首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Clostridium perfringens, although a member of the normal gut flora, is also an important cause of intestinal disease in animals and, to a lesser extent, in humans. Disease is associated with the production of one or more toxins, and little is known about environmental influences on the production of these toxins. One of the health-promoting effects of lactic acid bacteria (LAB) is the establishment and maintenance of a low pH in the intestine since an acidic environment inhibits the growth of many potentially harmful bacteria. Here, the effect of the LAB Lactobacillus fermentum on beta2 toxin production by C. perfringens is described. Coculturing of C. perfringens with L. fermentum showed that under in vitro conditions, L. fermentum was capable of silencing beta2 toxin production by C. perfringens without influencing bacterial viability. The reduction in toxin production was shown to be most likely a result of the decline in pH. Quantitative PCR showed that the reduction in beta2 toxin production was due to a decrease in cpb2 mRNA. These results suggest that in the intestine, the production of beta2 toxin by C. perfringens might be regulated by other members of the normal intestinal flora.  相似文献   

2.
Clostridium perfringens alpha-N-acetylgalactosaminidase (alphaNAG) hydrolyzed the terminal N-acetyl-alpha-d-galactosamine from the blood type A(2) antigen producing H antigen, blood type O. Blood type O is universally compatible in the ABO system. Purification of the native enzyme is difficult with very low yields. To obtain the enzyme in satisfactory yield, the gene encoding the clostridial enzyme was cloned in an Escherichia coli T7 expression system. A highly purified preparation of recombinant alphaNAG was obtained from cell lysates by ion-exchange chromatography and high-pressure liquid chromatography. The final preparation was homogeneous by SDS-PAGE with a molecular mass of 71.96kDa and the native molecular weight of 72.42kDa. The enzyme was highly selective for terminal N-acetylgalactosamine residues. No other significant exoglycosidase activities, particularly neuraminidase, were detected. The pH optimum of the enzyme was between 6.5 and 7.0 and activity was relatively unaffected by ionic strength. ELISA experiments demonstrated activity against blood type A(2) epitope. These characteristics were similar to those of native alphaNAG from C. perfringens. With adequate expression in E. coli, sufficient recombinant alphaNAG enzyme mass can be obtained for potential use in enzymatic conversion of human blood type A(2) red blood cells to universally transfusable type O red blood cells.  相似文献   

3.
4.
5.
Clostridium perfringens type A isolates carrying an enterotoxin (cpe) gene are an important cause of human gastrointestinal diseases, including food poisoning, antibiotic-associated diarrhoea (AAD) and sporadic diarrhoea (SD). Using polymerase chain reaction (PCR), the current study determined that the cpb2 gene encoding the recently discovered beta2 toxin is present in <15% of food poisoning isolates, which typically carry a chromosomal cpe gene. However, >75% of AAD/SD isolates, which usually carry a plasmid cpe gene, tested cpb2(+) by PCR. Western blot analysis demonstrated that >97% of those cpb2(+)/cpe(+) AAD/SD isolates can produce CPB2. Additional PCR analyses, sequencing studies and pulsed field gel electrophoresis experiments determined that AAD/SD isolates carry cpb2 and cpe on the same plasmid when IS1151 sequences are present downstream of cpe, but cpb2 and cpe are located on different plasmids in AAD/SD isolates where IS1470-like sequences are present downstream of cpe. Those analyses also demonstrated that two different CPB2 variants (named CPB2h1 or CPB2h2) can be produced by AAD/SD isolates, dependent on whether IS1470-like or IS1151 sequences are present downstream of their cpe gene. CPB2h1 is approximately 10-fold more cytotoxic for CaCo-2 cells than is CPB2h2. Collectively, these results suggest that CPB2 could be an accessory toxin in C. perfringens enterotoxin (CPE)-associated AAD/SD.  相似文献   

6.
Cloning and sequencing of beta toxin gene of Clostridium perfringens type C   总被引:1,自引:0,他引:1  
A gene encoding beta toxin was amplified by polymerase chain reaction from C. perfringens type C isolate and cloned in pUC 19 vector. The nucleotide sequence was identical with C. perfringens type B beta toxin gene sequence. The Southern hybridization using labelled beta toxin gene probe revealed the presence of positive signals only in beta producing C. perfingens.  相似文献   

7.
Hsieh HY  Mitra M  Wells DC  Smith D 《IUBMB life》2000,50(2):91-97
alpha-N-Acetylgalactosaminidase from Clostridium perfringens is an exoglycosidase that degrades the human blood type A epitope. A highly purified preparation of alpha-N-acetylgalactosaminidase was obtained from C. perfringens by salt precipitation, gel filtration, ion-exchange chromatography, chromatofocusing, and high-pressure liquid chromatography. The final preparation was homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with a molecular mass of 72.1 kDa. The enzyme was highly selective for terminal N-acetyl-alpha-D-galactosamine residues. No other substantial glycosidase activities, specifically neuraminidase, were detected. The pH optimum of the enzyme was between 6.5 and 7.0, and activity was unaffected by ionic strength. No protease activity was detected and enzyme activity was stable at 4 degrees C for 12 months. ELISA experiments demonstrated activity against blood type A epitope.  相似文献   

8.
Neuraminidase (EC 3.2.1.18) has been purified from the culture medium of Clostridium perfringens ATCC 10543, through steps of gel filtration on Sephadex G-75 column, DEAE-cellulose DE 23 anion exchange chromatography, and isochromatofocusing. A homogeneous enzyme was obtained with a 7552-fold increase in specific activity to 295 units/mg protein. The yield was about 25%. The enzyme consists of a single polypeptide with a molecular weight of 69,000 as determined by SDS-polyacrylamide gel electrophoresis. Kinetic studies showed that Km is 1.5 mM for sialyllactose and Vmax is 0.41 mumole/min/ml at the enzyme concentration of 0.14 microgram/ml. The enzyme is stable at pH 5.2-8.0 with an optimal pH of 6.0. A concentrated solution of the purified enzyme was stable over one year at 4 degrees C. The purified enzyme hydrolyzed human alpha 1-acid glycoprotein completely; thus, it can be used in the clinical assay of N-acetylneuraminic acid in the serum.  相似文献   

9.
The substrate specificities of the actin-ADP-ribosylating toxins, Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin were studied by using five different preparations of actin isoforms: alpha-skeletal muscle actin, alpha-cardiac muscle actin, gizzard gamma-smooth muscle actin, spleen beta- and gamma-cytoplasmic actin, and aortic smooth muscle actin containing alpha- and gamma-smooth muscle actin isoforms. C. perfringens iota toxin ADP-ribosylated all actin isoforms tested, whereas C. botulinum C2 toxin did not modify alpha-skeletal muscle actin or alpha-cardiac muscle actin. Spleen beta/gamma-cytoplasmic actin and gizzard gamma-smooth muscle actin were substrates of C. botulinum C2 toxin. In the aortic smooth muscle actin preparation, gamma-smooth muscle actin but not alpha-smooth muscle actin was ADP-ribosylated by C. botulinum C2 toxin. The data indicate that, in contrast to C. perfringens iota toxin, C. botulinum C2 toxin ADP-ribosylates only beta/gamma-cytoplasmic and gamma-smooth muscle actin and suggest that the N-terminal region of actin isoforms define the substrate specificity for ADP-ribosylation by C. botulinum C2 toxin.  相似文献   

10.
Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin belong to a novel family of actin ADP-ribosylating toxins. ADP-ribosylation of actin inhibits actin polymerization and G-actin-associated ATPase activity. The ADP-form of actin is ADP-ribosylated at a higher rate than actin with bound ATP. ADP-ribosylation of actin is reversible, a reaction, which is accompanied by reconstitution of actin ATPase activity.  相似文献   

11.
Clostridium perfringens type C strain CN 5384 produced a higher level of beta toxin in a controlled pH medium containing 1% glucose, starch, or sucrose than in media with dextrin, fructose, or raffinose. Toxin synthesis was not related to the growth yield. The effect of glucose on beta toxin production by 11 strains was investigated with and without control of the culture pH at 7.5. Strain CN 5386 produced distinctly higher toxin when the pH of the culture was maintained at 7.5, compared with uncontrolled pH.  相似文献   

12.
Beta toxin from Clostridium perfringens after being secreted in gut is capable of causing necrotic enteritis in humans and several other animal species and does not respond to routinely used antibiotics. Therefore, there is a need to design an effective inhibitor for the Clostridium perfringens beta toxin (CPB) using cutting edge drug discovery technologies. Hence, potential CPB inhibitors were identified using computer aided screening of compounds from the ZINC database. Further, we document the molecular docking analysis of Clostridium perfringens beta toxin model (that revealed 4 binding pockets, A-D) with the identified potential inhibitors. We show that ZINC291192 [N-[(1-methylindol-3-yl) methyl eneamino]-7,10-dioxabicyclo[4.4.0]deca-2,4,11-triene-8- carboxamide] has optimal binding features with calculated binding energy of -10.38 kcal/mol and inhibition constant of 24.76 nM for further consideration.  相似文献   

13.
Purified beta toxin from Clostridium perfringens type C was inactivated by the oxidizing agents o-iodosobenzoate (OIBA), oxidized glutathione, and ferricyanide, and by the sulfhydryl group regents 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide, iodoacetamide, and iodoacetic acid, causing loss of activity in various degrees depending on the concentration used. The activity of the toxin was not influenced by exposure to 1.0 mM of p-chloromercuribenzoate. The toxin treated by OIBA or DTNB was reactivated by incubation with 2-mercaptoethanol and dithiothreitol. The data suggest that beta toxin contains thiol groups which are essential for the activity.  相似文献   

14.
Clostridium perfringens sialidase was isolated from a culture medium of bacterial cells by ammonium sulfate precipitation (42-85%), followed by purification through Sephadex G-75 gel chromatography, DEAE A-50 anion exchange chromatography, FPLC medium pressure anion exchange chromatography and finally FPLC medium pressure isochromatofocussing. From 9 l culture medium 1.17 mg sialidase was isolated with a specific activity of 295 U/mg. The enzyme appeared to be homogeneous by analytical polyacrylamide gel electrophoresis. The molecular mass was measured to be 66 kDa. Km values ranging from 0.6 to 1.6mM were determined for several oligosaccharides as substrates. The enzyme catalyzed transglycosylation reactions with methanol as a nucleophilic reagent competitive with water. In the enzymatic hydrolysis of the (3'-methoxyphenyl)glycoside of alpha-N-acetylneuraminic acid, increase of methanol concentration had no effect on the release of 3-methoxyphenol. This finding suggests that the formation of the enzyme-glycon intermediate is the rate-determining step for this substrate.  相似文献   

15.
Clostridium perfringens cells were cultivated on a large scale using an automatic system. Neuraminidase secreted by the cells into the culture medium was purified 380 000-fold by: precipitation with ammonium sulfate between 50 and 85% saturation, filtration on Sephadex G-75, electrophoresis on polyacrylamide gel, and by isoelectric focusing. Three enzyme fractions with different migration rates were obtained by preparative disc electrophoresis in polyacrylamide gel, and five fractions with isoelectric points between pH 4.7 and 5.4 were observed after isoelectric focusing. This microheterogeneity disappeared after denaturation of the enzyme in 0.1% sodium dodecylsulfate or 8M urea. The isoelectric point of the denatured enzyme corresponded to pH 4.3. All enzyme fractions were identical with regard to their immunological and kinetic properties; they had the same molecular weights. The origin of the different "conformers" of neuraminidase is discussed. The existence of genuine isoenzymes could largely be excluded. The yield of neuraminidase was 65%, which corresponded to about 10 mg of pure enzyme from 100 l of culture medium. The enzyme was free of protease and various other glycosidase activities. The neuraminidase preparation appeared not to be contaminated by other proteins as judged by electrophoretic analysis using either the native enzyme or the enzyme denatured by sodium dodecylsulfate or urea; ultracentrifugation; chromatography on Sephadex G-200; and immunological methods. The molecular weights of the native or denatured enzyme were found to be in the range between 60 000 and 69 000 (on an average 63 750) using four independent methods. The existence of subunits of neuraminidase was excluded. The neuraminidase exhibited a spec. act. of 580 or 615 U/mg protein with glycopeptides from edible birds' nests or sialyllactose, respectively, as substrates. Additional kinetic properties and the UV-absorption spectrum of the enzyme are described.  相似文献   

16.
17.
An alpha-amylase (EC 3.2.1.1) secreted by Clostridium perfringens NCTC 8679 type A was purified to homogeneity and characterized. It was isolated from concentrated cell-free culture medium by ion-exchange and gel permeation chromatography. The enzyme exhibited maximal activity at pH 6.5 and 30 degrees C without the presence of calcium. The pI of the enzyme was 4.75. The estimated molecular weight of the purified enzyme was 76 kDa. The purified enzyme was inactivated between 35 and 40 degrees C, which increased to between 45 and 50 degrees C in the presence of calcium (5 mM). The purified enzyme produced a mixture of oligosaccharides as major end products of starch hydrolysis, indicating alpha-amylase activity.  相似文献   

18.
19.
20.
Clostridium perfringens beta toxin is an important agent of necrotic enteritis. Of the 10 cell lines tested, only the HL 60 cell line was susceptible to beta toxin. The toxin induced swelling and lysis of the cell. Treatment of the cells with the toxin resulted in K+ efflux from the cells and Ca2+, Na+, and Cl- influxes. These events reached a maximum just before the cells were lysed by the toxin. Incubation of the cells with the toxin showed the formation of toxin complexes of about 191 and 228 kDa, which were localized in the domains that fulfilled the criteria of lipid rafts. The complex of 228 kDa was observed until 30 min after incubation, and only the complex of 191 kDa was remained after 60 min. Treatment of the cells with methyl-beta-cyclodextrin or cholesterol oxidase blocked binding of the toxin to the rafts and the toxin-induced K+ efflux and swelling. The toxin-induced Ca2+ influx and morphological changes were inhibited by an increase in the hydrodynamic diameter of polyethylene glycols from 200 to 400 and markedly or completely inhibited by polyethylene glycol 600 and 1000. However, these polyethylene glycols had no effect on the toxin-induced K+ efflux. The toxin induced carboxyfluorescein release from phosphatidyl-choline-cholesterol liposomes containing carboxyfluorescein and formed an oligomer with 228 kDa in a dose-dependent manner but did not form an oligomer with the 191-kDa complex. We conclude that the toxin acts on HL 60 cells by binding to lipid rafts and forming a functional oligomer with 228 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号