geometry. A comparison with the crystal structure of the G3-C70 mutant of the acceptor stem (ALA(C70)) determined at 1.4 A exhibits a modulation in ALAwt of helical twist and slide due to the wobble base pair, but no recognizable distortion of the helix fragment distant from the wobble base pair. We suggest that a highly conserved hydration pattern in both grooves around the G3.U70 wobble base pair may be functionally significant.  相似文献   

3.
W T Miller  Y M Hou  P Schimmel 《Biochemistry》1991,30(10):2635-2641
A single G3.U70 base pair in the acceptor helix is the major determinant for the identity of alanine transfer RNAs (Hou & Schimmel, 1988). Introduction of this base pair into foreign tRNA sequences confers alanine acceptance on them. Moreover, small RNA helices with as few as seven base pairs can be aminoacylated with alanine, provided that they encode the critical base pair (Francklyn & Schimmel, 1989). Alteration of G3.U70 to G3.C70 abolishes aminoacylation with alanine in vivo and in vitro. We describe here the mutagenesis and selection of a single point mutation in Escherichia coli Ala-tRNA synthetase that compensates for a G3.C70 mutation in tRNAAla. The mutation maps to a region previously implicated as proximal to the acceptor end of the bound tRNA. In contrast to the wild-type enzyme, the mutant charges small RNA helices that encode a G3.C70 base pair. However, the mutant enzyme retains specificity for alanine tRNA and can serve as the sole source of Ala-tRNA synthetase in vivo. The results demonstrate the capacity of an aminoacyl-tRNA synthetase to compensate through a single amino acid substitution for mutations in the major determinant of its cognate tRNA.  相似文献   

4.
The crystal structure of a catalytic fragment of Aquifex aeolicus AlaRS and additional data suggest how the critical G3:U70 identity element of its cognate tRNA acceptor stem is recognized. Though this identity element is conserved from bacteria to the cytoplasm of eukaryotes, Drosophila melanogaster mitochondrial (Dm mt) tRNA(Ala) contains a G:U base pair that has been translocated to the adjacent 2:71 position. This G2:U71 is the major determinant for identity of Dm mt tRNA(Ala). Sequence alignments showed that Dm mt AlaRS is differentiated from G3:U70-recognizing AlaRSs by an insertion of 27 amino acids in the region of the protein that contacts the acceptor stem. Precise deletion of this insertion from Dm mt AlaRS gave preferential recognition to a G3:U70-containing substrate. Larger or smaller deletions were ineffective. The crystal structure of the orthologous A. aeolicus protein places this insertion on the surface, where it can act as a hinge that provides positional switching of G:U recognition.  相似文献   

5.
To study the recognition by tryptophanyl-tRNA synthetase (TrpRS) of tRNA(Trp) discriminator base, mutations were introduced into the discriminator base of Bacillus subtilis, Archeoglobus fulgidus, and bovine tRNA(Trp), representing the three biological domains. When B. subtilis, A. fulgidus, and human TrpRS were used to acylate these tRNA(Trp), two distinct preference profiles regarding the discriminator base of different tRNA(Trp) substrates were found: G>A>U>C for B. subtilis TrpRS, and A>C>U>G for A. fulgidus and human TrpRS. The preference for G73 in tRNA(Trp) by bacterial TrpRS is much stronger than the modest preferences for A73 by the archaeal and eukaryotic TrpRS. Cross-species reactivities between TrpRS and tRNA(Trp) from the three domains were in accordance with the view that the evolutionary position of archaea is intermediate between those of eukarya and bacteria. NMR spectroscopy revealed that mutation of A73 to G73 in bovine tRNA(Trp) elicited a conformational alteration in the G1-C72 base pair. Mutation of G1-C72 to A1-U72 or disruption of the G1-C72 base pair also caused reduction of Trp-tRNA(Trp) formation. These observations identify a tRNA(Trp) structural region near the end of acceptor stem comprising A73 and G1-C72 as a crucial domain required for effective recognition by human TrpRS.  相似文献   

6.
Identity determinants of E. coli tryptophan tRNA.   总被引:4,自引:4,他引:0       下载免费PDF全文
  相似文献   

7.
Members of the FemABX protein family are novel therapeutic targets, as they are involved in the synthesis of the bacterial cell wall. They catalyze the addition of amino acid(s) on the peptidoglycan precursor using aminoacylated tRNA as a substrate. We report here the high-resolution structure of Weissella viridescens L-alanine transferase FemX and its complex with the UDP-MurNAc-pentapeptide. This is the first structure example of a FemABX family member that does not possess a coiled-coil domain. FemX consists of two structurally equivalent domains, separated by a cleft containing the binding site of the UDP-MurNAc-pentapeptide and a long channel that traverses one of the two domains. Our structural studies bring new insights into the evolution of the FemABX and the related GNAT superfamilies, shed light on the recognition site of the aminoacylated tRNA in Fem proteins, and allowed manual docking of the acceptor end of the alanyl-tRNAAla.  相似文献   

8.
9.
Early work on aminoacylation of alanine-specific tRNA (tRNA(Ala)) by alanyl-tRNA synthetase (AlaRS) gave rise to the concept of an early "second genetic code" imbedded in the acceptor stems of tRNAs. A single conserved and position-specific G:U base pair in the tRNA acceptor stem is the key identity determinant. Further understanding has been limited due to lack of a crystal structure of the enzyme. We determined a 2.14 A crystal structure of the 453 amino acid catalytic fragment of Aquifex aeolicus AlaRS. It contains the catalytic domain characteristic of class II synthetases, a helical domain with a hairpin motif critical for acceptor-stem recognition, and a C-terminal domain of a mixed alpha/beta fold. Docking of tRNA(Ala) on AlaRS shows critical contacts with the three domains, consistent with previous mutagenesis and functional data. It also suggests conformational flexibility within the C domain, which might allow for the positional variation of the key G:U base pair seen in some tRNA(Ala)s.  相似文献   

10.
MurM is an aminoacyl ligase that adds l-serine or l-alanine as the first amino acid of a dipeptide branch to the stem peptide lysine of the pneumococcal peptidoglycan. MurM activity is essential for clinical pneumococcal penicillin resistance. Analysis of peptidoglycan from the highly penicillin-resistant Streptococcus pneumoniae strain 159 revealed that in vivo and in vitro, in the presence of the appropriate acyl-tRNA, MurM(159) alanylated the peptidoglycan epsilon-amino group of the stem peptide lysine in preference to its serylation. However, in contrast, identical analyses of the penicillin-susceptible strain Pn16 revealed that MurM(Pn16) activity supported serylation more than alanylation both in vivo and in vitro. Interestingly, both MurM(Pn16) acylation activities were far lower than the alanylation activity of MurM(159). The resulting differing stem peptide structures of 159 and Pn16 were caused by the profoundly greater catalytic efficiency of MurM(159) compared with MurM(Pn16) bought about by sequence variation between these enzymes and, to a lesser extent, differences in the in vivo tRNA(Ala):tRNA(Ser) ratio in 159 and Pn16. Kinetic analysis revealed that MurM(159) acted during the lipid-linked stages of peptidoglycan synthesis, that the d-alanyl-d-alanine of the stem peptide and the lipid II N-acetylglucosaminyl group were not essential for substrate recognition, that epsilon-carboxylation of the lysine of the stem peptide was not tolerated, and that lipid II-alanine was a substrate, suggesting an evolutionary link to staphylococcal homologues of MurM such as FemA. Kinetic analysis also revealed that MurM recognized the acceptor stem and/or the TPsiC loop stem of the tRNA(Ala). It is anticipated that definition of the minimal structural features of MurM substrates will allow development of novel resistance inhibitors that will restore the efficacy of beta-lactams for treatment of pneumococcal infection.  相似文献   

11.
G.U wobble pairs are crucial to many examples of RNA-protein recognition. We previously concluded that the G.U wobble pair in the acceptor helix of Escherichia coli alanine tRNA (tRNA(Ala)) is recognized indirectly by alanyl-tRNA synthetase (AlaRS), although direct recognition may play some role. Our conclusion was based on the finding that amber suppressor tRNA Ala with G.U shifted to an adjacent helical site retained substantial but incomplete Ala acceptor function in vivo. Other researchers concluded that only direct recognition is operative. We report here a repeat of our original experiment using tRNA(Lys) instead of tRNA(Ala). We find, as in the original experiment, that a shifted G.U confers Ala acceptor activity. Moreover, the modified tRNA(Lys) was specific for Ala, corroborating our original conclusion and making it more compelling.  相似文献   

12.
Weissella viridescens FemX (FemX(Wv)) belongs to the Fem family of nonribosomal peptidyl transferases that use aminoacyl-tRNA as the amino acid donor to synthesize the peptide cross-bridge found in the peptidoglycan of many species of pathogenic gram-positive bacteria. We have recently solved the crystal structure of FemX(Wv) in complex with the peptidoglycan precursor UDP-MurNAc-pentapeptide and report here the site-directed mutagenesis of nine residues located in the binding cavity for this substrate. Two substitutions, Lys36Met and Arg211Met, depressed FemX(Wv) transferase activity below detectable levels without affecting protein folding. Analogues of UDP-MurNAc-pentapeptide lacking the phosphate groups or the C-terminal D-alanyl residues were not substrates of the enzyme. These results indicate that Lys36 and Arg211 participate in a complex hydrogen bond network that connects the C-terminal D-Ala residues to the phosphate groups of UDP-MurNAc-pentapeptide and constrains the substrate in a conformation that is essential for transferase activity.  相似文献   

13.
Correct recognition of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (aaRS) is crucial to the maintenance of translational fidelity. The discriminator base A73 in human tRNALeuis critical for its specific recognition by the aaRS. Exchanging A73 for G abolishes leucine acceptance and converts it into a serine acceptor in vitro . Two RNA microhelices of 24 nt length that correspond to the tRNALeuacceptor stem and differ only in the discriminator base were synthesized: a wild-type tRNALeumicrohelix, where nt 21 corresponds to the discriminator base position 73, and an A21G mutant microhelix. To investigate whether different identities of both tRNAs are caused by conformational differences, NMR and UV melting experiments were performed on both microhelices. Two-dimentional NOESY spectra showed both microhelices to exhibit the same overall conformation at their 3'-CCA ends. Thermodynamic analysis and melting behaviour of the base-paired imino protons observed by NMR spectroscopy suggest that the A21G (A73G in tRNA) exchange results in a decrease of melting transition cooperativity and a destabilization of the terminal G1-C20 (G1-C72 in tRNA) base pair. Furthermore, the fact that this 3'-terminal imino proton is more solvent-exposed at physiological temperature might be another indication for the importance of the stability of the terminal base pair for specific tRNA recognition.  相似文献   

14.
15.
The peptidoglycan cross-bridges of Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium consist of the sequences Gly(5), l-Ala(2), and d-Asx, respectively. Expression of the fmhB, femA, and femB genes of S. aureus in E. faecalis led to the production of peptidoglycan precursors substituted by mosaic side chains that were efficiently used by the penicillin-binding proteins for cross-bridge formation. The Fem transferases were specific for incorporation of glycyl residues at defined positions of the side chains in the absence of any additional S. aureus factors such as tRNAs used for amino acid activation. The PBPs of E. faecalis displayed a broad substrate specificity because mosaic side chains containing from 1 to 5 residues and Gly instead of l-Ala at the N-terminal position were used for peptidoglycan cross-linking. Low affinity PBP2a of S. aureus conferred beta-lactam resistance in E. faecalis and E. faecium, thereby indicating that there was no barrier to heterospecific expression of resistance caused by variations in the structure of peptidoglycan precursors. Thus, conservation of the structure of the peptidoglycan cross-bridges in members of the same species reflects the high specificity of the enzymes for side chain synthesis, although this is not essential for the activity of the PBPs.  相似文献   

16.
Transfer RNAs (tRNAs) are grouped into two classes based on the structure of their variable loop. In Escherichia coli, tRNAs from three isoaccepting groups are classified as type II. Leucine tRNAs comprise one such group. We used both in vivo and in vitro approaches to determine the nucleotides that are required for tRNA(Leu) function. In addition, to investigate the role of the tRNA fold, we compared the in vivo and in vitro characteristics of type I tRNA(Leu) variants with their type II counterparts.A minimum of six conserved tRNA(Leu) nucleotides were required to change the amino acid identity and recognition of a type II tRNA(Ser) amber suppressor from a serine to a leucine residue. Five of these nucleotides affect tRNA tertiary structure; the G15-C48 tertiary "Levitt base-pair" in tRNA(Ser) was changed to A15-U48; the number of nucleotides in the alpha and beta regions of the D-loop was changed to achieve the positioning of G18 and G19 that is found in all tRNA(Leu); a base was inserted at position 47n between the base-paired extra stem and the T-stem; in addition the G73 "discriminator" base of tRNA(Ser) was changed to A73. This minimally altered tRNA(Ser) exclusively inserted leucine residues and was an excellent in vitro substrate for LeuRS. In a parallel experiment, nucleotide substitutions were made in a glutamine-inserting type I tRNA (RNA(SerDelta); an amber suppressor in which the tRNA(Ser) type II extra-stem-loop is replaced by a consensus type I loop). This "type I" swap experiment was successful both in vivo and in vitro but required more nucleotide substitutions than did the type II swap. The type I and II swaps revealed differences in the contributions of the tRNA(Leu) acceptor stem base-pairs to tRNA(Leu) function: in the type I, but not the type II fold, leucine specificity was contingent on the presence of the tRNA(Leu) acceptor stem sequence. The type I and II tRNAs used in this study differed only in the sequence and structure of the variable loop. By altering this loop, and thereby possibly introducing subtle changes into the overall tRNA fold, it became possible to detect otherwise cryptic contributions of the acceptor stem sequence to recognition by LeuRS. Possible reasons for this effect are discussed.  相似文献   

17.
Aminoacyl-tRNA synthetases (ARSs) enhance the fidelity of protein synthesis through multiple mechanisms, including hydrolysis of the adenylate and cleavage of misacylated tRNA. Alanyl-tRNA synthetase (AlaRS) limits misacylation with glycine and serine by use of a dedicated editing domain, and a mutation in this activity has been genetically linked to a mouse model of a progressive neurodegenerative disease. Using the free-standing Pyrococcus horikoshii AlaX editing domain complexed with serine as a model and both Ser-tRNA(Ala) and Ala-tRNA(Ala) as substrates, the deacylation activities of the wild type and five different Escherichia coli AlaRS editing site substitution mutants were characterized. The wild-type AlaRS editing domain deacylated Ser-tRNA(Ala) with a k(cat)/K(M) of 6.6 × 10(5) M(-1) s(-1), equivalent to a rate enhancement of 6000 over the rate of enzyme-independent deacylation but only 12.2-fold greater than the rate with Ala-tRNA(Ala). While the E664A and T567G substitutions only minimally decreased k(cat)/K(M,) Q584H, I667E, and C666A AlaRS were more compromised in activity, with decreases in k(cat)/K(M) in the range of 6-, 6.6-, and 15-fold. C666A AlaRS was 1.7-fold more active on Ala-tRNA(Ala) relative to Ser-tRNA(Ala), providing the only example of a true reversal of substrate specificity and highlighting a potential role of the coordinated zinc in editing substrate specificity. Along with the potentially serious physiological consequences of serine misincorporation, the relatively modest specificity of the AlaRS editing domain may provide a rationale for the widespread phylogenetic distribution of AlaX free-standing editing domains, thereby contributing a further mechanism to lower concentrations of misacylated tRNA(Ala).  相似文献   

18.
19.
Choi H  Otten S  McClain WH 《Biochimie》2002,84(8):705-711
The relationship between tRNA structure and function has been widely investigated by site-directed mutagenesis. This method has been a very useful tool to reveal the critical bases in tRNAs that are important for recognition and aminoacylation, but has been limited by the large number of possible base combinations in tRNA molecules. We have devised a new method that uses tRNA knockout cells for selection of functional tRNAs from a mutant tRNA gene library to overcome this limitation. To explore the mechanism of tRNA(Ala) recognition, the bases of the acceptor-stem region were randomized and active mutants were selected in a tRNA(Ala) knockout strain. Mutants of tRNA(Ala) having diverse sequence combinations in the acceptor-stem region and a broad range of functional activity to support knockout cell growth were isolated. The mutant tRNAs selected by the method included molecules containing novel base substitutions as well as extensively altered base combinations that would not be readily generated by rationally designed site-directed mutagenesis. Our results emphasize the importance of the acceptor stem as a structural unit in which some nucleotides may carry more weight than others, but in summation every nucleotide contributes to the interaction with the enzyme.  相似文献   

20.
The fidelity of translation of the genetic code depends on accurate tRNA aminoacylation by cognate aminoacyl-tRNA synthetases. Thus, each tRNA has specificity not only for codon recognition, but also for amino acid identity; this aminoacylation specificity is referred to as tRNA identity. The primary determinant of the acceptor identity of Escherichia coli tRNAAlais a wobble G3.U70 pair within the acceptor stem. Despite extensive biochemical and genetic data, the mechanism by which the G3.U70 pair marks the acceptor end of tRNAAla for aminoacylation with alanine has not been clarified at the molecular level. The solution structure of a microhelix derived from the tRNAAla acceptor end has been determined at high precision using a very extensive set of experimental constraints (approximately 32 per nt) obtained by heteronuclear multidimensional NMR methods. The tRNAAla acceptor end is overall similar to A-form RNA, but important differences are observed. The G3.U70 wobble pair distorts the conformation of the phosphodiester backbone and presents the functional groups of U70 in an unusual spatial location. The discriminator base A73 has extensive stacking overlap with G1 within the G1.C72 base pair at the end of the double helical stem and the -CCA end is significantly less ordered than the rest of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号