首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mismatch-repair (MMR) systems suppress mutation via correction of DNA replication errors (base-mispairs) and responses to mutagenic DNA lesions. Selective binding of mismatched or damaged DNA by MutS-homolog proteins-bacterial MutS, eukaryotic MSH2.MSH6 (MutSalpha) and MSH2.MSH3-initiates mismatch-correction pathways and responses to lesions, and may cumulatively increase discrimination at downstream steps. MutS-homolog binding selectivity and the well-known but poorly understood effects of DNA-sequence contexts on recognition may thus be primary determinants of MMR specificity and efficiency. MMR processes that modulate UV mutagenesis might begin with selective binding by MutS homologs of "mismatched" T[CPD]T/AG and T[6--4]T/AG photoproducts, reported previously for hMutSalpha and described here for E. coli MutS protein. If MMR suppresses UV mutagenesis by acting directly on pre-mutagenic products of replicative bypass, mismatched photoproducts should be recognized in most DNA-sequence contexts. In three of four contexts tested here (three substantially different), T[CPD]T/AG was bound only slightly better by MutS than was T[CPD]T/AA or homoduplex DNA; only one of two contexts tested promoted selective binding of T[6--4]T/AG. Although the T:G pairs in T[CPD]T/AG and T/G both adopt wobble conformations, MutS bound T/G well in all contexts (K(1/2) 2.1--2.9 nM). Thus, MutS appears to select the two mismatches by different mechanisms. NMR analyses elsewhere suggest that in the (highly distorted) T[6--4]T/AG a forked H-bond between O2 of the 3' thymine and the ring 1-imino and exocyclic 2-amino guanine protons stabilizes a novel planar structure not possible in T[6--4]T/AA. Replacement of G by purines lacking one (inosine, 2-aminopurine) or both (nebularine) protons markedly reduced or eliminated selective MutS binding, as predicted. Previous studies and the work here, taken together, suggest that in only about half of DNA sequence contexts could MutS (and presumably MutSalpha) selectively bind mismatched UV photoproducts and directly suppress UV mutagenesis.  相似文献   

2.
Wang H  Hays JB 《The EMBO journal》2004,23(10):2126-2133
Mismatch-repair (MMR) systems promote genomic stability by correction of DNA replication errors. Thus, MMR proteins--prokaryotic MutS and MutL homodimers or their MutSalpha and MutLalpha heterodimer homologs, plus accessory proteins--specifically couple mismatch recognition to nascent-DNA excision. In vivo excision-initiation signals--specific nicks in some prokaryotes, perhaps growing 3' ends or Okazaki-fragment 5' ends in eukaryotes--are efficiently mimicked in vitro by nicks or gaps in exogenous DNA substrates. In some models for recognition-excision coupling, MutSalpha bound to mismatches is induced by ATP hydrolysis, or simply by binding of ATP, to slide along DNA to excision-initiation sites, perhaps in association with MutLalpha and accessory proteins. In other models, MutSalpha.MutLalpha complexes remain fixed at mismatches and contact distant excision sites by DNA looping. To challenge the hypothesis that recognition complexes remain fixed, we placed biotin-streptavidin blockades between mismatches and pre-existing nicks. In human nuclear extracts, mismatch efficiently provoked the initiation of excision despite the intervening barriers, as predicted. However, excision progress and therefore mismatch correction were prevented.  相似文献   

3.
DNA mismatch repair (MMR) couples recognition of base mispairs by MSH2.MSH6 heterodimers to initiation, hundreds of nucleotides away, of nascent strand 3'-5' or 5'-3' excision through the mispair. Mismatch-recognition complexes have been hypothesized to move along DNA to excision-initiation signals, in eukaryotes, perhaps ends of nascent DNA, or to remain at mismatches and search through space for initiation signals. Subsequent MMR excision, whether simple processive digestion of the targeted strand or tracking of an excision complex, remains poorly understood. In human cell-free extracts, we analyzed correction of a mismatch in a 2.2-kilobase pair (kbp) circular plasmid containing a pre-existing excision-initiation nick for initiation, and measured MMR excision (in the absence of exogenous dNTPs) at specific locations. Excision specificities were approximately 100:1 for nicked versus continuous strands, 80:1 for mismatched versus homoduplex DNA, and 30:1 for shorter (0.3-kbp) versus longer (1.9-kbp) nick-mispair paths. To test models for recognition-excision coupling and excision progress, we inserted potential blockades, 20-bp hairpins, into nick-mispair paths, using a novel technique to first generate gapped plasmid. Continuous strand longer-path hairpins did not affect mismatch correction, but shorter-path hairpins reduced correction 4-fold, and both together eliminated it. Shorter-path hairpins had little effect on initiation of (3'-5') excision, measured 30-60 nucleotides 5' to the nick, but blocked subsequent progress of excision to the mismatch; longer-path hairpins blocked the (lower level) 5'-3' excision to the mismatch. Thus, (a) MMR excision protein(s) cannot move past DNA hairpins. Hairpins at both ends of substrate-derived 0.5-kbp DNA fragments did not prevent ATP-induced dissociation of mismatch-bound human MSH2.MSH6, so recognition complexes at mismatches might provoke excision at nicks beyond hairpins, or loosely sliding MSH2.MSH6 dimers might move to the nicks.  相似文献   

4.
Mismatch repair (MMR) is initiated by MutS family proteins (MSH) that recognize DNA mismatches and recruit downstream repair factors. We used a single-molecule DNA-unzipping assay to probe interactions between S. cerevisiae MSH2-MSH6 and a variety of DNA mismatch substrates. This work revealed a high-specificity binding state of MSH proteins for mismatch DNA that was not observed in bulk assays and allowed us to measure the affinity of MSH2-MSH6 for mismatch DNA as well as its footprint on DNA surrounding the mismatch site. Unzipping analysis with mismatch substrates containing an end blocked by lac repressor allowed us to identify MSH proteins present on DNA between the mismatch and the block, presumably in an ATP-dependent sliding clamp mode. These studies provide a high-resolution approach to study MSH interactions with DNA mismatches and supply evidence to support and refute different models proposed for initiation steps in MMR.  相似文献   

5.
DNA mismatch repair and mutation avoidance pathways   总被引:28,自引:0,他引:28  
Unpaired and mispaired bases in DNA can arise by replication errors, spontaneous or induced base modifications, and during recombination. The major pathway for correction of mismatches arising during replication is the MutHLS pathway of Escherichia coli and related pathways in other organisms. MutS initiates repair by binding to the mismatch, and activates together with MutL the MutH endonuclease, which incises at hemimethylated dam sites and thereby mediates strand discrimination. Multiple MutS and MutL homologues exist in eukaryotes, which play different roles in the mismatch repair (MMR) pathway or in recombination. No MutH homologues have been identified in eukaryotes, suggesting that strand discrimination is different to E. coli. Repair can be initiated by the heterodimers MSH2-MSH6 (MutSalpha) and MSH2-MSH3 (MutSbeta). Interestingly, MSH3 (and thus MutSbeta) is missing in some genomes, as for example in Drosophila, or is present as in Schizosaccharomyces pombe but appears to play no role in MMR. MLH1-PMS1 (MutLalpha) is the major MutL homologous heterodimer. Again some, but not all, eukaryotes have additional MutL homologues, which all form a heterodimer with MLH1 and which play a minor role in MMR. Additional factors with a possible function in eukaryotic MMR are PCNA, EXO1, and the DNA polymerases delta and epsilon. MMR-independent pathways or factors that can process some types of mismatches in DNA are nucleotide-excision repair (NER), some base excision repair (BER) glycosylases, and the flap endonuclease FEN-1. A pathway has been identified in Saccharomyces cerevisiae and human that corrects loops with about 16 to several hundreds of unpaired nucleotides. Such large loops cannot be processed by MMR.  相似文献   

6.
The eukaryotic mismatch repair (MMR) protein MSH6 exhibits a core region structurally and functionally similar to bacterial MutS. However, it possesses an additional N-terminal region (NTR), comprising a PCNA binding motif, a large region of unknown function and a nonspecific DNA binding fragment. Yeast NTR was recently described as an extended tether between PCNA and the core of MSH6 . In contrast, we show that human NTR presents a globular PWWP domain in the region of unknown function. We demonstrate that this PWWP domain binds double-stranded DNA, without any preference for mismatches or nicks, whereas its apparent affinity for single-stranded DNA is about 20 times lower. The S144I mutation, which in human MSH6 causes inherited somatic defects in MMR resulting in increased development of hereditary non polyposis colorectal cancer , is located in the DNA binding surface of the PWWP domain. However, it only moderately affects domain stability, and it does not perturb DNA binding in vitro.  相似文献   

7.
Mismatch repair (MMR) corrects replication errors such as mismatched bases and loops in DNA. The evolutionarily conserved dimeric MMR protein MutS recognizes mismatches by stacking a phenylalanine of one subunit against one base of the mismatched pair. In all crystal structures of G:T mismatch-bound MutS, phenylalanine is stacked against thymine. To explore whether these structures reflect directional mismatch recognition by MutS, we monitored the orientation of Escherichia coli MutS binding to mismatches by FRET and anisotropy with steady state, pre-steady state and single-molecule multiparameter fluorescence measurements in a solution. The results confirm that specifically bound MutS bends DNA at the mismatch. We found additional MutS-mismatch complexes with distinct conformations that may have functional relevance in MMR. The analysis of individual binding events reveal significant bias in MutS orientation on asymmetric mismatches (G:T versus T:G, A:C versus C:A), but not on symmetric mismatches (G:G). When MutS is blocked from binding a mismatch in the preferred orientation by positioning asymmetric mismatches near the ends of linear DNA substrates, its ability to authorize subsequent steps of MMR, such as MutH endonuclease activation, is almost abolished. These findings shed light on prerequisites for MutS interactions with other MMR proteins for repairing the appropriate DNA strand.  相似文献   

8.
DNA mismatch repair (MMR) is a DNA excision–resynthesis process that principally enhances replication fidelity. Highly conserved MutS (MSH) and MutL (MLH/PMS) homologs initiate MMR and in higher eukaryotes act as DNA damage sensors that can trigger apoptosis. MSH proteins recognize mismatched nucleotides, whereas the MLH/PMS proteins mediate multiple interactions associated with downstream MMR events including strand discrimination and strand-specific excision that are initiated at a significant distance from the mismatch. Remarkably, the biophysical functions of the MLH/PMS proteins have been elusive for decades. Here we consider recent observations that have helped to define the mechanics of MLH/PMS proteins and their role in choreographing MMR. We highlight the stochastic nature of DNA interactions that have been visualized by single-molecule analysis and the plasticity of protein complexes that employ thermal diffusion to complete the progressions of MMR.  相似文献   

9.
In eukaryotes the MSH2-MSH3 and MSH2-MSH6 heterodimers initiate mismatch repair (MMR) by recognizing and binding to DNA mismatches. The MLH1-PMS1 heterodimer then interacts with the MSH proteins at or near the mismatch site and is thought to act as a mediator to recruit downstream repair proteins. Here we analyzed five msh2 mutants that are functional in removing 3' non-homologous tails during double-strand break repair but are completely defective in MMR. Because non-homologous tail removal does not require MSH6, MLH1, or PMS1 functions, a characterization of the msh2 separation of function alleles should provide insights into early steps in MMR. Using the Taq MutS crystal structure as a model, three of the msh2 mutations, msh2-S561P, msh2-K564E, msh2-G566D, were found to map to a domain in MutS involved in stabilizing mismatch binding. Gel mobility shift and DNase I footprinting assays showed that two of these mutations conferred strong defects on MSH2-MSH6 mismatch binding. The other two mutations, msh2-S656P and msh2-R730W, mapped to the ATPase domain. DNase I footprinting, ATP hydrolysis, ATP binding, and MLH1-PMS1 interaction assays indicated that the msh2-S656P mutation caused defects in ATP-dependent dissociation of MSH2-MSH6 from mismatch DNA and in interactions between MSH2-MSH6 and MLH1-PMS1. In contrast, the msh2-R730W mutation disrupted MSH2-MSH6 ATPase activity but did not strongly affect ATP binding or interactions with MLH1-PMS1. These results support a model in which MMR can be dissected into discrete steps: stable mismatch binding and sensing, MLH1-PMS1 recruitment, and recycling of MMR components.  相似文献   

10.
Base-pair mismatches that occur during DNA replication or recombination can reduce genetic stability or conversely increase genetic diversity. The genetics and biophysical mechanism of mismatch repair (MMR) has been extensively studied since its discovery nearly 50 years ago. MMR is a strand-specific excision-resynthesis reaction that is initiated by MutS homolog (MSH) binding to the mismatched nucleotides. The MSH mismatch-binding signal is then transmitted to the immediate downstream MutL homolog (MLH/PMS) MMR components and ultimately to a distant strand scission site where excision begins. The mechanism of signal transmission has been controversial for decades. We have utilized single molecule Forster Resonance Energy Transfer (smFRET), Fluorescence Tracking (smFT) and Polarization Total Internal Reflection Fluorescence (smP-TIRF) to examine the interactions and dynamic behaviors of single Thermus aquaticus MutS (TaqMutS) particles on mismatched DNA. We determined that TaqMutS forms an incipient clamp to search for a mismatch in ∼1 s intervals by 1-dimensional (1D) thermal fluctuation-driven rotational diffusion while in continuous contact with the helical duplex DNA. When MutS encounters a mismatch it lingers for ∼3 s to exchange bound ADP for ATP (ADP  ATP exchange). ATP binding by TaqMutS induces an extremely stable clamp conformation (∼10 min) that slides off the mismatch and moves along the adjacent duplex DNA driven simply by 1D thermal diffusion. The ATP-bound sliding clamps rotate freely while in discontinuous contact with the DNA. The visualization of a train of MSH proteins suggests that dissociation of ATP-bound sliding clamps from the mismatch permits multiple mismatch-dependent loading events. These direct observations have provided critical clues into understanding the molecular mechanism of MSH proteins during MMR.  相似文献   

11.
In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. Here, we show that the msh2Delta1 mutation, containing a complete deletion of the conserved mismatch recognition domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Delta1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that domain I in MSH2 contributed a non-specific DNA binding activity while domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA binding. These observations reveal distinct requirements for the MSH2 DNA binding domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding.  相似文献   

12.
DNA mismatch repair is initiated by the recognition of mismatches by MutS proteins. The mechanism by which MutS searches for and recognizes mismatches and subsequently signals repair remains poorly understood. We used single-molecule analyses of atomic force microscopy images of MutS-DNA complexes, coupled with biochemical assays, to determine the distributions of conformational states, the DNA binding affinities, and the ATPase activities of wild type and two mutants of MutS, with alanine substitutions in the conserved Phe-Xaa-Glu mismatch recognition motif. We find that on homoduplex DNA, the conserved Glu, but not the Phe, facilitates MutS-induced DNA bending, whereas at mismatches, both Phe and Glu promote the formation of an unbent conformation. The data reveal an unusual role for the Phe residue in that it promotes the unbending, not bending, of DNA at mismatch sites. In addition, formation of the specific unbent MutS-DNA conformation at mismatches appears to be required for the inhibition of ATP hydrolysis by MutS that signals initiation of repair. These results provide a structural explanation for the mechanism by which MutS searches for and recognizes mismatches and for the observed phenotypes of mutants with substitutions in the Phe-Xaa-Glu motif.  相似文献   

13.
Mismatch repair (MMR) proteins are important for antibody class-switch recombination (CSR), but their roles are unknown. We propose a model for the function of MMR in CSR in which MMR proteins convert single-strand nicks instigated by activation-induced cytidine deaminase (AID) into the double-strand breaks (DSBs) that are required for CSR. This model does not invoke any novel functions for MMR but simply posits that, owing to numerous single-strand nicks in the switch (S) regions of both DNA strands, when MMR proteins are recruited by U:G mismatches, they excise one strand of DNA and soon reach a nick on the opposite strand. This halts excision activity and creates a DSB. This model explains why B cells that lack either S mu and MSH2 or UNG and MSH2 cannot undergo CSR.  相似文献   

14.
The most abundant mismatch binding factor in human cells, hMutSalpha, is a heterodimer of hMSH2 and hMSH6, two homologues of the bacterial MutS protein. The C-terminal portions of all MutS homologues contain an ATP binding motif and are highly conserved throughout evolution. Although the N termini are generally divergent, they too contain short conserved sequence elements. A phenylalanine --> alanine substitution within one such motif, GXFY(X)(5)DA, has been shown to abolish the mismatch binding activity of the MutS protein of Thermus aquaticus (Malkov, V. A., Biswas, I., Camerini-Otero, R. D., and Hsieh, P. (1997) J. Biol. Chem. 272, 23811-23817). We introduced an identical mutation into one or both subunits of hMutSalpha. The Phe --> Ala substitution in hMSH2 had no effect on the biological activity of the heterodimer. In contrast, the in vitro mismatch binding and mismatch repair functions of hMutSalpha were severely attenuated when the hMSH6 subunit was mutated. Moreover, this variant heterodimer also displayed a general DNA binding defect. Correspondingly, its ATPase activity could not be stimulated by either heteroduplex or homoduplex DNA. Thus the N-terminal portion of hMSH6 appears to impart on hMutSalpha not only the specificity for recognition and binding of mismatched substrates but also the ability to bind to homoduplex DNA.  相似文献   

15.
Mismatch repair (MMR) deficiency gives rise to cisplatin resistance and can lead to poor prognosis in cancers. Various models have been proposed to explain this low level of resistance caused due to loss of MMR proteins. We have shown that MMR proteins are required to maintain cisplatin interstrand cross-links (ICLs) on the DNA leading to increased cellular sensitivity. In our previous studies, we have shown that BER processing of the cisplatin ICLs is mutagenic. Polymerase β (Polβ) can generate mismatches which leads to the activation and the recruitment of mismatch repair proteins. In this paper, we distinguished between the requirement of different downstream MMR proteins for maintaining cisplatin sensitivity. We show that the MutSα (MSH2–MSH6) heterocomplex is required to maintain cisplatin sensitivity, whereas the Mutsβ complex has no effect. These results can be correlated with the increased repair of cisplatin ICLs and ICL induced DNA double strand breaks (DSBs) in the resistant cells. Moreover, we show that MLH1 proficient cells displayed a cisplatin sensitive phenotype when compared with the MLH1 deficient cells and the ATPase activity of MLH1 is essential to mediate this effect. Based on these results, we propose that MutSα as well as the downstream MMR pathway proteins are essential to maintain a cisplatin sensitive phenotype as a consequence of processing Polβ induced mismatches at sites flanking cisplatin ICLs.  相似文献   

16.
Genetic stability depends in part on an efficient DNA lesion recognition and correction by the DNA mismatch repair (MMR) system. In eukaryotes, MMR is initiated by the binding of heterodimeric MutS homologue (MSH) complexes, MSH2–MSH6 and MSH2–MSH3, which recognize and bind mismatches and unpaired nucleotides. Plants encode another mismatch recognition protein, named MSH7. MSH7 forms a heterodimer with MSH2 and the protein complex is designated MutSγ. We here report the effect the expression of Arabidopsis MSH2 and MSH7 alone or in combination exert on the genomic stability of Saccharomyces cerevisiae. AtMSH2 and AtMutSγ proteins failed to complement the hypermutator phenotype of an msh2 deficient strain. However, overexpressing AtMutSγ in MMR proficient strains generated a 4-fold increase in CAN1 forward mutation rate, when compared to wild-type strains. Canr mutation spectrum analysis of AtMutSγ overproducing strains revealed a substantial increase in the frequency of base substitution mutations, including an increased accumulation of base pair changes from G:C to A:T and T:A to C:G, G:C or A:T. Taken together, these results suggest that AtMutSγ affects yeast genomic stability by recognizing specific mismatches and preventing correction by yeast MutSα and MutSβ, with subsequent inability to interact with yeast downstream proteins needed to complete MMR.  相似文献   

17.
Previous studies have demonstrated recognition of DNA-containing UV light photoproducts by bacterial (Feng, W.-Y., Lee, E., and Hays, J. B. (1991) Genetics 129, 1007-1020) and human (Mu, D., Tursun, M., Duckett, D. R., Drummond, J. T., Modrich, P., and Sancar, A. (1997) Mol. Cell. Biol. 17, 760-769) long-patch mismatch-repair systems. Mismatch repair directed specifically against incorrect bases inserted during semi-conservative DNA replication might efficiently antagonize UV mutagenesis. To test this hypothesis, DNA 51-mers containing site-specific T-T cis-syn-cyclobutane pyrimidine-dimers or T-T pyrimidine-(6-4')pyrimidinone photoproducts, with all four possible bases opposite the respective 3'-thymines in the photoproducts, were analyzed for the ability to compete with radiolabeled (T/G)-mismatched DNA for binding by highly purified human MSH2.MSH6 heterodimer protein (hMutSalpha). Both (cyclobutane-dimer)/AG and ((6-4)photoproduct)/AG mismatches competed about as well as non-photoproduct T/T mismatches. The two respective pairs of photoproduct/(A(T or C)) mismatches also showed higher hMutSalpha affinity than photoproduct/AA "matches"; the apparent affinity of hMutSalpha for the ((6-4)photoproduct)/AA-"matched" substrate was actually less than that for TT/AA homoduplexes. Surprisingly, although hMutSalpha affinities for both non-photoproduct UU/GG double mismatches and for (uracil-cyclobutane-dimer)/AG single mismatches were high, affinity for the (uracil-cyclobutane-dimer)/GG mismatch was quite low. Equilibrium binding of hMutSalpha to DNA containing (photoproduct/base) mismatches and to (T/G)-mismatched DNA was reduced similarly by ATP (in the absence of magnesium).  相似文献   

18.
Bai H  Lu AL 《Journal of bacteriology》2007,189(3):902-910
Escherichia coli MutY and MutS increase replication fidelity by removing adenines that were misincorporated opposite 7,8-dihydro-8-oxo-deoxyguanines (8-oxoG), G, or C. MutY DNA glycosylase removes adenines from these mismatches through a short-patch base excision repair pathway and thus prevents G:C-to-T:A and A:T-to-G:C mutations. MutS binds to the mismatches and initiates the long-patch mismatch repair on daughter DNA strands. We have previously reported that the human MutY homolog (hMYH) physically and functionally interacts with the human MutS homolog, hMutSalpha (Y. Gu et al., J. Biol. Chem. 277:11135-11142, 2002). Here, we show that a similar relationship between MutY and MutS exists in E. coli. The interaction of MutY and MutS involves the Fe-S domain of MutY and the ATPase domain of MutS. MutS, in eightfold molar excess over MutY, can enhance the binding activity of MutY with an A/8-oxoG mismatch by eightfold. The MutY expression level and activity in mutS mutant strains are sixfold and twofold greater, respectively, than those for the wild-type cells. The frequency of A:T-to-G:C mutations is reduced by two- to threefold in a mutS mutY mutant compared to a mutS mutant. Our results suggest that MutY base excision repair and mismatch repair defend against the mutagenic effect of 8-oxoG lesions in a cooperative manner.  相似文献   

19.
Adenines mismatched with guanines or 7,8-dihydro-8-oxo-deoxyguanines that arise through DNA replication errors can be repaired by either base excision repair or mismatch repair. The human MutY homolog (hMYH), a DNA glycosylase, removes adenines from these mismatches. Human MutS homologs, hMSH2/hMSH6 (hMutSalpha), bind to the mismatches and initiate the repair on the daughter DNA strands. Human MYH is physically associated with hMSH2/hMSH6 via the hMSH6 subunit. The interaction of hMutSalpha and hMYH is not observed in several mismatch repair-defective cell lines. The hMutSalpha binding site is mapped to amino acid residues 232-254 of hMYH, a region conserved in the MutY family. Moreover, the binding and glycosylase activities of hMYH with an A/7,8-dihydro-8-oxo-deoxyguanine mismatch are enhanced by hMutSalpha. These results suggest that protein-protein interactions may be a means by which hMYH repair and mismatch repair cooperate in reducing replicative errors caused by oxidized bases.  相似文献   

20.
Mammalian mismatch repair (MMR) systems respond to broad ranges of DNA mismatches and lesions. Kinetic analyses of MMR processing in vitro have focused on base mismatches in a few sequence contexts, because of a lack of general and quantitative MMR assays and because of the difficulty of constructing a multiplicity of MMR substrates, particularly those with DNA lesions. We describe here simple and efficient construction of 11 different MMR substrates, by ligating synthetic oligomers into gapped plasmids generated using sequence-specific N.BstNBI nicking endonuclease, then using sequence-specific nicking endonuclease N.AlwI to introduce single nicks for initiation of 3' to 5' or 5' to 3' excision. To quantitatively assay MMR excision gaps in base-mispaired substrates, generated in human nuclear extracts lacking exogenous dNTPs, we used position- and strand-specific oligomer probes. Mispair-provoked excision along the shorter path from the pre-existing nick toward the mismatch, either 3' to 5' or 5' to 3', predominated over longer path excision by roughly 10:1 to 20:1. MMR excision was complete within 7 min, was highly specific (90:1) for the nicked strand, and was strongly mispair-dependent (at least 40:1). Nonspecific (mismatch-independent) 5' to 3' excision was considerably greater than nonspecific 3' to 5' excision, especially at pre-existing gaps, but was not processive. These techniques can be used to construct and analyze MMR substrates with DNA mismatches or lesions in any sequence context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号