首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atherosclerosis is a chronic inflammatory disease associated with cardiovascular dysfunction including myocardial infarction, unstable angina, sudden cardiac death, stroke and peripheral thromboses. It has been predicted that atherosclerosis will be the primary cause of death in the world by 2020. Atherogenesis is initiated by endothelial injury due to oxidative stress associated with cardiovascular risk factors including diabetes mellitus, hypertension, cigarette smoking, dyslipidemia, obesity, and metabolic syndrome. The impairment of the endothelium associated with cardiovascular risk factors creates an imbalance between vasodilating and vasoconstricting factors, in particular, an increase in angiotensin Ⅱ(Ang Ⅱ) and a decrease in nitric oxide. The renin-angiotensin system(RAS), and its primary mediator Ang Ⅱ, also have a direct influence on the progression of the atherosclerotic process via effects on endothelial function, inflammation, fibrinolytic balance, and plaque stability. Anti-inflammatory agents [statins, secretory phospholipase A2 inhibitor, lipoprotein-associated phospholipase A2 inhibitor, 5-lipoxygenase activating protein, chemokine motif ligand-2, C-C chemokine motif receptor 2 pathway inhibitors, methotrexate, IL-1 pathway inhibitor and RAS inhibitors(angiotensin-converting enzyme inhibitors)], Ang Ⅱ receptor blockers and ranin inhibitors may slow inflammatory processes and disease progression. Several studies in human using anti-inflammatory agents and RAS inhibitors revealed vascular benefits and reduced progression of coronary atherosclerosis in patients with stable angina pectoris; decreased vascular inflammatory markers, improved common carotid intima-media thickness and plaque volume in patients with diagnosed atherosclerosis. Recent preclinical studies have demonstrated therapeutic efficacy of vitamin D analogs paricalcitol in Apo E-deficient atherosclerotic mice.  相似文献   

2.
The development of atherosclerotic plaque is associated with neovascularization in the thickened intima and media of vascular walls. Neovascularization may have a role in the progression of atherosclerotic plaque as well as in the development of intraplaque hemorrhage. However, the mechanism and stimulus for neovascularization in atherosclerotic plaque are unknown. We postulated that smooth muscle cells (SMCs), a major cellular component in the vascular wall, might contribute to the induction of neovascularization in atherosclerotic plaque through the secretion of an angiogenic factor. We observed that endothelial cells (ECs) cultured on collagen gel with SMC-conditioned medium became spindle shaped, invaded the underlying collagen gel, and organized a capillary-like branching cord structure in the collagen gel. The conditioned medium also stimulated EC proliferation and increased the EC-associated plasminogen activator activity. The angiogenic factor in SMC-conditioned medium was retained in a heparin-Sepharose column and eluted with 0.9 M NaCl. Neutralizing anti-vascullar endothelial growth factor (VEGF) antibody attenuated the angiogenic activity in the conditioned medium, including the induction of morphologic changes in ECs, mitogenic activity, and increased plasminogen activator activity associated with ECs. Immunoblotting analysis confirmed the secretion of VEGF from SMCs. These observations indicate that SMC may be responsible for the neovascularization in atherosclerotic plaque through the secretion of VEGF. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Atherosclerotic macrovascular disease is the leading cause of both morbidity and mortality in non-insulin dependent diabetes mellitus. Endothelial dysfunction is a key, early and potentially reversible event in pathogenesis of atherosclerosis. Its occurrence in non-insulin dependent diabetes mellitus is well supported by both in-vitro and in-vivo studies. Non-insulin dependent diabetes mellitus results in diverse abnormalities of lipid and lipoprotein metabolism, in particular hypertriglyceridaemia, low levels of high density lipoprotein and abnormalities of post-prandial lipaemia. A variety of studies demonstrate the presence of enhanced oxidative stress in non-insulin dependent diabetes mellitus, with recent data implying an association between oxidative stress, post-prandial lipaemia and endothelial dysfunction in non-diabetic subjects. In this article based on in-vitro and human studies, we develop the hypothesis that endothelial dysfunction in non-insulin dependent diabetes mellitus is the consequence of the diabetic dyslipidaemia, in particular post-prandial lipaemia, and of oxidative stress on the action of nitric oxide. The practical applications of this theory provide potential therapeutic options which may reduce the risk of vascular disease in non-insulin dependent diabetes mellitus.  相似文献   

4.
The past two decades have highlighted the pivotal role of the endothelium in preserving vascular homeostasis. Among others, nitric oxide (NO) is currently believed to be the main component responsible for endothelium dependent vasorelaxation and therefore for endothelial function integrity. Reduced NO bioavailability causes the so-called "endothelial dysfunction," which seems to be the common molecular disorder comprising stable atherosclerotic narrowing lesions or acute plaque rupture causing unstable angina or myocardial infarction. Compelling evidence is accumulating, stressing the role of oxidative stress in causing reduced NO bioavailability and subsequently endothelial dysfunction (ED). More recently, the role of endothelial cell (EC) apoptosis as a possible final stage of ED and plaque activation has been suggested. In vitro and in vivo evidence suggests a role of oxidative stress also as a putative mechanism finally leading to plaque denudation and activation through increased EC apoptosis. Thus, oxidative stress, irrespective of atherosclerotic disease stages, seems to represent a key phenomenon in vascular disease progression and possible prevention.  相似文献   

5.
《Free radical research》2013,47(4):243-256
Abstract

Diabetes mellitus and breast cancer are two important health problems. Type 2 diabetes (T2DM) and obesity are closely linked with both being associated with breast cancer. Despite abundant epidemiological data, there is no definitive evidence regarding the mechanisms responsible for this association. The proposed mechanisms by which diabetes affects breast cancer risk and prognosis are the same as the mechanisms hypothesised for the contribution of obesity to breast cancer risk. The obesity-induced inflammation promoted by adipose tissue dysfunction is a key feature, which is thought to be an important link between obesity and cancer. Inflammation induces an increase in free radicals and subsequently promotes oxidative stress, which may create a microenvironment favourable to the tumor development in obese persons. Oxidative stress is also proposed as the link between obesity and diabetes mellitus. Therefore, obesity-related oxidative stress could be a direct cause of neoplastic transformation associated with obesity and T2DM in breast cancer cells. This review is focused on the role of obesity-related oxidative stress in the context of chronic inflammation, on the time of breast cancer onset and progression, which provide targets for preventive and therapeutic strategies in the fields of diabetes and obesity-related breast cancer.  相似文献   

6.
The role of inflammation in vascular insulin resistance with focus on IL-6   总被引:1,自引:0,他引:1  
The present review focuses on the possible role of interleukin-(IL)-6 in vascular insulin resistance. The endothelium plays an important role in regulating the tone of the vasculature by releasing nitric oxide (NO) to the smooth muscles of the vessels, thereby regulating the distribution of blood flow to the various tissues in relation to their energy demand. A dysfunctioning endothelium has been associated with both initiation and progression of atherosclerotic cardiovascular (CV) disease and has been shown to predate the onset of hyperglycemia in the natural history of type 2 diabetes. It is likely that chronic low-level inflammation plays an important role in developing endothelial dysfunction mainly through proinflammatory actions of tumor necrosis factor alpha (TNF-alpha). TNF-alpha induces production of IL-6 and it has been suggested that a causal relationship exists between endothelial dysfunction and these cytokines. With regard to vascular insulin resistance, the available data point to a direct pathogenic role of TNF-alpha in mediating endothelial dysfunction, whereas with regard to IL-6 evidence is sparse and does not allow any firm conclusions.  相似文献   

7.
The development of atherosclerotic plaque is a highly regulated and complex process which occurs as a result of structural and functional alterations in endothelial cells, smooth muscle cells (SMCs), monocytes/macrophages, T-lymphocytes and platelets. The plaque formation in the coronary arteries or rupture of the plaque in the peripheral vasculature in latter stages of atherosclerosis triggers the onset of acute ischemic events involving myocardium. Although lipid lowering with statins has been established as an important therapy for the treatment of atherosclerosis, partially beneficial effects of statins beyond decreasing lipid levels has shifted the focus to develop newer drugs that can affect directly the process of atherosclerosis. Blockade of renin angiotensin system, augmentation of nitric oxide availability, reduction of Ca(2+) influx, prevention of oxidative stress as well as attenuation of inflammation, platelet activation and SMC proliferation have been recognized as targets for drug treatment to control the development, progression and management of atherosclerosis. A major challenge for future drug development is to formulate a combination therapy affecting different targets to improve the treatment of atherosclerosis.  相似文献   

8.
In advanced atherosclerosis (AS), defective function-induced cell death leads to the formation of the characteristic necrotic core and vulnerable plaque. The forms and mechanisms of cell death in AS have recently been elucidated. Among them, ferroptosis, an iron-dependent form of necrosis that is characterized by oxidative damage to phospholipids, promotes AS by accelerating endothelial dysfunction in lipid peroxidation. Moreover, disordered intracellular iron causes damage to macrophages, vascular smooth muscle cells (VSMCs), vascular endothelial cells (VECs), and affects many risk factors or pathologic processes of AS such as disturbances in lipid peroxidation, oxidative stress, inflammation, and dyslipidemia. However, the mechanisms through which ferroptosis initiates the development and progression of AS have not been established. This review explains the possible correlations between AS and ferroptosis, and provides a reliable theoretical basis for future studies on its mechanism.Subject terms: Cell death, Cardiovascular diseases  相似文献   

9.
Jiao  Yan  Zhao  Dandan  Gao  Fuhua  Hu  Xiaoyan  Hu  Xinxin  Li  Mei  Cui  Ying  Wei  Xiaoqing  Xie  Ce  Zhao  Ying  Gao  Ying 《Journal of physiology and biochemistry》2021,77(1):47-61
Journal of Physiology and Biochemistry - Endothelial injury, which can cause endothelial inflammation and dysfunction, is an important mechanism for the development of atherosclerotic plaque. This...  相似文献   

10.
The vascular endothelium is a multifunctional organ and is critically involved in modulating vascular tone and structure. Endothelial cells produce a wide range of factors that also regulate cellular adhesion, thromboresistance, smooth muscle cell proliferation, and vessel wall inflammation. Thus, endothelial function is important for the homeostasis of the body and its dysfunction is associated with several pathophysiological conditions, including atherosclerosis, hypertension and diabetes. Patients with diabetes invariably show an impairment of endothelium-dependent vasodilation. Therefore, understanding and treating endothelial dysfunction is a major focus in the prevention of vascular complications associated with all forms of diabetes mellitus. The mechanisms of endothelial dysfunction in diabetes may point to new management strategies for the prevention of cardiovascular disease in diabetes. This review will focus on the mechanisms and therapeutics that specifically target endothelial dysfunction in the context of a diabetic setting. Mechanisms including altered glucose metabolism, impaired insulin signaling, low-grade inflammatory state, and increased reactive oxygen species generation will be discussed. The importance of developing new pharmacological approaches that upregulate endothelium-derived nitric oxide synthesis and target key vascular ROS-producing enzymes will be highlighted and new strategies that might prove clinically relevant in preventing the development and/or retarding the progression of diabetes associated vascular complications.  相似文献   

11.
Both IFN-γ or high glucose have been linked to systemic inflammatory imbalance with serious repercussions not only for endothelial function but also for the formation of the atherosclerotic plaque. Although the uncontrolled opening of connexin hemichannels underpins the progression of various diseases, whether they are implicated in endothelial cell dysfunction and damage evoked by IFN-γ plus high glucose remains to be fully elucidated. In this study, by using live cell imaging and biochemical approaches, we demonstrate that IFN-γ plus high glucose augment endothelial connexin43 hemichannel activity, resulting in the increase of ATP release, ATP-mediated Ca2+ dynamics and production of nitric oxide and superoxide anion, as well as impaired insulin-mediated uptake and intercellular diffusion of glucose and cell survival. Based on our results, we propose that connexin 43 hemichannel inhibition could serve as a new approach for tackling the activation of detrimental signaling resulting in endothelial cell dysfunction and death caused by inflammatory mediators during atherosclerosis secondary to diabetes mellitus.  相似文献   

12.
In the absence of disease, microvessels provide vessel wall nutrients to the tunica media, while the intima is fed by oxygen diffusion from the lumen. As disease evolves and the tunica intima thickens, oxygen diffusion is impaired, and microvessels become the major source for nutrients to the vessel wall. Microvessels serve as a port of entry for inflammatory cells, from the systemic circulation to the nascent atherosclerotic lesion. As disease progress, microvessels also play a role in intraplaque hemorrhage, lipid core expansion, and plaque rupture. In addition, microvessels are also involved in stent restenosis, and plaque regression. Therefore, microvessels are a pivotal component of atherosclerosis, and proper patient risk-stratification in the near future may include the detection of increased neovascularization in atherosclerotic lesions. This review divided in two parts summarizes the current understanding of atherosclerosis neovascularization, starting with the normal anatomy and physiology and progressing to more advanced stages of the disease. We will review the structure and function of vasa vasorum in health and disease, the mechanisms responsible for the angiogenic process, the role of the immune system, including inflammation and Toll-like receptors, and the pathology of microvessels in early atherosclerotic plaques. Furthermore, the review addresses the advanced stages of atherosclerosis, summarizing the progressive role for microvessels during disease progression, red blood cell extravasation, lipid core expansion, plaque rupture, healing, repair, restenosis, and disease regression, offering the clinician a state-of-the-art, "bench to bedside" approach to neovascularization in human atherosclerosis.  相似文献   

13.
Type 2 diabetes mellitus (T2DM) is a metabolic condition with an elevated impact on cardiovascular (CV) risk. The innovative therapeutic approaches for T2DM - incretin-based therapies (IBTs), including glucagon-like peptide 1 (GLP-1) receptor agonists, have become popular and more widely used in recent years. The available scientific data from clinical studies and clinical practice highlights their beyond glucose-lowering effects, which is achieved without any increase in hypoglycaemia. The former effects include reduction in body weight, lipids, blood pressure, inflammatory markers, oxidative stress, endothelial dysfunction, and subclinical atherosclerosis, thus reducing and potentially preventing CV events. In fact, the introduction of IBTs is one of the key moments in the history of diabetes research and treatment. Such therapeutic strategies allow customization of antidiabetic treatment to each patient's need and therefore obtain better metabolic control with reduced CV risk. The aim of the present paper is to provide a comprehensive overview of the effects of GLP-1RA on various cardiometabolic markers and overall CV risk, with particular attention on recent CV outcome studies and potential mechanisms. In particular, the effects of liraglutide on formation and progression of atherosclerotic plaque and mechanisms explaining its cardioprotective effects are highlighted.  相似文献   

14.
Intraplaque hemorrhage is a common feature of atherosclerotic plaques and is considered one of the identifying features of complex lesions preceding acute ischemic events. The cause of intraplaque hemorrhage is most often secondary to rupture of neovessels, which have invaded the plaque. However, inflammation and metabolic factors such as diabetes may also precipitate hemorrhage from mature microvessels by damaging the endothelium. The mechanism by which hemorrhage destabilizes the plaque is in large part secondary to the action of hemoglobin released from red blood cells at the site of the hemorrhage. Hemoglobin is a potent pro-inflammatory agent by virtue of its ability to promote formation of ROS. The major defense mechanism against the toxic effects of extracorpuscular hemoglobin is the protein haptoglobin, which tightly binds to hemoglobin and prevents it from catalyzing oxidative reactions. There exists a common allelic polymorphism in the haptoglobin gene, which has recently been strongly associated with the risk of cardiovascular disease in multiple independent cohorts. The protein products of the two different haptoglobin alleles differ in their ability to serve as an antioxidant against hemoglobin and also to activate the CD163 receptor. This review presents a unifying hypothesis whereby the haptoglobin genotype is proposed to modulate the response to intraplaque hemorrhage and thereby play a fundamental role in determining the morphological and metabolic features of complex plaques preceding acute ischemic events.  相似文献   

15.
The functional and structural alterations of vascular endothelium contribute to the initiation, progression, and complications of atherosclerotic plaque formation, but limited information is known about the molecular composition and pathways underlying pathological changes during atherosclerosis. We have developed an affinity proteomic strategy for in situ isolation and differential mapping of vascular endothelial proteins in normal and atherosclerotic aorta tissues. The selective labeling was carried out by perfusion of the blood vessels with an active biotin reagent for covalent modification of accessible vascular endothelial proteins. The biotinylated proteins were then enriched by streptavidin affinity chromatography, separated by SDS-PAGE, and subsequently characterized by LC-MS/MS. The described procedure led to the identification of 454 distinct proteins in normal and atherosclerotic aorta tissues. A majority of the proteins are plasma membrane associated and extracellular matrix proteins, and 81 showed altered expressions in atherosclerotic aorta tissue. The differentially expressed proteins are involved in immune and inflammatory responses, cell adhesion, and lipid metabolism. The method provides a new avenue for investigating the endothelial dysfunction and development of atherosclerosis.  相似文献   

16.
The multiple actions of angiotensin II in atherosclerosis   总被引:3,自引:0,他引:3  
Angiotensin II (Ang II), the effector peptide of the renin-angiotensin system, has been implied in the pathogenesis of atherosclerosis on various levels. There is abundant experimental evidence that pharmacological antagonism of Ang II formation by angiotensin converting enzyme inhibition or blockade of the cellular effects of Ang II by angiotensin type 1 receptor blockade inhibits formation and progression of atherosclerotic lesions. Angiotensin promotes generation of oxidative stress in the vasculature, which appears to be a key mediator of Ang II-induced endothelial dysfunction, endothelial cell apoptosis, and lipoprotein peroxidation. Ang II also induces cellular adhesion molecules, chemotactic and proinflammatory cytokines, all of which participate in the induction of an inflammatory response in the vessel wall. In addition, Ang II triggers responses in vascular smooth muscle cells that lead to proliferation, migration, and a phenotypic modulation resulting in production of growth factors and extracellular matrix. While all of these effects contribute to neointima formation and development of atherosclerotic lesions, Ang II may also be involved in acute complications of atherosclerosis by promoting plaque rupture and a hyperthrombotic state. Accordingly, Ang II appears to have a central role in the pathophysiology of atherosclerosis.  相似文献   

17.
Recent clinical studies such as HOPE, SECURE, and APRES show that angiotensin-converting enzyme (ACE) inhibitors like ramipril improve the prognosis of patients with a high risk of atherothrombotic cardiovascular events. Atherosclerosis, as a chronic inflammatory condition of the vascular system, can turn into an acute clinical event through the rupture of a vulnerable atherosclerotic plaque followed by thrombosis. ACE inhibition has a beneficial effect on the atherogenic setting and on fibrinolysis. Endothelial dysfunction is the end of a common process in which cardiovascular risk factors contribute to inflammation and atherogenesis. By inhibiting the formation of angiotensin II, ACE inhibitors prevent any damaging effects on endothelial function, vascular smooth muscle cells, and inflammatory vascular processes. An increase in the release of NO under ACE inhibition has a protective effect. Local renin-angiotensin systems in the tissue are involved in the inflammatory processes in the atherosclerotic plaque. Circulating ACE-containing monocytes, which adhere to endothelial cell lesions, differentiate within the vascular wall to ACE-containing macrophages or foam cells with increased local synthesis of ACE and angiotensin II. Within the vascular wall, angiotensin II decisively contributes to the instability of the plaque by stimulating growth factors, adhesion molecules, chemotactic proteins, cytokines, oxidized LDL, and matrix metalloproteinases. Suppression of the increased ACE activity within the plaque can lead to the stabilization and deactivation of the plaque by reducing inflammation in the vascular wall, thus lessening the risk of rupture and thrombosis and the resultant acute clinical cardiovascular events. The remarkable improvement in the long-term prognosis of atherosclerotic patients with increased cardiovascular risk might be the clinical result of the contribution made by ACE inhibition in the vascular wall.  相似文献   

18.
The therapeutic potential of placental growth factor (PlGF) and its receptor Flt1 in angiogenesis is poorly understood. Here, we report that PlGF stimulated angiogenesis and collateral growth in ischemic heart and limb with at least a comparable efficiency to vascular endothelial growth factor (VEGF). An antibody against Flt1 suppressed neovascularization in tumors and ischemic retina, and angiogenesis and inflammatory joint destruction in autoimmune arthritis. Anti-Flt1 also reduced atherosclerotic plaque growth and vulnerability, but the atheroprotective effect was not attributable to reduced plaque neovascularization. Inhibition of VEGF receptor Flk1 did not affect arthritis or atherosclerosis, indicating that inhibition of Flk1-driven angiogenesis alone was not sufficient to halt disease progression. The anti-inflammatory effects of anti-Flt1 were attributable to reduced mobilization of bone marrow-derived myeloid progenitors into the peripheral blood; impaired infiltration of Flt1-expressing leukocytes in inflamed tissues; and defective activation of myeloid cells. Thus, PlGF and Flt1 constitute potential candidates for therapeutic modulation of angiogenesis and inflammation.  相似文献   

19.
The acute phase response to Chlamydia pneumoniae infection was analyzed over a 72 h period post-infection in C57BL/6J mice. A single intra-nasal inoculation stimulated statistically significant increases in the plasma levels of IL-2, IL-5, IL-6, IL-10, IL-12, GM-CSF, IFN-γ, and serum amyloid A but not TNF-α, IL-1β, IL-4 and serum amyloid P. There was also a decrease in the activity of the HDL protective enzyme paraoxonase as well as a reduced ability of HDL to prevent oxidation of palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine by hydroperoxyoctadecadienoic acid at 48 and 72 h post-infection. To determine whether the C. pneumoniae induced acute phase response had any effect on atherosclerotic plaque stability, we measured the frequency of intra-plaque hemorrhage as a marker of plaque disruption in the innominate arteries of apolipoprotein E deficient mice at 29–30 weeks and 1.5–2.0 years of age. There was an increased frequency of intra-plaque hemorrhage only in the older mice infected with the live organism (8/14) as compared to mice treated with killed C. pneumoniae (2/11) or sham inoculated with PBS (2/12). These results suggest that acute phase reactant proteins produced in response to pulmonary infection with C. pneumoniae may contribute to the progression and destabilization of atherosclerotic lesions.  相似文献   

20.
Osteopontin (OPN) is an important mediator of inflammation and is involved in the generation of atherosclerotic lesions. Oxidized LDL (OxLDL) increased the intracellular and secreted levels of OPN in rat smooth muscle cells in a dose- and time-dependent manner. Experiments with kinase inhibitors demonstrated that this effect was mediated by ERK and JNK, but not p38. OxLDL induced oxidative stress, measured by the intracellular levels of reactive oxygen species (ROS) and lipid peroxidation products. The increase in OPN levels was reproduced by the lipid extract of the particle and prevented by the antioxidant vitamin E. Furthermore, ROS generated by UVA irradiation or treatment with pro-oxidant compounds such as buthionine sulfoximine or H2O2 also enhanced intracellular and secreted OPN. Finally, OxLDL also augmented OPN levels in other cell types such as fibroblasts, keratinocytes, and endothelial cells. This work demonstrates the role of OxLDL in the expression of the OPN gene and further highlights the role of oxidative stress in the regulation of this cytokine. This might be related to the proinflammatory effects of OxLDL in the initiation and progression of atherosclerotic plaque.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号