首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Citrate synthase (E.C. 4.1.3.7) has been isolated from bean mitochondria by an improved procedure. The purified enzyme had a specific activity of 50. In most respects (e.g. sedimentation constant, Kms, pH sensitivity and ionic strength inhibition) the enzyme is similar to that prepared from mammalian sources. The feature distinguishing the plant enzyme from the others was its inhibition by several sulfhydryl reagents. The substrates conferred either complete protection (acetyl coenzyme A) or partial protection (oxalacetic acid) against the inhibition. Dithiothreitol (DTT) was capable of partially reversing the inhibition. The efficacy of DTT varied with the sulfhydryl reagent and was inversely related to the period of incubation of the enzyme with the reagent.  相似文献   

2.
Citrate synthase is a regulatory enzyme of the energy metabolism pathway controlling the citric acid cycle. It was studied in order to determine modes of enzyme regulation with regard to the life-style of the investigated species. Citrate synthase from crustaceans with different life-styles were compared: the pelagic euphausiids Euphausia superba from the Antarctic and Meganyctiphanes norvegica from the Scandinavian Kattegat and the Mediterranean were compared to the benthic isopods Serolis polita from the Antarctic and Idotea baltica from the Baltic. Citrate synthase was partly purified chromatographically and the influence of adenosine 5′-triphosphate on enzyme activity was examined. Mechanisms of inhibition and inhibitor constants were determined. Two different mechanisms of enzyme regulation by ATP were found. Citrate synthase from isopods was only competitively inhibited, while citrate synthase from euphausiids showed not only competitive inhibition but also activation by low concentrations of ATP. This activation is equivalent to the reversed methanism of uncompetitive inhibition. The ecophysiological relevances of the coupling of these mechanisms are discussed. The degree of competitive inhibition was different in the two groups of investigated crustaceans. Inhibitor constants were similar within the euphausiids but not in isopods, which showed higher or lower inhibition depending on the climatic zone: the colder the ambient temperature the lower the ATP inhibition. A possible mechanism of temperature adaptation through effects of varying inhibition constants is concluded.  相似文献   

3.
NADH-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.--) of the photosynthetic alga Scenedesmus obliquus is converted to an NADPH specific form by incubation with dithiothreitol. The change in nucleotide specificity is accompanied by a reduction in the molecular weight of the enzyme from 550 000 to 140 000. Prolonged incubation with dithiothreitol results in the further dissociation of the enzyme to an inactive 70 000 dalton species. The 140 000 dalton, NADPH-specific enzyme is stabilized against dissociation and inactivation by the presence of NAD(H) or NADP(H). Optimum stimulation of NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase activity is achieved on incubation of the NADH-specific enzyme with dithiothreitol and NADPH, or dithiothreitol and a 1,3-diphosphoglycerate generating system. The relevance of these observations to in vivo light-induced changes in the nucleotide specificity of the enzyme is discussed.  相似文献   

4.
Citrate uptake in membrane vesicles of Klebsiella aerogenes.   总被引:4,自引:3,他引:1       下载免费PDF全文
In whole cells of Klebsiella aerogenes grown anaerobically on citrate as sole carbon source, citrate uptake is followed by rapid catabolism of the substrate via the inducible citrate fermentation pathway. Membrane vesicles prepared from such cells take up citrate but do not catabolize it. Vesicles process d-lactate dehydrogenase and the Na+-requiring oxalacetate decarboxylase. Citrate is taken up in the presence of Na+, and other monovalent cations, such as NH4+, Rb+, Cs+, or K+, do not substitute for Na+. Li+ appears to act synergistically with Na+. Citrate uptake is inhibited by N-2, cyanide, azide, sulfhydryl reagents, dinitrophenol, fluorcitrate, and hydroxycitrate.  相似文献   

5.
Cells of Clostridium sporosphaeroides which were grown on citrate contained citrate lyase and citrate lyase acetylating enzyme, but no detectable citrate synthase and citrate lyase deacetylase activities. Citrate lyase from C. sporosphaeroides was purified to homogeneity as judged by polyacrylamide gel electrophoresis and high performance liquid chromatography. In contrast to the enzyme from Clostridium sphenoides, the addition of l-glutamate was not necessary for activity and stabilization of the enzyme. The purified enzyme had a specific activity of 34 U/mg protein and was comparable to other citrate lyases with respect to its molecular weight and subunit composition. Electron microscopic investigations showed that similar to the lyase from C. sphenoides and in contrast to all other citrate lyases examined so far, the majority of the enzyme molecules was present in star form.  相似文献   

6.
Neutral peptidases in the stroma of pea chloroplasts   总被引:14,自引:9,他引:5       下载免费PDF全文
One endopeptidase (EP1) and at least three aminopeptidases (AP1, AP2, and AP3) were discovered in the stroma of chloroplasts isolated from pea seedlings (Pisum sativum L.), and purified over 100-fold. EP1 requires added Mg2+ or Ca2+ for activity, may have an additional tightly bound metal atom, and is inhibited by sulfhydryl reagents but not by serine residue-directed inhibitors. It is reversibly inhibited by dithiothreitol. Its specificity is for the bond between two adjacent Ala or Gly residues. Its molecular mass is 93 kilodaltons, estimated on a gel filtration column. Aminopeptidase activities were detected with the aid of different amino acyl-β-naphthylamides as substrates. They were resolved into at least three individual proteins by gel filtration and DEAE-cellulose chromatography, having apparent molecular masses of 269,000 (AP1), 84,000 (AP2), and 42,000 (AP3) daltons, respectively. Each has a unique specificity for substrates, with AP1 hydrolyzing only the Prolyl-β-naphthylamide. None of the APs require added divalent cations for activity, but the possibility of a tightly bound metal function was suggested in AP2 and AP3 (not AP1) from effects of inhibitors. A probable sulfhydryl residue function was indicated for all three, from inhibition by p-hydroxymercuribenzoate and Zn2+. All these peptidases had pH optima at 7.7.  相似文献   

7.
Summary The citrate synthases of four blue-green algae, two unicellular (Aphanocapsa spp.) and two filamentous (Nostoc sp., Phormidium sp.) were inhibited by -ketoglutarate but not by NADH. This control of citrate synthase activity reflects the lack of -ketoglutarate dehydrogenase in blue-green algae and the strictly biosynthetic role played by the glutamate branch of the tricarboxylic acid cycle. The citrate synthases were also inhibited by ATP and the enzyme of one of the unicellular organisms was also sensitive to inhibition by NADPH. These effectors may function in regulating the flow of fixed carbon into lipids rather than the glutamate family of amino acids.Contribution No. 1649 from the University of Miami, Rosenstiel School of Marine and Atmospheric Science, 10 Rickenbacker Causeway, Miami, Florida 33149, U.S.A.  相似文献   

8.
The microbial product citramalic acid (citramalate) serves as a five-carbon precursor for the chemical synthesis of methacrylic acid. This biochemical is synthesized in Escherichia coli directly by the condensation of pyruvate and acetyl-CoA via the enzyme citramalate synthase. The principal competing enzyme with citramalate synthase is citrate synthase, which mediates the condensation reaction of oxaloacetate and acetyl-CoA to form citrate and begin the tricarboxylic acid cycle. A deletion in the gltA gene coding citrate synthase prevents acetyl-CoA flux into the tricarboxylic acid cycle, and thus necessitates the addition of glutamate. In this study the E. coli citrate synthase was engineered to contain point mutations intended to reduce the enzyme's affinity for acetyl-CoA, but not eliminate its activity. Cell growth, enzyme activity and citramalate production were compared in several variants in shake flasks and controlled fermenters. Citrate synthase GltA[F383M] not only facilitated cell growth without the presence of glutamate, but also improved the citramalate production by 125% compared with the control strain containing the native citrate synthase in batch fermentation. An exponential feeding strategy was employed in a fed-batch process using MEC626/pZE12-cimA harboring the GltA[F383M] variant, which generated over 60 g/L citramalate with a yield of 0.53 g citramalate/g glucose in 132 hr. These results demonstrate protein engineering can be used as an effective tool to redirect carbon flux by reducing enzyme activity and improve the microbial production of traditional commodity chemicals.  相似文献   

9.
The α-isopropylmalate synthase (EC 4.1.3.12) from AlcaligeneseutrophusH 16 was inactivated by EDTA in a time-dependent reaction. Only the addition of Mn++ plus dithiothreitol could restore the activity. The substrate, α-ketoisovalerate, prevented the inactivation; the feedback inhibitor, leucine, and it's antagonist, valine, increased the rate of inactivation. Except for α,α′-bipyridyl, chelating reagents, other than EDTA had no effect on the enzyme stability. It is suggested that the α-isopropylmalate synthase is a metallo enzyme - the evidence points to Mn++ as the metal ion - and that this enzyme uses a mechanism of catalysis which differs from that of the analogous malate synthase (EC 4.1.3.2) and citrate synthase (EC 4.1.3.4).  相似文献   

10.
Citrate(si)-synthase (citrate oxaloacetate-lyasem EC 4.1.3.7) was purified as an electrophoretically homogeneous protein from an ammonia-oxidizing chemoautotrophic bacterium, Nitrosomonas sp. TK794. The molecular mass of the native enzyme was estimated to be about 287 kDa by gel filtration, whereas SDS-PAGE produced one band with Mr values of 44.7 kDa, suggesting that the enzyme is a hexamer consisting of identical subunits. The isoelectric point of the enzyme was 5.0. The pH and temperature optima for citrate synthase (CS) activity was about 7.5–8.0 and 40°C, respectively. The citrate synthase was stable over a pH range of 6.0–8.5 and up to 40°C. The apparent Km values for oxaloacetate and acetyl-CoA were about 11 μM and 247 μM, respectively. The activity of the citrate synthase was not inhibited by ATP, NADH or 2-oxoglutarate at 5mM, and was activated by potassium chloride at 0.1–100 mM. The N-terminal amino acid sequence of the enzyme protein was PPQDVATLSPGENKKTIELPILG.  相似文献   

11.
Citrate (si)-synthase (citrate oxaloacetate-lyase, EC 4.1.3.7) was purified as an electrophoretically homogeneous protein from a nitrite-oxidizing chemoautotrophic bacterium, Nitrobacter agilis ATCC 14123. The molecular mass (Mr) of the native enzyme was estimated to be about 250,000 by gel filtration, whereas SDS-PAGE gave two bands with Mr values of 45,000 and 80,000, respectively, suggesting that the enzyme is a tetramer consisting of two different subunits (α: 45,000, β: 80,000). The isoelectric point of the enzyme was 5.4. The pH and temperature optima on the citrate synthase activity were about 7.5–8.0 and 30–35°C, respectively. The citrate synthase was stable in the pH range of 6.0–9.0 and up to 55°C. The apparent Km values for oxaloacetate and acetyl-CoA were about 27 μM and 410 μM, respectively. The activity of citrate synthase was not inhibited by ATP (1 mM), NADH (1 mM) or 2-oxoglutarate (10 mM), but was strongly inhibited by SDS (1 mM). Activation by metal ions was not observed.  相似文献   

12.
Chang TE  Wegmann B  Wang WY 《Plant physiology》1990,93(4):1641-1649
Chlorophyll biosynthesis starts with the synthesis of glutamyl-tRNA (glu-tRNA) by a glutamyl-tRNA synthetase (Glu RS). The glu-tRNA is subsequently transformed to δ-aminolevulinic acid (ALA), which is a committed and regulated precursor in the chlorophyll biosynthetic pathway. The Glu RS from a green alga, Chlamydomonas reinhardtii, was purified and shown to be able to synthesize glu-tRNA and to participate in ALA synthesis in a coupled enzyme assay. Physical and chemical characterization of the purified Glu RS indicated that the enzyme had been purified to homogeneity. The purified enzyme has a native molecular weight of 60,000, an isoelectric point of 4.6, and it formed a single band of 32,500 daltons when analyzed by a silver stained denaturing gel. The N-terminal amino acid sequence of the 32,500 dalton protein was determined to be Asn-Lys-Val-Ala-Leu-Leu-Gly-Ala-Ala-Gly. The molecular weight analyses together with the unambiguous N-terminal amino acid sequence obtained from the purified enzyme suggested that the native enzyme was composed of two identical subunits. Polyclonal antibodies raised against the purified and denatured enzyme were able to inhibit the activity of the native enzyme and to interact specifically with the 32,500 dalton band on Western blots. Thus, the antibodies provided an additional linkage for the structural and functional identities of the enzyme. In vitro experiments showed that over 90% of the glu RS activity was inhibited by 5 micromolar heme, which suggested that Glu RS may be a regulated enzyme in the chlorophyll biosynthetic pathway.  相似文献   

13.
Citrate synthase, an essential enzyme of the tricarboxylic acid cycle in mitochondria, was purified from acetate-grown Candida tropicalis. Results from SDS-PAGE and gel filtration showed that this enzyme was a dimer composed of 45-kDa subunits. A citrate synthase cDNA fragment was amplified by the 5′-RACE method. Nucleotide sequence analysis of this cDNA fragment revealed that the deduced amino acid sequence contained an extended leader sequence which is suggested to be a mitochondrial targeting signal, as judged from helical wheel analysis. Using this cDNA probe, one genomic citrate synthase clone was isolated from a yeast λEMBL3 library. The nucleotide sequence of the gene encoding C. tropicalis citrate synthase, CtCIT, revealed the presence of a 79-bp intron in the N-terminal region. Sequences essential as yeast splicing motifs were present in this intron. When the CtCIT gene including its intron was introduced into Saccharomyces cerevisiae using the promoter UPR-ICL, citrate synthase activity was highly induced, which strongly indicated that this intron was correctly spliced in S. cerevisiae. Received: 20 November 1996 / Accepted: 25 February 1997  相似文献   

14.
D-Ribulose 1, 5-diphosphate carboxylase has been purified to a state of homogeneity from the marine blue-green alga Agmenellumquadruplicatum strain PR-6. The enzyme has been found to be easily separated from the bulk soluble protein by means of centrifugation into a sucrose gradient. RuDP carboxylase from Agmenellum, upon chromatography using a calibrated Sephadex G-200 column, exhibits a molecular weight of 456,000 daltons, considerably smaller than the protein from eucaryotic algae. Only one polypeptide of approximately 56,000 daltons was obtained upon dissociation in sodium dodecylsulfate.  相似文献   

15.
Rhizobium species elicit the formation of nitrogen-fixing root nodules through a complex interaction between bacteria and plants. Various bacterial genes involved in the nodulation and nitrogen-fixation processes have been described and most have been localized on the symbiotic plasmids (pSym). We have found a gene encoding citrate synthase on the pSym plasmid of Rhizobium tropici, a species that forms nitrogen-fixing nodules on the roots of beans (PhasBoius vuigaris) and trees (Leucaena spp.). Citrate synthase is a key metabolic enzyme that incorporates carbon into the tricarboxylic acid cycle by catalysing the condensation of acetyl-CoA and oxalo-acetic acid to form citrate. R. tropici pcsA (the plasmid citrate synthase gene) is closely related to the corresponding genes of Proteobacteria. pcsA inactivation by a Tn5-mob insertion causes the bacteria to form fewer nodules (30–50% of the original strain) and to have a decreased citrate synthase activity in minimal medium with sucrose. A clone carrying the pcsA gene complemented ail the phenotypic alterations of the pcsA mutant, and conferred Rhizobium iegumino-sarum bv. phaseoli (which naturally lacks a plasmid citrate synthase gene) a higher nodulation and growth capacity in correlation with a higher citrate synthase activity. We have also found that pcsA gene expression is sensitive to iron availability, suggesting a possible role of pcsA in iron uptake.  相似文献   

16.
Washed cells prepared from carbon-limited continuous cultures of Alcaligenes eutrophus synthesised poly-3-hydroxybutyrate (PHB) rapidly when supplied with glucose, dl-lactate or l-lactate. Unlike growing cultures, washed cells excreted significant amounts of pyruvate. The combined rates of PHB production (qPHB) and pyruvate excretion (qPyr) were linearly related to the rate of carbon substrate utilisation (qS), showing that washed cells behaved similarly to growing cultures when corrected for the absence of non-PHB biomass production. The addition of formate (as a potential source of NADH and/or ATP) significantly stimulated both qPHB and qPyr, but slightly decreased qS and substantially decreased the flux of carbon through the tricarboxylic acid cycle (qTCA). Citrate synthase activity of broken cells was inhibited by physiological concentrations of NADH, but not of ATP, in a manner that was not reversible by AMP. Citrate synthase was purified and shown to be a “large” form of the enzyme (M r 227,000), comprising a single type of subunit (M r 47,000) as found in several other gram-negative aerobes. The potential role of citrate synthase in the regulation of PHB production via its ability to control carbon flux into the tricarboxylic acid cycle is discussed. Received: 14 March 1997 / Accepted: 9 July 1997  相似文献   

17.
A procedure has been developed for the purification of amine oxidase (E.C. 1.4.3.4) from etiolated pea epicotyls (Pisum sativum cv. Little Marvel). The enzyme is sensitive to copper chelating reagents and carbonyl reagents, but is not inhibited by sulfhydryl reagents. The purified enzyme has a molecular weight of 1.85 × 105, as determined by sedimentation equilibrium centrifugation, and has been shown to be specifically stimulated by phosphate.  相似文献   

18.
Members of the family Geobacteraceae are commonly the predominant Fe(III)-reducing microorganisms in sedimentary environments, as well as on the surface of energy-harvesting electrodes, and are able to effectively couple the oxidation of acetate to the reduction of external electron acceptors. Citrate synthase activity of these organisms is of interest due to its key role in acetate metabolism. Prior sequencing of the genome of Geobacter sulfurreducens revealed a putative citrate synthase sequence related to the citrate synthases of eukaryotes. All citrate synthase activity in G. sulfurreducens could be resolved to a single 49-kDa protein via affinity chromatography. The enzyme was successfully expressed at high levels in Escherichia coli with similar properties as the native enzyme, and kinetic parameters were comparable to related citrate synthases (kcat = 8.3 s−1; Km = 14.1 and 4.3 μM for acetyl coenzyme A and oxaloacetate, respectively). The enzyme was dimeric and was slightly inhibited by ATP (Ki = 1.9 mM for acetyl coenzyme A), which is a known inhibitor for many eukaryotic, dimeric citrate synthases. NADH, an allosteric inhibitor of prokaryotic hexameric citrate synthases, did not affect enzyme activity. Unlike most prokaryotic dimeric citrate synthases, the enzyme did not have any methylcitrate synthase activity. A unique feature of the enzyme, in contrast to citrate synthases from both eukaryotes and prokaryotes, was a lack of stimulation by K+ ions. Similar citrate synthase sequences were detected in a diversity of other Geobacteraceae members. This first characterization of a eukaryotic-like citrate synthase from a prokaryote provides new insight into acetate metabolism in Geobacteraceae members and suggests a molecular target for tracking the presence and activity of these organisms in the environment.  相似文献   

19.
Photosynthesis was measured by the 14C method on natural as well as low light adapted populations of Chloroflexus (a photosynthetic bacterium) and Synechococcus (a blue-green alga) from hot springs in Yellowstone National Park (Wyoming U.S.A.), to test the ability of these phototrophs to photosynthesize at a variety of light intensities. The herbicide 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) was used to distinguish uptake of the blue-green alga from that of the photosynthetic bacterium, while measurements of chlorophyll a and bacterio-chlorophyll c served to quantitate the standing crops of these organisms.Natural populations of Synechococcus were found to be slightly inhibited by full sunlight intensities (summer values can surpass 90000 Lux), whereas the Chloroflexus populations were not. Populations of both phototrophs subjected to reduced light intensities through the use of neutral density filters were found to adapt to low light, and then become severely inhibited by high light intensities. Adaptation to various light regimes may be an important ecological phenomenon to the survival of these hot spring phototrophs.  相似文献   

20.
Two aminopeptidases, I and II, were found in the acidic fraction of the yeast autolysate, adsorbed on DEAE-cellose and DEAE-Sephadex A&50. Aminopeptidase I was purified as a single protein with a molecular weight of 200,000. The enzyme required Zn for its activity and hydrolyzed dipeptides, and a polypeptide (glucagon). It also hydrolyzed amides, naphthylamides and the p-nitroanilide of amino acids. The enzyme was strongly inhibited by sulfhydryl reagents. Aminopeptidase II seemed also to be a metal enzyme with a molecular weight of 34,000. The enzyme hydrolyzed the dipeptide and tetrapeptide but not leucine-p-nitroanilide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号